

Bernhard Rinner

FAKULTÄT FÜR TECHNISCHE WISSENSCHAFTEN

Institut für Vernetzte und Eingebettete Systeme

Motivation

- Target application disaster management
 - Support first responders in disasters with multiple UAVs
 - Provide latest and relevant information about the scene
 - Autonomously flying, networked, collaborating UAVs
- Multidisciplinary research team
 - 4 research groups at Klagenfurt University
 - Several guest researchers
 - Spin-off company

Collaborative Microdrones

- Develop autonomous multi-UAV system for aerial reconnaissance
- Up-to-date aerial overview images are helpful in many situations:
 - "Google Earth with up-to-date images in high resolution"
- Small-scale quadcopter platform with onboard sensors and computation
- GPS receiver for autonomous waypoint flights
- Generic framework not bound to specific UAV

Key Challenges

- Increase autonomy
 - Control and coordination of multiple UAVs
 - High-level interaction with user
- Provide prompt response to user
 - Provide preliminary results fast and improve over time
- Deal with strong resource limitations
 - Flight time, payload, computation and communication
 - Limited sensing capabilities

Autonomous UAV Operation

Key Questions

- How to generate and update movement routes for the UAVs?
 - Achieve multiple optimization goals
 - Deal with changes in the environment
- How to setup a wireless UAV network?
 - Provide networking coverage
- How to generate the mosaic image?
 - Apply incremental image stiching
 - Combine RGB and thermal images

System integration and demonstration

Generation of UAV Routes

	Non-cooperative	Cooperative
Deterministic	UAV has a predefined route that is independent of other UAV paths.	UAV has a predefined route that depends on other UAV paths.
Dynamic	UAV has an <i>a priori</i> unknown route that is independent of other UAV paths.	UAV has an <i>a priori</i> unknown route that adapts to other UAV paths.

Where to take the pictures

Compute picture points from the user-specified "area of

interest"

3D flight corridor is input

Minimize number of picture points while satisfying resolution and overlap requirements

- Derive optimal solution by ILP
 - NP complete problem
- Apply heuristics
 - Iterative approach

Quaritsch et al. <u>Networked UAVs as aerial sensor network for disaster management applications</u>. *Elektrotechnik & Informationstechnik*. 2010

Deterministic Route Planning

- Compute routes R_i (sequence of picture points) for all UAVs
 - R1: Covering the area as fast as possible
 - R2: Continuously monitoring the area
- Considering limitations on speed and flight time
 - Return to base station (eventually change batteries)
- Developed two different heuristics for global planning
 - Fast and only small deviation from optimum
 - Adaptation by recomputing routes from current situation

Mersheeva et al. Routing for Continuous Monitoring by Multiple Micro UAVs in Disaster Scenarios. In *Proc. ECAI.* 2012

ALPEN-ADRIA UNIVERSITAT KLAGENFURT I WIEN GRAZ Lakeside Labs

Probabilistic Route Planning

- Each UAV determines locally its route and exchanges information when it is close to other UAV
 - Simple local planning, eg., random walk, parallel-path, belief-based
 - Online adaptation
- Simulation-based studies

Yanmaz et al. Area Coverage with Unmanned Vehicles: A Belief-based Approach In *Proc. VTC.* 2010

Networked Aerial Robots

- Information exchange between
 - Base station and UAVs
 - Inter-UAV communication
- Wireless networking in 3D space
 - Different positions/elevation levels
 - UAV Orientation (yaw, tilt, roll)
- Establish reliable connection with standard protocols
 - High data rates required
 - IEEE 802.11a to avoid interference

802.11 access point

Kuschnig et al. Profiling IEEE 802.11 Performance on Linux-based Networked Aerial Robots. In *Proc. ARW* 2012

Antenna Setup

Lakeside Labs

Investigate UAV antenna behavior

Triangular antenna setup

- 3 dipole antennas
- UAV position fixed
- UAV orientation (yaw)
 to the AP varies

Quadrotor UAV

RSSI on the UAV in dBm (d=100m, h=50m)

Image Mosaicking

- Problem definition
 - Given n individual images Ii, find image transformations Ti for each Ii

$$I_{overview} = \bigcup_{i=1}^{n} T_i(I_i)$$

which maximizes some quality function $\lambda(I_{overview})$

- Two fundamental approaches for finding the transformations
 - Exploit auxilliary data, i.e., camera's position and orientation (meta data based approach)
 - Exploit corresponding points within image overlaps (image based approach)

Yahyanejad et al. <u>Incremental Mosaicking of Images from Autonomous, Small-Scale UAVs.</u> In Proc. AVSS. pages 329-336, 2010.

Incremental Image Mosaicking

Start with meta data approach, refine with image-based approach

Position data (GPS meta data)

Position&orientation data (GPS & IMU)

SIFT feature points (Image data)

Apparatus and method for generating an overview image of a plurality of images using an accuracy information. European patent, EP2423871 (A1), 2012

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT I WIEN GRAZ Lakeside Labs

Structure-based Mosaicking

Identify corresponding points at the same level by exploiting
 3D information

ALPEN-ADRIA UNIVERSITAT KLAGENFURT I WIEN GRAZ Lakeside Labs

Multi-level Mosaicking

Start with low-resolution registration

Expand to high-resolution

images

Inter-spectral Mosaicking

- Register thermal and RGB images captured by different UAVs
- Two approaches to overcome challenging feature matching
 - Register RGB and thermal mosaics
 - Exploit depth map as features

System Integration

- Deployment as distributed system
 - User interfaces ground control UAVs

Quaritsch et al. <u>FAMUOS: A Multi-UAV System for Aerial Reconnaissance in Rescue Scenarios</u>. In *Proc. ARW*. 2011.

"Google-like" User Interface

Specifying the scenario description

Visualizing the most recent overview image and the flight route

Cooperative Search

Information merging

Grid of occupancy probabilities

— How to merge grids?

- Decision making
 - Where to take observation?
 - Which path to follow?
 - How many observations?

Information Merging

- Merging strategies
 - Belief update (replace information)
 - Average / consensus
 - Occupancy grid map merging
 - Sensed data sharing
- Assumptions
 - Stationary target
 - Predefined trajectory
 - Sensor model

P_{i,c}: Information of UAV i at location c

Information Merging (2)

Effect of sensor quality

 Effect of communication range

Search region = 10×10 , 5 UAVs, random initial locations, **Threshold** = 0.99, p = 0.9,q = 0.2, target located at (6, 7)

Khan et al. <u>Information Merging in Multi-UAV Cooperative Search</u>, In Proc. ICRA June 2014.

Decision Making Algorithms

- Multiple Travelling Salesman Problem (MTSP) for route selection
- Number of observations required

Decision Making Algorithms (2)

Information merging

	С	D
С	CCT	CDI
D	DCI	DDI

UAV1 MTSP path, first round
UAV1 MTSP path, second round

UAV2 MTSP path, first round
UAV2 MTSP path, second round

Comparison with State of Art

Targets = 1; p = 0.9; q = 0.2; Threshold = 0.99; unlimitted communication.

Uncoordinated sweep search (US) [Choset_97_ICFSR]

Coordinated sweep search (CS)

Distributed cooperative search (DCS) [York_12_J Int Robot Sys]

Summary

- Joint research of four research groups at Klagenfurt University
- Successful demonstration at various training events
- Spin-off has been launched
- Follow-up research activities
- Presentations and media coverage

30

cDrones Team @ AAU

Further Information

http://uav.aau.at