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Privacy and its Protection T RltE]

* Privacy is related to “the ability to seclude themselves, or
information about themselves”
— highly subjective and context dependent

* Privacy has a significant impact on society
— addressed in numerous fields

— controversially discussed

e Privacy is increasingly at risk

— Technological advances,
limited awareness,
change in politics

Mo

B. Rinner [catphi.wordpress.com]



Ubiquity of Cameras o

 We are surrounded by billions of cameras in
public, private and business

 Huge amounts of image/video data is
endlessly captured and shared

e Analysis and networking capabilities
advance at astonishing rates

e Limited awareness about privacy threats

, [spiegel.de; givenimaging.com]
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http://en.wikipedia.org/wiki/Image:Closed.circuit.twocameras.arp.750pix.jpg
http://en.wikipedia.org/wiki/Image:Closed.circuit.twocameras.arp.750pix.jpg

Privacy in Data(bases) T e

* Draw conclusions for the entire population (or parts of)
but avoid linkage of sensitive information to individuals

I  (3030] ot female Flu
I | (20.40] 9*** male Cancer
I | (30.30] gk female Flu
I | (/0 40] ke male Flu

Explicit identifier Quasi identifier Sensitive information

* Anonymization as key protection method
* Modify quasi identifier to achieve k anonymity
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Privacy in Visual Data

'+ Sensitive information
i« Presence,

,Show an object”
,captured in a box”
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Utility and Privacy Tradeoff

Utility

Q@
Resource costs

Privacy protection

No single best protection method available

B. Rinner
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Distortion as key
protection method

e Blanking

* Pixelation

e Bluring

e (artooning

Utility dependent on
level of distortion

e Similarity

* Appearance

e Detectability



Agenda EEEEEEEEEEEEEEE i

1. What distortion method to use
In aerial imagery?
— Explore utility/privacy/cost design space
— Adapt filter strength for recreational images
— Measure achieved privacy protection and utility

2. How to securely implement privacy
protection?
— Apply security methods at sensory edge
— Rely on hardware-supported protection

[Winkler, Rinner. Security and Privacy Protection in Visual Sensor Networks: A Survey. ACM
Computing Surveys. 2014.]
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https://pervasive.aau.at/BR/pubs/2014/Winkler_ACMComSurv2014.pdf
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Recreational Airborne Cameras telEL

* Micro Aerial Vehicles (MAVs) are becoming
common in public places
for recreational and business video capturing
with high-resolution cameras

 How can we protect privacy while
maintaining high fidelity of visual data?

* Exploring the privacy design space
— When is protection necessary at all?

e Configuring an adaptive privacy filter
— What is the minimal protection?

www.kickstarter.com
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Adapt Blur to Target Resolution e

* Privacy design space exploration with adaptive filtering
— Determine target's pixel density based on camera pose
— Decide whether target is inherently protected
— Configure privacy protection filter
— Perform adaptive filtering

e Studied for aerial images

L v s

Ph - TP
Sensitivearea | 12 Pixel density Parameter 15 Adaptive t \.
—_— i N - - - - .
Iy ——» detection »  iculation LY ] p|  estimation —> filtering : >
th OZT
Pose - > Privacy o Wep oo
estimation P protection test

[Sawar, Rinner, Cavallaro. Design Space Exploration for Adaptive Privacy Protection in
Airborne Images. In Proc. AVSS 2016.]
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https://pervasive.aau.at/BR/pubs/2016/Sawar_AVSS2016.pdf

Pixel Density Estimation S RUE!

* Horizontal and vertical density at target center

focal length

!

o = feos(p)
" pu(hy — ho)

horizontal pixel size

L Jeos(@)sin(5)
’ pv(hl - h2)

vertical pixel size
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Privacy Design Space s R

* Region protected (wg=0), if horizontal or vertical density is
below threshold

1 i o> & py > 8
WRr = )
0 otherwise

* Pixel density values for different heights (3-150 m), focal
lengths (10-200 mm) and viewing angles (0-90 degrees)
— For Canon EOS 5 MklIl camera

5 5
2150 4_ 2150 T
EIOO» | 35 ElOO- 35
A Ha U ha
8 1| < 8 Tt | 1| <
f(mm) 200 @ 0 f(mm) 200 ¢ e
B (degrees) [ (degrees)
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Privacy Design Space s R

* Region protected (wg=0), if horizontal or vertical density is
below threshold

1 i o> & py > 8
WRr = )
0 otherwise

e Separation between privacy sensitive and inherently
protected space

— For given threshold values (shown for pj, = pd = 1 px/cm)
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Adaptive Privacy Filter T i

e Configure filter G so that privacy protection is increased
while fidelity is maintained

Ip — Q(Itv Ra /’L)

filter strength

face region

unprotected frame at time t

filter operator

* Determine filter strength p such that the pixel resolution
In the protected image is just below the threshold

B. Rinner 16



Gaussian Blur as Privacy Filter

 Approximated anisotropic Gaussian kernel

2 hZ

1)

g, h) = e \29 20

20,0y,
with
3.
O; =ig where i€ f{v, h}

TTP;

* Filtering with kernel size

AAAAAAAAAAAAAAAAAAA

useful information in I is reduced to the threshold p?

B. Rinner
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Adaptive Gaussian Blur Example 7 2l

p: (5.03,3.88) W (121,105) w: (99, 77) w: (75, 57) w: (59, 47)

A A A A A

Original Fixed Over Optimal Under

Gaussian blur for LDA face recognizer
Fixed: w.r.t. highest pixel density image in the data

B. Rinner 18



w: (121, 105) w: (99, 77) u: (75, 57) u: (59, 47)

w: (121, 105) w: (75, 57) w: (59, 43) W (47, 35)

p: (3.06,2.28)  u:(121,105) w: (61, 45) u: (45, 35) w: (37, 29)

Original Fixed* Over* Optimal* Under*

*Gaussian Blur for LDA face recognizer
Fixed: w.r.t. highest pixel density image in the data

B. Rinner 19
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Measuring Privacy & Utility

* Subjective methods based on user studies

— Predefined criteria
— Crowd approaches

* Objective methods exploit CV algorithms

— Detectors, classifiers, recognizers etc.

— Metric based on performance difference between
protected and unprotected input

— Do not consider context Tools
or side-channel information AR gorivtoa] l

v 73 |||Rec.| |Det.| | Track) |Sim.| |Speed.

Privacy _.,V £
Protection Evaluator
Filter

F = {Fpriuucy-. Fuhlhlty}

o !

[Erdelyi, Winkler, Rinner. Privacy Protection vs. Utility in Visual Data: An Objective Evaluation
Framework. Multimedia Tools and Applications, 2017.]
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https://pervasive.aau.at/BR/pubs/2017/Erdelyi_MTA2017.pdf

Experimental Setup T i

e Dataset from [Hsu, 2015]
— Population size: 11 persons
— Test data: 693 (63 x 11) images collected from 63 different positions.
— Training data: 121 images i.e. 11 images of each person.

* Popular face recognizers for privacy measurement:
— Linear Discriminant Analysis (LDA) [Belhumeur, 1997]
— Local Binary Patterns Histograms (LBPH) [Ahonen, 2006]

* Fidelity measurement:
— Peak Signal to Noise Ratio (PSNR)
— Structural Similarity Index metric (SSIM) [Wang 2004]

B. Rinner 21



Accuracy
S

o

o
D

Privacy of adaptively blurred Faces =~ =% -
LDA face recognizer LBPH face recognizer
Thresholds: 0,6 & 0.4 px/cm Thresholds: 0.4 & 0.2 px/cm
—Random ! —Random
=Raw =Raw
aFiltered (o) = p) = 0.6) > AFiltered (p) = p) = 0.4)
4 oFiltered (p b =p0 =04 § oFiltered (g = b = 0.2
A 30.5
> 0
2 S
""""" . e T L i
Y2 4 8 10 b 2 4 6 ° 8
pu (px/cm) pu (px/cm)

B. Rinner 23



PSNR (dB)

Fidelity Comparison e o

Peak Signal to Noise Ratio Structural Similarity Index

no
O
(@)
O

A40_
i&:30-
5 =
% 20
~Adaptive 10 ~Adaptive
10 *Fixed 0 J |  =Fixed

O
N -
~

6 8 10 0 2 4 6 8 10
o, (px/cm) pn (px/cm)
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Privacy Attacks T -

Modelling privacy protection systems
Distortion (utility)

Orlglal data  Defender F: X — ¥  Protected data D = A(X;Y)

Y
Protection system p—>

Information leakage
(privacy protection)

Attacker G:Y » X L=2XX)

Recognizer

What if the attacker has
some knowledge about F?

R &l 2 = ‘ ‘j;:\' E ./\
Training data (background knowledge)
B. Rinner 26



Parrot Attacks TR -

Attacker knows (learns) the protection filter (eg. blurring filter)

Original data  Defender F: X — Y  Protected data

. X . Y
| ool —> Protection system [——>

Attacker G:Y — X
X Train the recognizer in
E +<— Recognizer protected domain
; * increase of
iInformation leakage

Training data (background knowledge)
B. Rinner 27



Reconstruction Attacks TR i

Attacker knows (learns) how to reconstruct original data

Original data  Defender F: X — Y  Protected data

Y
Protection system p—> ’
Train reconstruction of

Attacker G:Y - X protected data .
@, * Eg., superresolution

Recognizer {fews e

. \/

.‘/‘1" -4 \I
:'\" :\\ A t 'A
0

Training data (background knowledgé)
B. Rinner 28



Adaptive Blurring with Spatial | | [t
Hopping (AHGMM)

Pseudo-randomly change filter parameters for small patches to
hinder

— Estimation of filter parameter

— Reconstruction of original image

[Sawar, Rinner, Cavallaro. Adaptive Hopping Gaussian Mixture Model for Privacy-Preserving
Aerial Photography. Under review 2017.]

B. Rinner 29



https://pervasive.aau.at/BR/pubs/2014/Winkler_ACMComSurv2014.pdf

Experimental Setup T i

 Labelled Faces in the Wild Dataset

— Population size: 5749 persons

— Expanded for aerial imagery
40 instances for each person (variation in pitch angle and resolution)

B. Rinner ' 30



Experimental Setup (2) T e A

* Privacy attack scenarios
— Naive: training with raw data
— Parrot: training with AHGMM filtered data (3 variants)
— Pitch angle is known by attacker as background
— Tested with 380000 face images in total

* OpenFace recognizer for privacy measurement:
— Verificiation test (600 persons with 10x cross validation)

* Fidelity measurement:
— Peak Signal to Noise Ratio (PSNR)
— Structural Similarity Index metric (SSIM) [Wang 2004]

B. Rinner 31



Privacy Evaluation
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 Comparison with 3 state-of-the-art privacy filters F-AHGMM)
— Charts: privacy level n vs. pich angle; rows: different filter thresholds
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Optimal kernel parrot

Pseudo AHGMM parrot
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Privacy/Utility Tradeoff T RIE!

* Privacy level vs. utility compared with 3 privacy filters FAHGMM)

SSIM (%) PSNR (dB)
1.02 r T T T T T T T 1.02 T T T T T T
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Onboard Protection on Camera == 2l

* Most cameras have no onboard protection, rarely software
protection

e TrustCAM with TPM-based security features
— Trusted boot
— Integrity/authenticity by TPM-protected RSA keys
— Freshness/timestamping for outgoing images
— Multi-level encryption as privacy protection
— Authentic user feedback

* Successful feasibility study, but security
functionality was highly intertwined with application code

[Winkler, Rinner. Securing embedded smart cameras with trusted computing. EURASIP

Journal on Wireless Communications and Networking, 2011]
B. Rinner
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https://pervasive.aau.at/BR/pubs/2011/Winkler_JWCN2011.pdf

Secure and Privacy-aware Camera = -

e Vision: TrustEYE - security and privacy protection
as a feature of the image sensor instead of the camera

* Benefits:
— Sensor delivers protected and pre-filtered data
— Strong separation btw. trusted and untrusted domains
— Camera software does no longer have to be trustworthy
— Security can not be bypassed by application developers
— TrustEYE is anchor for secure inter-camera collaboration

[Winkler, Erdelyi, Rinner. TrustEYE.M4: Protecting the Sensor - not the Camera. In Proc. AVSS
2014]

http://trusteye.aau.at/

B. Rinner 36


https://pervasive.aau.at/BR/pubs/2014/Winkler_AVSS2014.pdf
http://trusteye.aau.at/

TrustEYE Architecture

B. Rinner

TrustEYE

Camera Host System

Image Secure
Sensor Element
Non-Sensitive Image Abstracted Sensitve Data Protected Sensitve Data

(e.g., Edge Image, Histogram, ...) (e.q., Faces), Image

I

Signatures, Timestamps,...
1

—
Sensor Data {‘ Sensor Data ‘ ‘
NS

Application-Specific Computer Vision
and

General Purpose OS and Software Framework

Network Interface

Smart Camera System

Embedded

Camera Data

ALPEN-ADRIA
UNIVERSITAT

KLAGENFURT | WIEN GRAZ
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| | R
TrustEYE Platform

2MB SRAM Status LEDs FTDI USB to Serial
(additional 2MB on bottom) /

0V6542 Sensor
Module

SWD Connector

Cortex M4 CPU
STM32F417 (168MHz) © 2x15pin Extension Headers

(2.54mm spacing)
Bottom Side {not visible):
2MB SRAM, TPM Security IC, Power Management IC

(LiPo Charger), Micro USB Connector, Reset Button

B. Rinner 38



Cartooning Privacy Filter 7= =

e Abstract parts or entire image by blurring and color filtering

e (Cartooning pipeline
ROI-based cartooning

region regions of interest
detection

input frame blurring color edgé output frame
filtering ephance. >

edge
detection

adjustable cartooning effect

[Erdelyi et al. Adaptive Cartooning for Privacy Protection in Camera Networks. In Proc. AVSS 2014.]
B. Rinner 39



https://pervasive.aau.at/BR/pubs/2014/Erdelyi_AVSS2014.pdf

Adaptive Cartooning Filter == k]

cartooning (std) cartooning (strong)
[© Mediaeval Dataset]

B. Rinner 20
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Trustworthy Sensing e -

e Exploit intrinsic hardware properties as key storage and avoid
dedicated security chip

* Physically Unclonable Functions (1. Sign,,(M), cert)
(PUFs) extracts fingerprints Trusted Sensor ‘
— Secure key generation & storage Controller ;

Verified Boot: M i

— Attestation of sensed data
— Verified boot of sensor controller

Sensed-data
Attestation

— Little system overhead

10— -

Sensing Circuitry I

[Haider, Hoeberl, Rinner. Trusted Sensors for Participatory Sensing and 10T Applications
based on Physically Unclonable Functions. In Proc. IoTPTS 2016]
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https://pervasive.aau.at/BR/pubs/2016/Haider_IOTPTS2016.pdf

Prototype SoC Implementation = o

e Xilinx Zyng 7010 (FGPA & dual Cortex ARMg cores)
— Ring-oscillator PUF with error correction to generate 128 bit keys

— BLS signature scheme for data attestation

e Security overhead

Zyng7eie SoC

— 230 Bytes storage T
— 2210 logic cells | H
. Image | cer|p | Formatr | @ Image
— 6 ms for attestation sensor | [T Adapter | i Processing »| tost pC
/ I ; AT :: "
e .
A |
1;;I A1
DDR3 SDRAM
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conclusion. .  Wemm ST

* Privacy protection important for commercial and private aerial
Imaging

* No single best protection method available. Tradeoff between
protection, utility and resource usage

* Mostly image distortion used for protection, some can adapt
the filter strength to scene

* Increase privacy awareness

B.Rinner 44
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