

Challenges and Opportunities of Distributed Smart Cameras

Prof. Bernhard Rinner

Pervasive Computing Institut für Vernetzte und Eingebettete Systeme Alpen-Adria-Universität Klagenfurt http://pervasive.uni-klu.ac.at

B.Rinner

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT

Revolution in Cameras

- Ongoing technological advances
 - lenses
 - image sensors
 - onboard processing
 - networking
 - ...

transform camera as box delivering images into spatially distributed that generate data and events

Smart Cameras are one aspect of this revolution

Agenda

1. Smart Cameras

Integration of sensing & processing

- 2. Distributed Smart Cameras Distribution of sensing & processing
- 3. Applications & Case Studies
- 4. Challenges

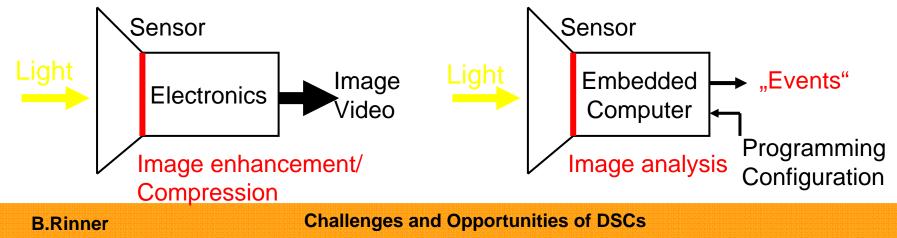
Smart Cameras

Basic Principle of Smart Cameras

- Smart cameras combine
 - sensing,
 - processing and
 - communication
 - in a single embedded device
- perform image and video analysis in real-time closely located at the sensor and transfer only the results
- collaborate with other cameras in the network

Differences to traditional Cameras

Traditional Camera


- Optics and sensor
- Electronics
- Interfaces

delivers data in form of (encoded) images and videos, respectively

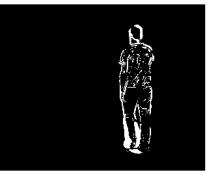
Smart Camera

- Optics and sensor
- onboard computer
- Interfaces

delivers abstracted image data is configurable and programmable

UNIVERSITÄT KLAGENFURT

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT


Smart Cameras look for important things

- Examples for abstracted image data
 - compressed images and videos
 - features
 - detected events

Architectural Issues

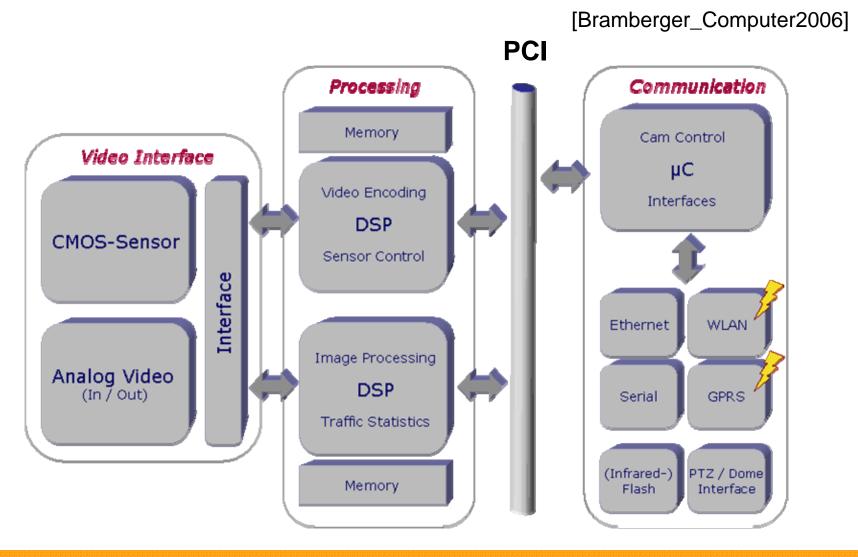
- Embedded processing of image pipeline
 - low-level operations (regular patterns on many pixels)
 - high-level analysis (irregular on few objects)
- Memory often bottleneck in streaming applications
 - capacity
 - bandwidth
 - standard techniques (caches etc.) may not be sufficient
- Processing platforms
 - FPGAs, DSPs, specialized processors (SIMD)
 - microcontroller, g-p processors
- Power consumption!

Various Prototypes

- Prototypes differ in various aspects
 - computing power, energy consumption
 - wired and wireless communication
 - optics and sensors

Rinner et al. (multi-DSP) 10 GOPS @ 10Watt

WiCa/NXP (Xetal SIMD) 50 GOPS @ 600mWatt


CMUcam3 (ARM7) 60 MIPS @ 650mW

CITRIC (PXA270) 660 MIPS @ 970mW

Scalable SmartCam Architecture

(Selected) Smart Camera Systems

System	Year	Platform	Distribution/Proc.	Autonomy
[Moorhead&Binni]	1999	ASIC	local	static
VISoc [Albani]	2002	SOC	local	static
[Wolf et al.]	2002	DPS (PC)	local	static
[Bramberger&Rinner]	2004	DSP	local	rem. conf.
[Dias&Berry]	2007	FPGA	local	active vis.
[Bauer]	2007	DSP	local	static
GestureCam [Shi]	2007	FPGA	local	static
[Bramberger et al.]	2006	multi-DSP	cooper. tracking	dyn. conf.
[Micheloni et al.]	2005	(PC)	MC-tracking	PTZ
[Fleck&Strasser]	2007	PowerPC	MC-tracking	static

(Selected) Smart Camera "Sensors"

System	Year	Platform	Distribution	Radio
Cyclops [Rahimi]	2005	ATmega128	coll. tracking	via Mica2
CMUcam 3 [Rowe]	2007	ARM7	local proc.	-
Meerkats [Margi]	2006	StrongARM	coll. tracking	ext. 802.11b
MeshEye [Hengstler]	2006	ARM7	local	via CC2420
WiCa [Kleihorst]	2006	Xetal (SIMD)	coll. gesture rec	via CC2420
CITRIC [Chen]	2008	PXA	tracking	via Tmote

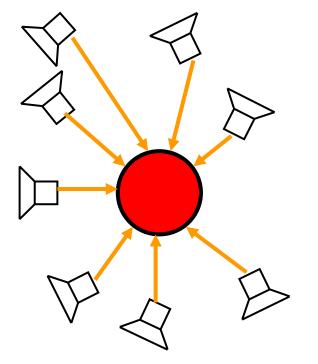
More details

[Akyildiz et al., PIEEE 2008] [Rinner et al., ICDSC 2008]

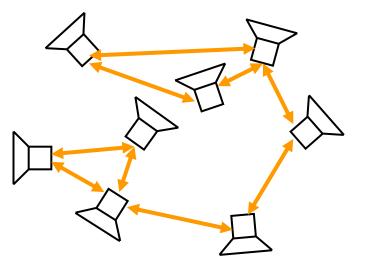
Distributed Smart Cameras

Smart Cameras collaborate

- Connecting autonomous cameras in a network
 - exploit smart cameras' capabilities (eg. avoid raw data transfer)
 - relax centralized/hierarchical structure of MC networks
 - introduce dynamic configuration (structure and functionality)
- Distributing sensing & processing introduce challenges
 - camera selection and placement
 - calibration & synchronization
 - distributed processing
 - data distribution and control, protocols and middleware
 - distributed computer vision (distributed signal processing)


(Potential) Advantages of DSC

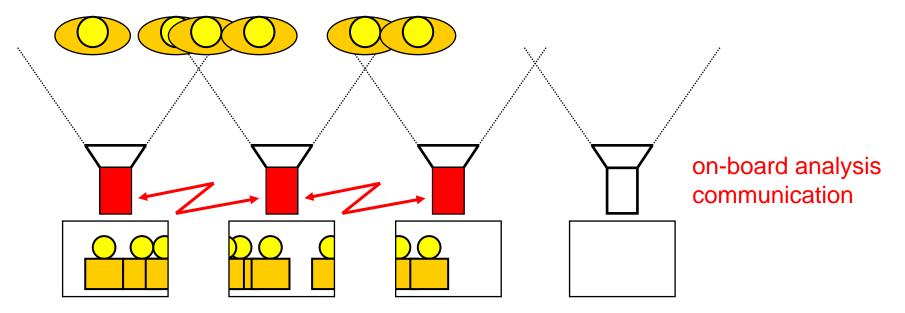
- Scalability
 - No central server as bottleneck
- Real-time capabilities
 - Short round-trip times; "active vision"
- Reliability
 - High degree of redundancy
- Energy and Data distribution
 - Reduced requirements for infrastructure; easier deployment
- Sensor coverage
 - Many (cheap) sensors closer at "target"; improved SNR


. . .

Networking

Traditional Camera Networks

Smart Camera Networks


Cameras stream images/ videos to "server" Cameras collaborate directly (spontaneous, p2p, ad-hoc)

UNIVERSITÄT KLAGENFURT

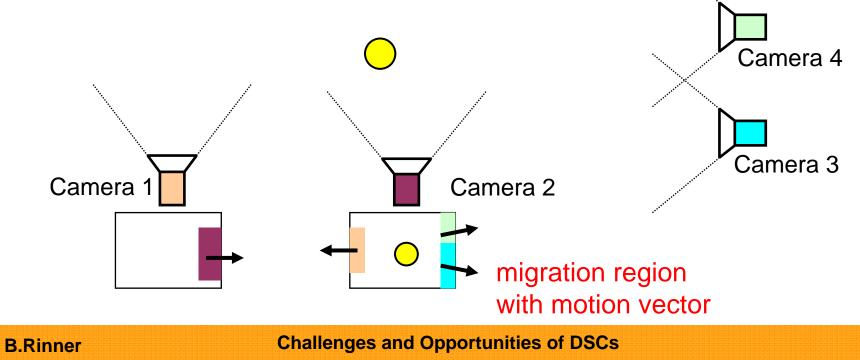
Distributed Processing in Network

 Example: autonomous tracking of mobile objects among multiple cameras

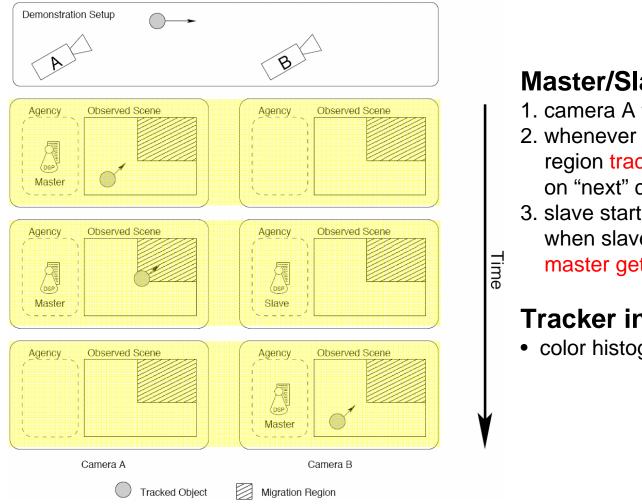
- Computation follows (physical) object
 - requires spontaneous communication; distributed control & data

Applications & Case Studies

Autonomous Multi-Camera Tracking


[EURASIP JES 1/2007]

- Assumptions for multi-camera tracking
 - implement on distributed embedded smart cameras
 - avoid accurate camera calibration
 - do not rely on central coordination
- Important design questions
 - What (single-camera) tracking algorithm to use?
 - How to coordinate the cameras?
 i.e., distributed control, exploit locality
 - How to hand over tracking from one camera to next?


Spatial Relation among Cameras

- Static camera neighborhood relation
 - important for determining "next camera(s)"
 - based on pre-defined "migration region" in camera's FOV (overlapping or non-overlapping FOVs)

Multi-Camera Handover Protocol

Master/Slave handover

- 1. camera A tracks object
- 2. whenever object enters migration region tracking agent is cloned on "next" camera (slave)
- 3. slave starts tracking when slave identifies object
 - master gets terminated

Tracker initialization

color histogram a initialization data

Implementation & Results

Visualization

- migration region (magenta)
- tracked object (red rectangle)
- tracking agent (red box)

Code size	15 kB
Memory requirement	300 kB
Internal state	256 B
Init color histogram	< 10 ms
Identify object	< 1ms

Loading dynamic executable	8 ms
Initializing tracking algorithm	250 ms
Creating slave on next camera	18 ms
Reinitializing tracker on slave	2 ms
Total	278 ms

CamShift (single camera)

Multi-camera performance

B.Rinner

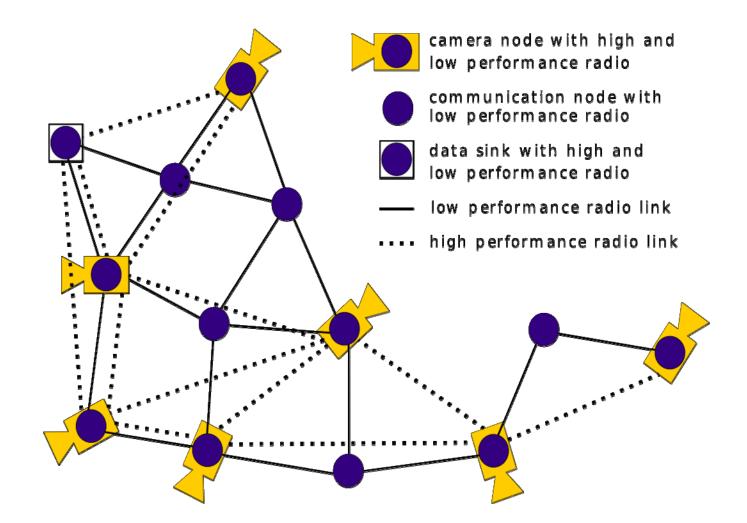
Characteristics of VSN

- In-network image sensing & processing
- Data streaming as well as eventing
- Resource limitations (power, processing, bandwidth ...)
- Autonomy & service-orientation
- Ease of deployment

Dual Radio Communication in DSC

[Winkler_PerCom2009]

- Tradeoff among bandwidth, power consumption and streaming requirements in DSC networks
- One approach: dual radio networks
- Equip nodes with two radios: low-bandwidth & highbandwidth
- Use low-bandwidth radio for normal operation
 - coordination, eventing,
 - transfer of low-resolution (still) images
- Use high-bandwidth radio for streaming


Camera Node Prototype

- Visual Sensor Network Platform
- Sensor Nodes
 - Embedded board with USB connected peripherals
 - TI OMAP3530 processor: ARM Cortex A8 @ 600MHz, TI C64x DSP @430MHz
 - 128MB RAM, 256MB Flash
 - SD-Card, USB, DVI, audio-in/

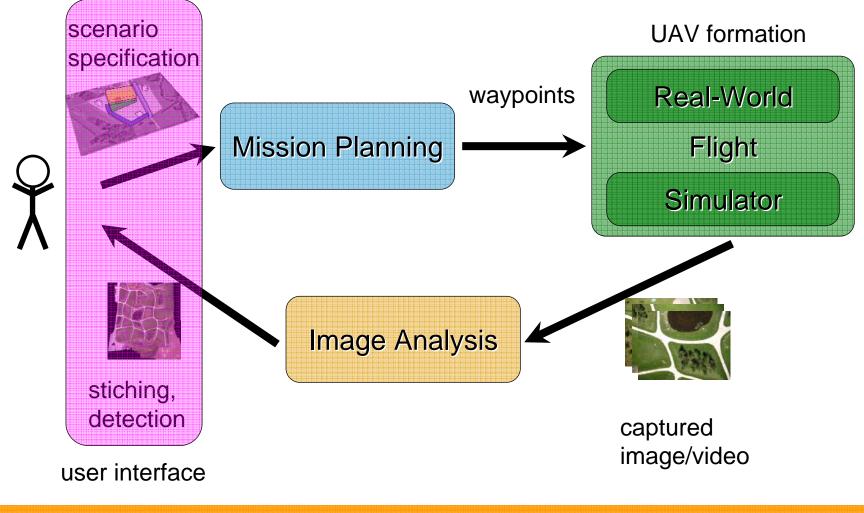
PSC Network Architecture

PSC Demo: Tracking

- Demonstrate tracking by using only low-bandwidth radio
 - initially transfer background image
 - perform tracking onboard
 - transfer tracking result (bounding box);
 8 bytes/frame

UNIVERSITÄT KLAGENFURT

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT


Collaborative Microdrones

[Quaritsch_AUTONOMICS2008]

- UAVs for disaster management
 - deploy a group of small UAVs for disaster management applications
 - fly over the area of interest in structured way (formations)
 - sense the environment
 - analyze the sensor data (image stiching, object detection etc.)
- Provide "bird's eye view" to special task forces in real-time
- Support high autonomy and an intuitive user interface

High-level "Processing Loop"

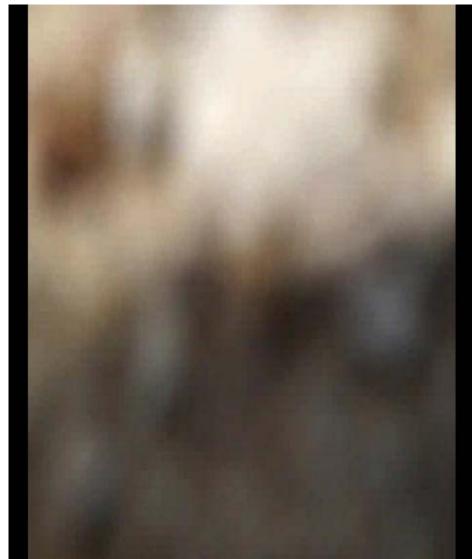
B.Rinner

Challenges and Opportunities of DSCs

UAV Platform

[www.microdrones.com]

- Battery-powered quatrocopter
 - about 1 m size, 200g payload
 - 20 minutes operation time
 - onboard camera 10MPixel
- GPS-based waypoint navigation
- Communication
 - Uplink (RC channel): remote control;
 - Downlink (2.4 GHz channel): flight data, (low-resolution) images/video



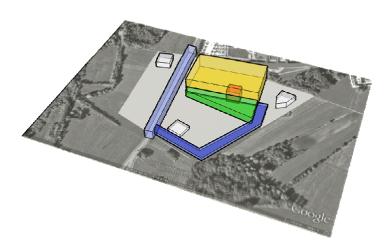
UNIVERSITÄT KLAGENFURT

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT

Bird's Eye View

- 10 MPixel still images
- Video@25 fps
- Image quality
 - Ego motion

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT


Bird's Eye View

- Examples
 - Altitude: 20 60 m
 - Camera yaw: 45 90°
- Images/videos
 - Ego motion
 - With GPS/IMU data

cDrones: Mission Planning

- Find the optimal routes & formation for a small group of UAVs
 - Sequence of waypoints & actions
- Given the scenario description
 - Simplified 3D representation
 - Areas of interest, no-fly zones
- Considering various constraints
 - Power, flight time
 - Target resolution, update rate etc.
- Current approach
 - CSP-based planning

UNIVERSITÄT KLAGENFURT

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT

cDrones: UAV Formation

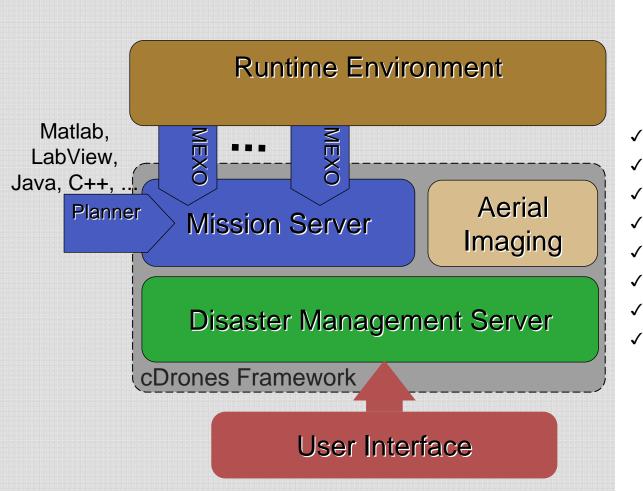
- Build and maintain a formation
 - e.g. "parallel", "triangle" (of 3-5 UAVs)
 - Follow the waypoint routes given by mission planning
- Exploit GPS and IMU data of UAVs
 - Guarantee safe flight routes for individual UAVs
 - No online obstacle detection
- Provide real and simulation environment
 - Simplify testing
 - Modeling the UAV dynamics

cDrones: Aerial Imaging

- UAVs connected via wireless network (eg 802.11)
- Preliminary imaging
 - Mosaicing using COCOA

UNIVERSITÄT KLAGENFURT

Research Topics


- UAV formation
 - Build, maintain, transfer into formations of 3-5 UAVs
 - Real-time processing of data over wirelessly connected UAVs
 - Networked control
- Mission planning
 - Find the optimal routes & formations (and sequence of actions) for the UAVs
 - Given a "scenario specification"
- Aerial imaging
 - Compose an overall (stiched) image
 - Detect objects of interest

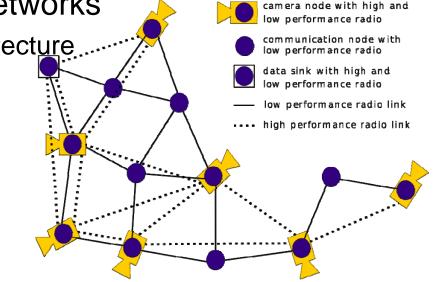
UNIVERSITÄT KLAGENFURT

Current Activities

- Integrate additional onboard computing platform
 - WLAN for up/downlink & interdrone communication
 - Online update of waypoints
 - Better camera control
- Software Framework
 - for integration of main components
 - transparent to simulated/real-world UAVs

Framework Architecture

- Messages
- ✓ Communication Protocol
- ✓ MS, DMS
- Inter-module Communication
- ✓ Interface Planner
- ✓ Interface UI
- ✓ Unit tests
- ✓ Simple client



Challenges

#1: Architecture

How to design resource-aware nodes and networks

- Low-power (high performance) camera nodes
 - Dedicated platforms: vision processors, PCBs, systems
 - Many examples: CITRIC, NXP
- Visual/Multimedia Sensor Networks
 - Topology and (multi-tier) architecture.....
 - Multi-radio communication

#2: Networking

How to process and transfer data in the network

- Ad hoc, p2p communication over wireless channels
 - Providing RT and QoS
 - Eventing and/or streaming
- Dynamic resource management
 - (local) computation, compression, communication, etc.
 - Degree of autonomy: dynamic, adaptive, self-organizing
 - Fault tolerance, scalability
 - Network-level software, middleware
 [Doblander_ACMTECS2009], [Rinner_ICASSP2007], [Shin_2007]

UNIVERSITÄT

#3: Distributed Sensing & Processing

Where to place sensors and analyze the data

- Sensor placement, calibration & selection
 - Optimization problem
 - Distributed approaches eg., consensus, game theory [Soto_CVPR2009], [Devarajan_PIEEE2008]
- Collaborative data analysis
 - Multi-view, multi-temporal, multi-modal
 - Sensor fusion

[Kushwaha_ICCCN2008], [Cevher_TransMM2007]

#4: Mobility

How to exploit networks of mobile cameras

- Ubiquitous mobile cameras
 - PTZ, vehicles, robotics etc.
 - Mobile phones
- Advanced vision algorithms
 - Ego motion, online calibration
 - Closed-loop control, active vision

#5: Usability

How to provide useful services to people

- Ease of deployment, maintenance
 - Self-* functionality
- Privacy and Security
 [Serpanos_PIEEE2008]
- Killer application

(Potential) further Applications

- Entertainment (computer games)
 - in 3D environments
- "Smart Rooms / Smart Environments
 - detection gestures, sign language, room occupancy ...
- Environmental monitoring
 - sensor fusion, habitat monitoring
- Security
 - Safety enhancement (trains, cars), access control, surveillance
- "Virtual Reality"
 - augment real world with digital information

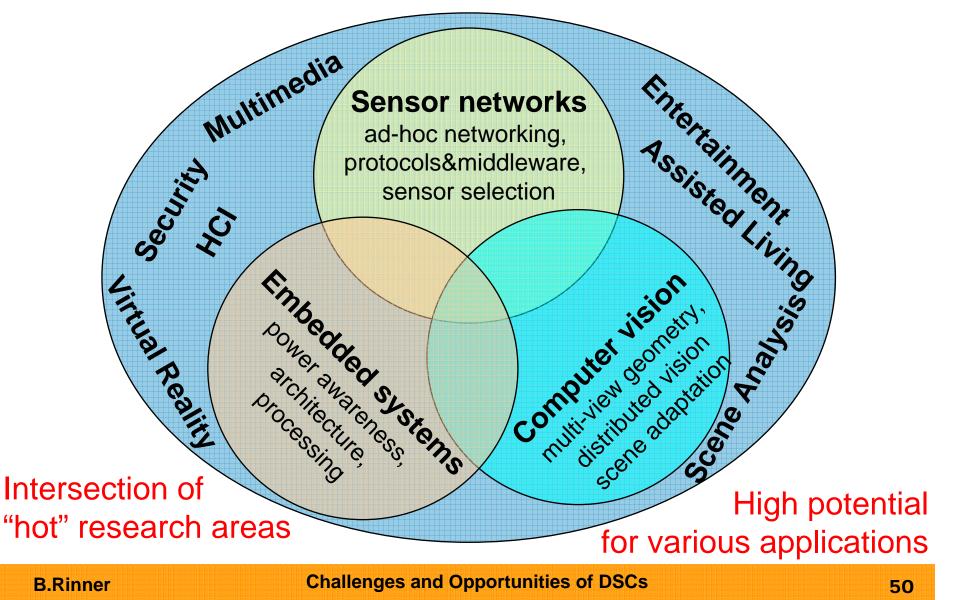
Trends and Challenges

- From static to dynamic and adaptive
 - Adaptation & learning (networking, functionality, scene,...)
- From small to large camera sets
 - E.g., more interest in statistics on behavior (instead of individuals)
- From vision-only to multi-sensor systems
 - Fusion of data from multiple (heterogeneous) sensors
- Development process of DSC
 - How to model, develop, deploy, operate, maintain applications
- Privacy & Security
 - Important cross-layer topic for user acceptance

Conclusion

Smart Cameras

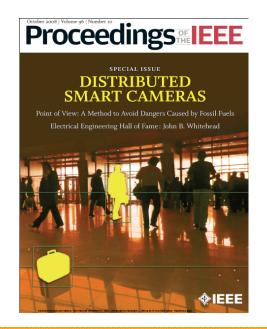
- combine
 - sensing,
 - processing and
 - communication
 - in a single embedded device
- perform image and video analysis in real-time closely located at the sensor and transfer only the results
- collaborate with other cameras in the network (multi-camera system)


ALPEN-ADRIA UNIVERSITÄT KLAGENFURT

Smart Cameras as Key Technology

- For many applications including
 - Life Sciences
 - Security & Monitoring
 - Traffic
 - Entertainment
- Distributed cameras migrate to smart networks, which helps to overcome "hard problems"
 - occlusion
 - communication bandwidth
 - energy supply
 - reliability

DSC is Interdisciplinary Research



To Probe Further

ACM/IEEE Int. Conf. on Distributed Smart Cameras

Como, Italy (Aug30-Sep2, 2009) www.icdsc.org

Further Information

Mail

Pervasive Computing Lakeside B02b 9020 Klagenfurt

- P: +43 463 2700-3670
- F: +43 463 2700-3679
- W: pervasive.uni-klu.ac.at

