

Bernhard Rinner Ljubljana, September 20, 2017

- Privacy is related to "the ability to seclude themselves, or information about themselves"
 - highly subjective and context dependent

Privacy has a significant impact on society

addressed in numerous fields

controversially discussed

Privacy is increasingly at risk

 Technological advances, limited awareness, change in politics

Ubiquity of Cameras

- We are surrounded by billions of cameras in public, private and business
- Huge amounts of image/video data is endlessly captured and shared
- Analysis and networking capabilities advance at astonishing rates
- Limited awareness about privacy threats

Privacy in Data(bases)

Draw conclusions for the entire population (or parts of)
 but avoid linkage of sensitive information to individuals

Name	SSN	Age	ZIP	Sex	Disease
		[30,39]	9***	female	Flu
		[40,49]	9***	male	Cancer
		[30,39]	9***	female	Flu
		[40,49]	9***	male	Flu

Explicit identifier

Quasi identifier

Sensitive information

- Anonymization as key protection method
- Modify quasi identifier to achieve k anonymity

Privacy in Visual Data

Who is there?

- (Quasi-) Identifiers
- Body or face regions

What is shown?

- Sensitive information
- Presence, "show an object" "captured in a box"

How to avoid linkage of sensitive information to individuals?

No single best protection method available

Distortion as key protection method

- Blanking
- Pixelation
- Bluring
- Cartooning

Utility dependent on level of distortion

- Similarity
- Appearance
- Detectability

Agenda

- 1. What distortion method to use in aerial imagery?
 - Explore utility/privacy/cost design space
 - Adapt filter strength for recreational images
 - Measure achieved privacy protection and utility

[www.radiogong.de]

- 2. How to securely implement privacy protection?
 - Apply security methods at sensory edge
 - Rely on hardware-supported protection

[Winkler, Rinner. <u>Security and Privacy Protection in Visual Sensor Networks: A Survey</u>. ACM Computing Surveys. 2014.]

Recreational Airborne Cameras

Micro Aerial Vehicles (MAVs) are becoming common in public places for recreational and business video capturing with high-resolution cameras

www.hexaplus.com

How can we protect privacy while maintaining high fidelity of visual data?

- When is protection necessary at all?
- Configuring an adaptive privacy filter
 - What is the minimal protection?

www.airdog.com

www.kickstarter.com

Adapt Blur to Target Resolution

- Privacy design space exploration with adaptive filtering
 - Determine target's pixel density based on camera pose
 - Decide whether target is inherently protected
 - Configure privacy protection filter
 - Perform adaptive filtering
- Studied for aerial images

[Sawar, Rinner, Cavallaro. <u>Design Space Exploration for Adaptive Privacy Protection in Airborne Images</u>. In Proc. AVSS 2016.]

Pixel Density Estimation

Horizontal and vertical density at target center

$$\rho_v \approx \frac{fcos(\beta)sin(\beta)}{p_v(h_1 - h_2)}$$
 vertical pixel size

• Region protected (ω_R =0), if horizontal or vertical density is below threshold

$$\omega_R = \begin{cases} 1 & if \quad \rho_h > \rho_h^0 & \& \quad \rho_v > \rho_v^0 \\ 0 & otherwise \end{cases}$$

- Pixel density values for different heights (3-150 m), focal lengths (10-200 mm) and viewing angles (0-90 degrees)
 - For Canon EOS 5 MkII camera

Privacy Design Space

• Region protected (ω_R =0), if horizontal or vertical density is below threshold

$$\omega_R = \begin{cases} 1 & if \quad \rho_h > \rho_h^0 & \& \quad \rho_v > \rho_v^0 \\ 0 & otherwise \end{cases}$$

- Separation between privacy sensitive and inherently protected space
 - For given threshold values (shown for $\rho_h^0 = \rho_v^0 = 1$ px/cm)

Adaptive Privacy Filter

 Configure filter G so that privacy protection is increased while fidelity is maintained

• Determine filter strength μ such that the pixel resolution in the protected image is just below the threshold

Gaussian Blur as Privacy Filter

Approximated anisotropic Gaussian kernel

$$g(v,h) = \frac{1}{2\pi\sigma_v\sigma_h}e^{-\left(\frac{v^2}{2\sigma_v^2} + \frac{h^2}{2\sigma_h^2}\right)}$$

with

$$\sigma_i = \frac{3\rho_i}{\pi \rho_i^0} \text{ where } i \in \{v, h\}$$

Filtering with kernel size

$$\mu_{i} = 2[3\sigma_{i}] + 1$$

useful information in I_t^p is reduced to the threshold ho_i^o

Adaptive Gaussian Blur Example

Gaussian blur for LDA face recognizer Fixed: w.r.t. highest pixel density image in the data

Adaptive Gaussian Blur Example

^{*}Gaussian Blur for LDA face recognizer Fixed: w.r.t. highest pixel density image in the data

Measuring Privacy & Utility

- Subjective methods based on user studies
 - Predefined criteria
 - Crowd approaches
- Objective methods exploit CV algorithms
 - Detectors, classifiers, recognizers etc.
 - Metric based on performance difference between protected and unprotected input
 - Do not consider context or side-channel information

[Erdelyi, Winkler, Rinner. <u>Privacy Protection vs. Utility in Visual Data: An Objective Evaluation Framework</u>. Multimedia Tools and Applications, 2017.]

Experimental Setup

- Dataset from [Hsu, 2015]
 - Population size: 11 persons
 - Test data: 693 (63 x 11) images collected from 63 different positions.
 - Training data: 121 images i.e. 11 images of each person.
- Popular face recognizers for privacy measurement:
 - Linear Discriminant Analysis (LDA) [Belhumeur, 1997]
 - Local Binary Patterns Histograms (LBPH) [Ahonen, 2006]
- Fidelity measurement:
 - Peak Signal to Noise Ratio (PSNR)
 - Structural Similarity Index metric (SSIM) [Wang 2004]

Privacy of adaptively blurred Faces

LDA face recognizer

Thresholds: 0,6 & 0.4 px/cm

0.6 Random Raw Filtered $(\rho_h^0 = \rho_v^0 = 0.6)$ Filtered $(\rho_h^0 = \rho_v^0 = 0.4)$ 0.2 4 6 8 10 ρ_h (px/cm)

LBPH face recognizer

Thresholds: 0.4 & 0.2 px/cm

Fidelity Comparison

Peak Signal to Noise Ratio

Structural Similarity Index

Privacy Attacks

Modelling privacy protection systems

Distortion (utility)

$$D = \lambda(X; Y)$$

Information leakage (privacy protection)

$$L = \lambda(X; \widehat{X})$$

What if the attacker has some knowledge about F?

Attacker knows (learns) the protection filter (eg. blurring filter)

Training data (background knowledge)

Attacker knows (learns) how to reconstruct original data

Train reconstruction of protected data

• Eg., superresolution

Training data (background knowledge)

Adaptive Blurring with Spatial Hopping (AHGMM)

Pseudo-randomly change filter parameters for small patches to hinder

- Estimation of filter parameter
- Reconstruction of original image

[Sawar, Rinner, Cavallaro. <u>Adaptive Hopping Gaussian Mixture Model for Privacy-Preserving Aerial Photography</u>. Under review 2017.]

Experimental Setup

- Labelled Faces in the Wild Dataset
 - Population size: 5749 persons
 - Expanded for aerial imagery
 40 instances for each person (variation in pitch angle and resolution)

Experimental Setup (2)

- Privacy attack scenarios
 - Naïve: training with raw data
 - Parrot: training with AHGMM filtered data (3 variants)
 - Pitch angle is known by attacker as background
 - Tested with 380000 face images in total
- OpenFace recognizer for privacy measurement:
 - Verificiation test (600 persons with 10x cross validation)
- Fidelity measurement:
 - Peak Signal to Noise Ratio (PSNR)
 - Structural Similarity Index metric (SSIM) [Wang 2004]

Privacy Evaluation

- Comparison with 3 state-of-the-art privacy filters (-AHGMM)
 - Charts: privacy level η vs. pich angle; rows: different filter thresholds

Privacy level vs. utility compared with 3 privacy filters (-AHGMM)

Onboard Protection on Camera

- Most cameras have no onboard protection, rarely software protection
- TrustCAM with TPM-based security features
 - Trusted boot
 - Integrity/authenticity by TPM-protected RSA keys
 - Freshness/timestamping for outgoing images
 - Multi-level encryption as privacy protection
 - Authentic user feedback
- Successful feasibility study, but security functionality was highly intertwined with application code

[Winkler, Rinner. <u>Securing embedded smart cameras with trusted computing</u>. EURASIP Journal on Wireless Communications and Networking, 2011]

Secure and Privacy-aware Camera

• Vision: TrustEYE - security and privacy protection as a feature of the image sensor instead of the camera

Benefits:

- Sensor delivers protected and pre-filtered data
- Strong separation btw. trusted and untrusted domains
- Camera software does no longer have to be trustworthy
- Security can not be bypassed by application developers
- TrustEYE is anchor for secure inter-camera collaboration

[Winkler, Erdelyi, Rinner. <u>TrustEYE.M4: Protecting the Sensor - not the Camera</u>. In Proc. AVSS 2014]

http://trusteye.aau.at/

TrustEYE Architecture

Bottom Side (not visible):

2MB SRAM, TPM Security IC, Power Management IC (LiPo Charger), Micro USB Connector, Reset Button

Cartooning Privacy Filter

- Abstract parts or entire image by blurring and color filtering
- Cartooning pipeline

[Erdelyi et al. Adaptive Cartooning for Privacy Protection in Camera Networks. In Proc. AVSS 2014.]

Adaptive Cartooning Filter

original

cartooning (small)

cartooning (std)

cartooning (strong)

TrustEYE Demo

Trustworthy Sensing

- Exploit intrinsic hardware properties as key storage and avoid dedicated security chip
- Physically Unclonable Functions (PUFs) extracts fingerprints
 - Secure key generation & storage
 - Attestation of sensed data
 - Verified boot of sensor controller
 - Little system overhead

[Haider, Hoeberl, Rinner. <u>Trusted Sensors for Participatory Sensing and IoT Applications</u> <u>based on Physically Unclonable Functions</u>. In Proc. IoTPTS 2016]

43

Prototype SoC Implementation

- Xilinx Zynq 7010 (FGPA & dual Cortex ARM9 cores)
 - Ring-oscillator PUF with error correction to generate 128 bit keys
 - BLS signature scheme for data attestation
- Security overhead
 - 230 Bytes storage
 - 2210 logic cells

6 ms for attestation

Zyng7010 SoC

Conclusion

- Privacy protection important for commercial and private aerial imaging
- No single best protection method available. Tradeoff between protection, utility and resource usage
- Mostly image distortion used for protection, some can adapt the filter strength to scene
- Increase privacy awareness

Acknowledgements

Pervasive Computing group

Institute of Networked and Embedded Systems

http://nes.aau.at

http://bernhardrinner.com

Funding support

KWF/FWF "Trustworthy Sensing and Cooperation in Visual Sensor Networks"

FFG "Progressing towards Secure, Cooperating Smart Cameras"