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Abstract. Over the past years, many different approaches and con-
cepts in order to increase computer security have been presented. One
of the most promising of these concepts is Trusted Computing which of-
fers various services and functionalities like reporting and verifying the
integrity and the configuration of a platform (attestation). The idea of
reporting a platform’s state and configuration to a challenger opens new
and innovative ways of establishing trust relationships between entities.
However, common applications are not aware of Trusted Computing fa-
cilities and are therefore not able to utilise Trusted Computing services
at the moment. Hence, this article proposes an architecture that enables
arbitrary applications to perform remote platform attestation, allowing
them to establish trust based on their current configuration. The archi-
tecture’s components discussed in this article are also essential parts of
the OpenTC proof-of-concept prototype. It demonstrates applications
and techniques of the Trusted Computing Group’s proposed attestation
mechanism in the area of personal electronic transactions.

1 Introduction

Trusted Computing (TC) is constantly gaining ground in industry and the public
perception of Trusted Computing is starting to improve [6]. A central role is
played by the Trusted Computing Group (TCG) [18] which is specifying the
core components, namely the Trusted Platform Modules (TPM) and surrounding
software architectures like the TCG Software Stack (TSS) [15]. Based on these
components, security and trust related services like remote attestation, sealing
or binding are defined.

Hence, in the first contribution the question how trust relationships between
remote platforms can be established by using TC is addressed. The approach
presented in this paper allows to establish trusted communication channels by
means of the TCG’s specified remote attestation. The approach introduces a
so-called attestation proxy that is placed in front of the actual application and
performs a mutual platform attestation of the two communication parties. The
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actual communication channel is only established if the attestation succeeded.
This approach allows legacy applications to benefit from attested communication
channels without the need to modify the application code.

As the proof-of-concept implementation is done in Java, the second contri-
bution deals with the problem how TC concepts can be integrated into virtual
machine based runtime environments such as JavaTM. Questions to be answered
are how to measure loaded class and jar files, how to deal with external resources
or how to handle calls to native code.

The basis for all TC related services is the TPM. The TPM is a hardware
chip providing essential functionality for a TC enabled system like a RSA engine,
a true random number generator or mechanisms to securely store and report
the state of a system. While TPMs are produced and shipped by a variety of
manufacturers, important software components like the trusted software stack
are not widely available yet. The presented IAIK TSS for the Java Platform
(jTSS [14]) provides TC services to applications and manages the communication
with the TPM. The jTSS provides the foundations for the two main contributions
of this work.

1.1 Related Work

The idea of remote attestation has been pursued by various research groups.
Hence, many different approaches discussing this research area have been pub-
lished. The most important are introduced in the following paragraphs.

The concept of Property-Based Attestation (PBA) [11] provides an alter-
native to the attestation mechanisms specified by the TCG henceforth called
binary attestation. A Trusted Third Party (TTP) translates the actual system
configuration into a set of properties and issues certificates for those properties.
During the attestation process a (remote) verifier can decide whether or not the
platform security properties meet the requirements of the respective use case.
In literature, using TTPs for certification of properties is called delegation. This
scenario avoids several (undesired) drawbacks of binary attestation. For instance,
presenting the concrete system configuration to a verifier is not desirable from a
privacy perspective and management of all possible configurations is a difficult
task.

Alternatively, Semantic Remote Attestation (SRA) [12] uses language-based
techniques to attest high level properties of an application. The proposal is based
on the Java Virtual Machine (JVM) environment which is attested by binary at-
testation itself. The JVM can enforce a security policy on the running code based
on data flow control and taint propagation mechanisms. Hence, this approach is
a hybrid approach between binary attestation and attesting properties.

Moreover, the Trusted Computing Group - as the leading group for TC spec-
ifications - has published a concept for trusted network access also known as
Trusted Network Connect (TNC) [22]. TNC enforces a policy based access and
integrity control by measuring the state and configuration of a platform accord-
ing to specified policies. Furthermore, TNC introduces the concept of isolation.
Platforms that cannot be attested correctly are isolated. This means that they
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are not allowed to access the network unless they can successfully report that
their integrity has been restored (remediation). The usage of a TPM is optional
in order to make this technology available on a variety of platforms. Neverthe-
less, if a TPM is present it is used for extended integrity checking and binding
of access credentials to the platform.

Other approaches focus on improving established protocols like SSL. The
main problem these approaches deal with is that there is no linkage between the
attestation information (i.e. the signed quote and the AIK certificate) and the
SSL authentication information. Stumpf et al. [21] discuss a concept for a robust
integrity reporting protocol by combining it with a key agreement protocol.
The same problem is addressed by Sailer et al. [20]. In their paper a solution
for linking SSL tunnel endpoints to attestation information by adding the SSL
public key to the event log and PCRs is discussed. Furthermore, they introduce
a new certificate type, the so-called platform property certificate that links an
AIK to a SSL private key. Binding the keys with the certificate should prevent
the misuse of a compromised SSL key.

1.2 Outline of the Paper

The remainder of this paper is organised as follows: Section 2 gives details about
the overall architecture. Section 2.1 describes the attestation proxy and illus-
trates the use of the concept of remote attestation to establish and validate
trusted relationships between two entities. Section 2.2 presents an outline of the
IAIK jTSS, discussing the overall structure as well as implementation concepts.
Section 2.3 deals with aspects of adapting the Java virtual machine to be fully
integrated into TC environments. Section 2.4 explains the link between TPM
based keys and public key infrastructure concepts. Finally, Section 3 concludes
the paper.

2 The Proof of Concept Architecture

In this section, the overall architecture and actions of the proposed approach are
briefly discussed. As shown in Figure 1 the architecture includes a proxy that
provides an attestation service to applications, a trusted software stack (jTSS)
and the trusted Java VM. The integrity of all components of the architecture is
measured as defined by [24] in order to establish a chain-of-trust starting from the
platform’s BIOS up to the proxy service (see Figure 1). However, in order to build
the full chain, the architecture requires further components. These components
include a core-root-of-trust for measurement (CRTM)1 that is included in the
BIOS, a trusted boot loader (e.g. Trusted Grub [19]) and a trusted operating
system. They are out of scope for this implementation and are therefore not
discussed in this paper. Nevertheless, the architecture assumes that the platform
performs an authenticated boot as defined by [18].

1 Modern computer systems use a dynamic-root-of-trust for measurement (DRTM)
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Fig. 1. Attestation Service Architecture and Chain-of-Trust.

The scenario depicted in Figure 2 is as follows: A client application wants
to establish a connection to a server based service. The application could be a
web-browser or any application that requires a network connection2. However,
the application is only allowed to connect if the trust state of the client and the
server meet specified requirements that are defined by policies. The trust state
in the context of TC is derived from the software components that are running
on a platform and the hardware the platform is equipped with. Consequently,
the policies include certain sets of allowed hardware and software configurations.

Fig. 2. Attestation Process Scenario

The platform state has to be reported to the remote platform which is then
verified by it. To allow this, the presented architecture is embedded in the context
of a trusted computing enhanced Public Key Infrastructure (PKI).

Each component of the proposed approach is discussed in detail in the fol-
lowing sub-sections.

2 The scenario focused on within OpenTC uses a web browser as application and a
bank server as back-end service, nevertheless the architecture can be used with any
arbitrary application and service.
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2.1 The Attestation Proxy

The attestation-proxies are responsible for attesting the platforms and routing
the network traffic between the platforms, the client application and the back-
end service (Figure 2). Additionally, the proxies exchange measurement- and
attestation values of the platforms. Consequently, they are also responsible for
validating the measurement values according to preset policies.

The platform attestation with the proxy is as follows: the client-proxy receives
a connection request from a local application and opens a channel to the server-
proxy. Prior to forwarding the data received from the application, the proxy
initiates the attestation sequence. This sequence includes the following steps:

Depending on the proxy policy, the proxy may use a previously generated
attested identity key (AIK) or may create a new one. Reusing of the AIK from
a previous proxy connection saves the time for creating a new one. However this
potentially lowers the level of privacy. When a new identity key is created in the
TPM, the key has to be attested by a Privacy CA which issues a corresponding
AIK certificate. The key is then used to sign the content of the PCR register.

The state of the system is reflected in the Platform Configuration Registers
(PCR) of a TPM. The client-proxy proves to the server-proxy that the system is
running in a desired trusted configuration by running the special TPM ”quote”
operation. It reports the content of a selected set of PCR registers and signs this
information with an identity key.

As shown in Figure 2 the proxy sends the following items: the quote blob,
the AIK certificate and the Stored Measurement Log (SML). The verification
component of the proxy is now able to determine the state of the remote platform
by evaluating the quote blob and the SML. The SML contains a list of all
software components that have been loaded on the remote platform including
their hashes. By recalculating the hashes and comparing them with the hash
from the quote blob, the proxy has evidence of the remote platforms state.
Furthermore, the signature on the quote blob is verified with the help of the
included AIK certificate. If required, the Privacy CA is contacted for additional
data (i.e. CRLs, OCSP requests) for verification of the certificate itself.

Only after all attestation steps have been successfully completed and both
platforms have validated and accepted each other’s state and configuration the
connection between the application and the back-end service is permitted.

The attestation process in the depicted scenario is done in both directions.
Other scenarios might require only the server or the client to be attested.

In order to access TC services and the TPM, the proxy relies on the trusted
Java stack. It provides TC services to application like the proxy and manages
the communication with the TPM. The trusted Java stack is discussed in the
following section.

2.2 The Trusted Software Stack

The TCG not only specifies TPM hardware but also defines an accompanying
software infrastructure called the TCG Software Stack (TSS) [15]. The stack
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Fig. 3. Overview of jTSS Stack Layered Architecture

consists of different modules: the Trusted Service Provider, the Trusted Core
Services and the Trusted Device Driver Library. The exact requirements of these
modules can be found in [15]. A Java specific discussion is provided in the next
sections.

Architecture The TCG chose a layered architecture, which specifies interfaces
in the C programming language, thus allowing applications to access the Trusted
Computing functionality in a standard way. At the time of writing, several imple-
mentations for specific operating systems are available [2] or under development
[5]. Up to now, aside from the TrouSerS TSS stack [9], the here presented IAIK
TSS for the Java Platform (jTSS) is the only TCG software stack available as
open source. All other known implementations are proprietary meaning that
they only support TPMs from specific manufacturers .

The architecture presented in this paper allows operating system indepen-
dence by providing the TC functionality within the Java programming language.
At the same time, different TPM implementations, including a software based
emulator, are supported. Thus actual platform-independent trusted services can
be built on top of the presented TCG Software Stack for the Java Platform
(jTSS). In contrast to other projects [7] that implement only sub-sets of the
functionality, this stack closely follows the specification and includes both, high
and low level APIs as proposed by the TCG. The different layers of the stack
architecture are presented in Figure 3 and discussed in the following paragraphs.

The application level Trusted Service Provider Java applications can ac-
cess Trusted Computing functionality by using a derivate of the Trusted Service



Establishing Trust Relationships between Remote Platforms 7

Provider (TSP) interface. By providing an object oriented interface, the appli-
cation developer is relieved from internal handle and memory management. A
context object serves as entry point to all other functionality such as TPM spe-
cific commands, policy and key handling, data hashing and encryption and PCR
composition. In addition, command authorisation and validation is provided and
user owned cryptographic keys can be held in a per-user persistent storage.

Each application has an instance of the TSP library running on its own.
This TSP communicates with the underlying Trusted Core Services (TCS). Dif-
ferent means of communication are possible. For small set-ups and for testing,
a local binding using standard java function calls is used. However, the TCS
may also run on another machine. In this case, Java Remote Method Invocation
(RMI) may be used. Here, the communication between the two modules can be
protected with Secure Socket Layers (SSL).

In addition to this implementation specific interface, the TSS standard also
calls for an alternative interface utilising the Simple Object Access Protocol
(SOAP) [16], which is implementation and platform independent.

The Trusted Core Services The Trusted Core Services (TCS) are imple-
mented as a system service, with a single instance for a TPM. By ensuring
proper synchronisation, it is designed to handle requests from multiple TSPs.
Among the main functionalities implemented in the TCS are key management,
key cache management, TPM command generation and communication mecha-
nisms.

Since the hardware resources of the TPM are limited, the loading, eviction
and swapping of keys and authorisation sessions needs to be managed. Keys can
be permanently stored in and retrieved from the system persistent storage using
globally unique UUIDs [13]. With these mechanisms, complex key hierarchies
can be defined, allowing to implement domain (i.e. enterprise) wide policies.
The TCS event manager handles the SML, where PCR extension operations are
tracked. For low level access, commands and data are assembled.

Low Level Integration The TCS communicate with the TPM via the TSS
Device Driver Library (TDDL). For hardware access, the Java objects need to
be mapped to the standardized C-structures. Primitive data types need to be
converted as well, considering the byte order of the host platform. These struc-
tures are then processed as byte streams. Since all commands and data are sent
as such plain byte streams, this allows for an OS and hardware-independent
implementation.

In the Linux operating system, hardware-vendor specific driver modules and
a generic driver are integrated in recent kernel releases. The TPM can be accessed
through the /dev/tpm device. With Microsoft Windows Vista, a generic system
driver for version 1.2 TPMs is supplied. With the so called Trusted Base Services
(TBS) [8], basic functionality like resetting or taking ownership is provided and
TSS implementations can be supported. To integrate this Windows interface in
the Java environment, a small native C helper library is accessed via the Java
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Fig. 4. Transitive trustmodel for the Java VM.

Native Interface (JNI). The already pre-assembled byte stream is passed on as a
command to the TPM via the TBS, and the response stream is returned to the
Java interface.

2.3 The Trusted Java Virtual Machine

All currently proposed attestation mechanisms rely on integrity measurement
of the software stack running on a platform. This holds also true for all forms
of property-based attestation. In our work, we extended the trust chain to the
Java VM as shown in Figure 4. We describe the additions to the Java VM in
this section starting with trusted class loading.

Trusted Class Loading Dynamic class loading is a feature of the Java VM
specification. Classes are loaded during run time from any location pointed to
by the class path. The class loaders form a tree structure to enable a delegation
model. A class loader can delegate the loading of classes to a parent classloader
and, if the loading fails, try to locate and load classes for itself. The root of the
tree is the so-called bootstrap (or primordial) class loader. The loaded classes are
assigned to so-called protection domains which prevent leakage of information
between trusted code and application-specific code. Note that the term trusted
code in this case merely refers to the class library shipped with the Java VM.
However, this separation between different classes can be exploited for the func-
tionality of our Trusted Java VM as well. The security mechanisms of the Java
VM rely on the activation of the security manager which is enabled by default
in our implementation.

The proposed approach extends class loading by measurement of executable
contents which is, in the case of the Java environment, restricted to class files.
Before the actual bytecode is present in the VM, the files are hashed and a PCR
is extended. For the case of a secure boot functionality, the VM has the ability
to terminate execution if a class file is not previously known. A special case for
class loading is the reflection API of the Java language. Using qualified names,
the application designer can dynamically load classes. For trusted class loading,
this has no impact as those classes are loaded through the usual class loading
mechanism and are measured as well.
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JAR-files contain a collection of class files and their measurement offers the
possibility to reduce the PCR extend calls to the TPM. Our experiments with
the measurement architecture show that measurement of single class files can
significantly affect the performance of class loading if the number of class files
of the application grows large. If JAR-files are measured on the other hand,
this overhead can be reduced to a minimum. As JAR-files are a usual way to
distribute Java applications, this approach is the most practical one.

Other files that affect the security of Java applications and the Java VM
itself are configuration files such as the Java security policy. For measurement,
configuration files (and hence the subsequent configuration) are equal if and only
if their hashes are equal. However, innumerous possibilities of formatting leading
to the same configuration exist. As this provides no robust means to determine
security, we decided to skip their measurement altogether.

Java Native Interface The Java Native Interface (JNI) allows the application
designer to use programming languages such as C/C++ or assembly to interact
with Java applications. The interface is two-way, which means that the native
code can also access Java objects, i.e. create, inspect and update them, call Java
methods, catch and throw exceptions, load classes and obtain class information.
Whereas there are applications where this proves to be useful, from a security
perspective native libraries pose potential threats.

IBM designed an integrity measurement architecture on a Linux environ-
ment [1]. In their design, they intercept a set of system calls where files (exe-
cutables, libraries, etc.) are loaded and measured into a PCR. Hence, as the VM
loads the libraries dynamically, this measurement architecture would take care
of the measurement and we can omit further discussion of this issue.

An alternative view on the problem is taken from an application perspective.
A native library is part of the application it is used by. Hence, despite some re-
strictions, it might still be useful to include loaded libraries in the measurement.
If there is also a measurement hook on OS level, one has to take care that the
measurement is not taken twice. The general problem with this approach lies
in the fact that loading of shared libraries on a Linux/GNU like environment
can be followed by loading further shared libraries which is taken care of by the
operating system. From the perspective of the VM, these libraries cannot be
measured.

Components In this section we give a component level description of our Java
VM design. To keep the design simple and the code changes to the class loader
as small as possible, we chose to implement a single interface for interaction with
the measurement architecture which is called Integrity Service Provider (ISP).
It manages the integrity measurement and provides methods necessary to en-
force the integrity measurement policy. The Measurement Agent (MA) offers an
interface to measure data that is crucial for the state of the platform. For the
Java VM this would be class- and JAR-files. The Verification Agent (VA) per-
forms the task of verifying the measurements taken by the MA against reference
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values. The Storage Manager class abstracts operations necessary to load and
store Reference Integrity Measurements (RIMs) from a location.

In general, the storage of RIMs is a non-trivial task. Two possibilities have
been proposed so far: storage inside a shielded location and the usage of RIM
certificates. If the Java VM running on a device is using only a restricted number
of applications the storage inside a shielded location is possible. On a general
purpose computer the number of RIMs may become large which could introduce
storage problems. A more practical solution would be to use cryptographic means
to ensure the integrity and authenticity of RIMs which then can be kept on any
type of storage [17].

Usage Model for PCRs The Integrity Measurement Architecture (IMA) pro-
posed by IBM [1] is attached to the Linux kernel. If we compare it to our Trusted
Java VM the operating system has more power to manage measurements. Obvi-
ously, the operating system never gets unloaded and hence the data structures
introduced in IMA can hold links to already measured files. If a file is opened
a second time, IMA hashes it and compares this hash to the value in its data
structures. If the hashes are equal, everything is fine and no PCR is extended.
If the hashes differ, the number of PCR is extended with the new hash value.
This allows IMA to only report a file twice if it is really necessary and changes
(malicious or not) of files are detected.

This mechanism cannot be adapted to the VM measurement architecture for
the obvious reason that, if the VM terminates, the data structures get reset and
the measurement history is no longer available.

Those facts impose several restrictions on the architecture. At first, there
need to be separate registers for extending the virtual machine itself, and the
applications that run on this VM. Otherwise it will not be possible to seal
any Java application to this VM configuration. If we suppose the operating
system takes care of the measurement of the VM, it can also detect changes in
the executable and core libraries of the VM as outlined in the IMA approach.
Furthermore, as files are usually not measured twice, the value in the PCR for
the VM represents a unique value to which applications can be sealed to.

2.4 Trusted PKI Support

The proposed approach strongly relies on a public key infrastructure. Hence,
this section discusses the components required for establishing a trusted PKI.

A trusted PKI or trusted computing enhanced public key infrastructure is
a framework enabling authentication, confidentiality and integrity services by
using public key cryptography with support of trusted computing technology.
It assists entities of (public) networks to establish levels of trust and/or secure
communication channels. In the following two paragraphs we describe the trust
enabling components required for our architecture.
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Attested (Trusted) Identity The TPM Endorsement Key (EK) uniquely
identifies a TPM and hence a specific platform. Therefore, the privacy of a user
is at risk if the EK would be used directly for transactions. As a countermeasure,
the TCG introduced Attestation Identity Keys (AIKs) and associated AIK cer-
tificates (standard X.509 Public Key Certificates that include private extensions
defined by TCG[17]), which cannot be backtracked directly to a specific plat-
form. Still, they contain sufficient proof that the Trusted Computing supported
hardware is hosting the certified key.

A trusted identity comprises two data objects: a non-migratable identity
keypair hosted by a TPM and an associated certificate proving that the keypair
belongs to a valid TPM, vouched for by a Privacy CA entity.

An identity key can only be used to operate upon data created by the TPM
itself and not for signing arbitrary data.

Privacy CA As depicted in Figure 2, the certification of AIKs is done by a
dedicated and trusted third party, the so-called Privacy CA (PCA). A PCA is
a CA with the requirement of hiding the platform specific EK credential. In
order to obtain an AIK certificate, a specific protocol between trusted platform
and Privacy CA takes place: The TPM creates a request package containing
identity public key, AIK certificate label and platform specific certificates. The
Privacy CA checks the included information and if all pieces conform to the CA
policy, an AIK certificate is issued. The response is encrypted so that only the
TPM indicated in the request can extract the AIK certificate.

The mode of operation of a Privacy CA is regulated by policy. It clearly
describes how the relationship between EK certificates and the issued AIK cer-
tificates is managed. The policy options for a Privacy CA cover the spectrum
from ”remember everything” to ”know enough for the specific operation, forget
everything after completion of operation”. Thus, the usage of a specific Pri-
vacy CA is scenario dependent and has to consider the intended level of privacy.
In a restricted deployment scenario the Privacy CA - as a central authority -
issues and validates AIK certificates only from well-known clients. This requires
an initial registration step of each client’s EK certificate.

3 Conclusion

This paper proposes an architecture for enhancing arbitrary applications with
Trusted Computing functionality. With this architecture, legacy applications
can now benefit from Trusted Computing services - in this special scenario from
remote attestation - without being modified. Furthermore, they are now able
to derive a trust state based on the remote platforms software configuration. In
order to demonstrate the feasibility of the approach a proof-of-concept prototype
has been developed by implementing the architecture.

Moreover, by adapting a Java Virtual Machine, we showed that it is possible
to create a chain-of-trust starting from the BIOS up to a virtualised execution
environment like Java. The adapted Java VM allows user applications to execute
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in a trusted environment. By integrating measurement mechanisms directly into
the run time environment, high flexibility for these applications can be main-
tained, even within tight security requirements when building a trustworthy
system.
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