

Bernhard Rinner Klagenfurt, August 11, 2017

The Challenge of Privacy and its Protection

- Privacy is highly subjective and difficult to define
 - Related to "the ability of an individual or group to seclude themselves, or information about themselves"
- Privacy has a significant impact on society and is addressed in numerous fields
 - Warren, Brandeis. "The Right to Privacy." 1890.
 - "EU General Data Protection Regulation". effective in 2018
- Privacy is increasingly at risk
 - Technological progress, change in politics, limited awareness

Privacy in Data(bases)

Draw conclusions for the entire population (or parts of)
 but avoid linkage of sensitive information to individuals

Name	SSN	Age	ZIP	Sex	Disease
		[30,39]	9***	female	Flu
		[40,49]	9***	male	Cancer
		[30,39]	9***	female	Flu
		[40,49]	9***	male	Flu

Explicit identifier

Quasi identifier

Sensitive information

- Anonymization as key protection method
- Modify quasi identifier to achieve k anonymity

Privacy in Visual Data

Who is there?

- (Quasi-)Identifiers
- Body or face regions

What is shown?

- Sensitive information
- presence, "show an object" "captured in a box"

How to avoid linkage of sensitive information to individuals?

Privacy Threats: Algorithms

Face Detection

Where are the faces?

Face Recognition

• What are their IDs?

Scene Analysis

What is shown?

Protection approach: make recognition/identification difficult

Privacy Threats: Meta-Data

EXIF Data (selected) Derived meta-data

- **Authors**
- Photographers
- Date
- Image dimensions
- Camera model
- Serial number
- Focal length
- **GPS** position

- "Person"
- "Camera"
- "UAV"
- "Pervasive Computing"
- "Sitting"

Tipp: Query for derived meta-data

Encoded in image

- Image descriptors
- Automatically inserted by many cameras

Derived from image

Scene analysis

Linked w/ other data

- Social media
- Retrieval (search)

Protection approach: avoid storage and linkage of meta-data

Privacy Threats: Big Data

Google claims its 'FaceNet' system has almost perfected recognising human faces - and is accurate 99.96% of the time

- Facebook's rival DeepFace uses technology from Israeli firm face.com
- DeepFace finds a matching face with 97.25% accuracy
- Google researchers call their system the most-accurate technology

© UMass, LWF

Search

Machine Learning

Data Collection

Boost by deep learning

Cloud computing, IoT

© Taigman et al. CVPR14

Performance

- Close to humans and steadily improving
- © Daily Mail, 2015

Meet Skydrive: Toyota backs Japanese

Site Web | Enter your search

Protection method: rely on formal frameworks

No single best protection method available

Distortion as key protection method

- Blanking
- Pixelation
- Bluring
- Cartooning

Utility dependent on level of distortion

- Similarity
- Appearance
- Detectability

Our Research Focus

- 1. What distortion method to use?
 - Explore utiliy/privacy/cost design space
 - Adapt filter strength for optimizing utility&privacy
- 2. How to hinder privacy attacks?
 - Perform protection onboard of cameras
 - Make "reverse engineering" difficult
- 3. How to securely implement privacy protection?
 - Apply security methods to maintain integrity and authenticity
 - Rely on hardware-supported protection

[Winkler, Rinner. <u>Security and Privacy Protection in Visual Sensor Networks: A Survey</u>. ACM Computing Surveys. 2014.]

#1 Adapt Blur to Target Resolution

- Privacy design space exploration with adaptive filtering
 - Determine target's pixel density based on camera pose
 - Decide whether target is inherently protected
 - Configure privacy protection filter
 - Perform adaptive filtering
- Studied for aerial images

[Sawar, Rinner, Cavallaro. <u>Design Space Exploration for Adaptive Privacy Protection in Airborne Images</u>. In Proc. AVSS 2016.]

Pixel Density Estimation

Horizontal and vertical density at target center

$$\rho_v \approx \frac{fcos(\beta)sin(\beta)}{p_v(h_1-h_2)}$$
 vertical pixel size

Adaptive Privacy Filter

Configure filter G so that privacy protection is increased while fidelity is maintained

• Determine filter strength μ such that the pixel resolution in the protected image is just below the threshold

Gaussian Blur as Privacy Filter

Approximated anisotropic Gaussian kernel

$$g(v,h) = \frac{1}{2\pi\sigma_v\sigma_h}e^{-\left(\frac{v^2}{2\sigma_v^2} + \frac{h^2}{2\sigma_h^2}\right)}$$

with

$$\sigma_i = \frac{3\rho_i}{\pi \rho_i^0} \text{ where } i \in \{v, h\}$$

Filtering with kernel size

$$\mu_{i} = 2[3\sigma_{i}] + 1$$

useful information in I_t^p is reduced to the threshold ho_i^o

Adaptive Gaussian Blur Example

Gaussian blur for LDA face recognizer Fixed: w.r.t. highest pixel density image in the data

Adaptive Gaussian Blur Example

^{*}Gaussian Blur for LDA face recognizer Fixed: w.r.t. highest pixel density image in the data

- Dataset from [Hsu, 2015]
 - Population size: 11 persons
 - Test data: 693 (63 x 11) images collected from 63 different positions.
 - Training data: 121 images i.e. 11 images of each person.
- Popular face recognizers for privacy measurement:
 - Linear Discriminant Analysis (LDA) [Belhumeur, 1997]
 - Local Binary Patterns Histograms (LBPH) [Ahonen, 2006]
- Fidelity measurement:
 - Peak Signal to Noise Ratio (PSNR)
 - Structural Similarity Index metric (SSIM) [Wang 2004]

Original data

- Pixel density of faces
 - Range [1.15, 9.8] px/cm

- Face recognition accuracy
 - Performance of LDA & LBPH
 - Random classifier for threshold identification

Privacy of adaptively blurred Faces

LDA face recognizer

Thresholds: 0,6 & 0.4 px/cm

0.6 Random Raw Filtered $(\rho_h^0 = \rho_v^0 = 0.6)$ Filtered $(\rho_h^0 = \rho_v^0 = 0.4)$ 0.2 4 6 8 10 ρ_h (px/cm)

LBPH face recognizer

Thresholds: 0.4 & 0.2 px/cm

Fidelity Comparison

Peak Signal to Noise Ratio

Structural Similarity Index

Modelling privacy protection systems

Distortion (utility)

$$D = \lambda(X; Y)$$

Information leakage (privacy protection)

$$L = \lambda(X; \widehat{X})$$

What if the attacker has some knowledge about F?

Parrot Attacks

Attacker knows (learns) the protection filter (eg. blurring filter)

maining data (background knowledge

Adaptive Blurring with Spatial Hopping (AHGMM)

Pseudo-randomly change filter parameters for small patches to hinder

- Estimation of filter parameter
- Reconstruction of original image

[Sawar, Rinner, Cavallaro. <u>Adaptive Hopping Gaussian Mixture Model for Privacy-Preserving Aerial Photography</u>. Under review 2017.]

Experimental Setup

- Labelled Faces in the Wild Dataset
 - Population size: 5749 persons
 - Expanded for aerial imagery
 40 instances for each person (variation in pitch angle and resolution)

ALPEN-ADRIA UNIVERSITAT

Experimental Setup (2)

- Privacy attack scenarios
 - Naïve: training with raw data
 - Parrot: training with AHGMM filtered data (3 variants)
 - Pitch angle is known by attacker as background
 - Tested with 380000 face images in total
- OpenFace recognizer for privacy measurement:
 - Verificiation test (600 persons with 10x cross validation)
- Fidelity measurement:
 - Peak Signal to Noise Ratio (PSNR)
 - Structural Similarity Index metric (SSIM) [Wang 2004]

Privacy Evaluation

- Comparison with 3 state-of-the-art privacy filters (-AHGMM)
 - Charts: privacy level η vs. pich angle; rows: different filter thresholds

Privacy/Utility Tradeoff

Privacy level vs. utility compared with 3 privacy filters (-AHGMM)

#3 Secure and Privacy-aware Camera

Vision: TrustEYE - security and privacy protection
 as a feature of the image sensor instead of the camera

Benefits:

- Sensor delivers protected and pre-filtered data
- Strong separation btw. trusted and untrusted domains
- Camera software does no longer have to be trustworthy
- Security can not be bypassed by application developers
- TrustEYE is anchor for secure inter-camera collaboration

[Winkler, Erdelyi, Rinner. <u>TrustEYE.M4: Protecting the Sensor - not the Camera</u>. In Proc. AVSS 2014]

http://trusteye.aau.at/

TrustEYE Architecture

Bottom Side (not visible):

2MB SRAM, TPM Security IC, Power Management IC (LiPo Charger), Micro USB Connector, Reset Button

Conclusion

- Privacy protection important for commercial and private aerial imaging
- No single best protection method available. Tradeoff between protection, utility and resource usage
- Mostly image distortion used for protection, some can adapt the filter strength to scene
- Increase privacy awareness

Acknowledgements

Pervasive Computing group

Institute of Networked and Embedded Systems

http://nes.aau.at

http://bernhardrinner.com

Funding support

KWF/FWF "Trustworthy Sensing and Cooperation in Visual Sensor Networks"

FFG "Progressing towards Secure, Cooperating Smart Cameras"