

EMBEDDED MIDDLEWARE ON DISTRIBUTED SMART CAMERAS

Bernhard Rinner¹, Milan Jovanovic², Markus Quaritsch²

¹Pervasive Computing Group Institute of Networked and Embedded Systems Klagenfurt University, AUSTRIA

²Institute for Technical Informatics Graz University of Technology, AUSTRIA

Agenda

1. (Distributed) Smart Cameras

- introduction
- challenges in application development
- 2. System-level software for smart camera networks
 - SmartCam HW/SW architecture
 - SmartCam middleware services
- 3. Case study on multi-camera tracking
 - autonomous camera handover
- 4. Conclusion

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT

Introduction

- Smart cameras
 - combine image sensing, processing and communication on single embedded device
 - perform (high-level) image analysis onboard
 - collaborate in networks of cameras

- surveillance & security
- traffic monitoring
- health care
- entertainment

B.Rinner

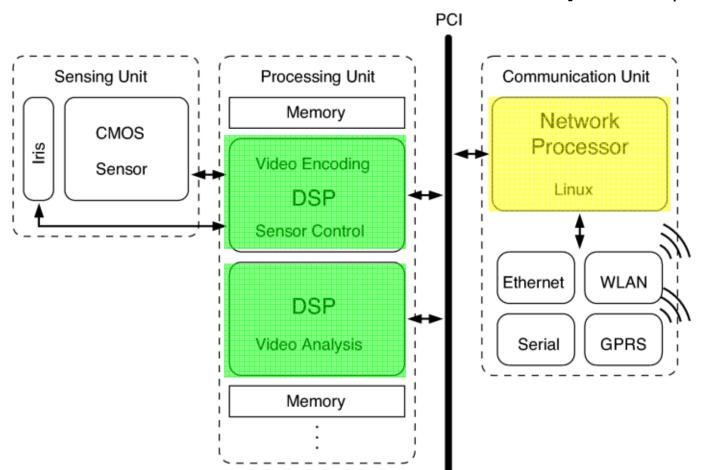
ALPEN-ADRIA UNIVERSITÄT KLAGENFURT

Distributed Smart Cameras (DSCs)

- May help to overcome some hard problems, eg
 - occlusion and low "pixels-on-target" by exploiting multiple views
 - high communication bandwidth by data abstraction and local processing
 - Imits in real-time behavior by avoiding round-trip delays
 - failures of individual cameras by exploiting redundancy
- Challenges for DSCs
 - architecture, network
 - collaboration
 - design process for distributed, embedded vision sensors

Application Development for DSCs

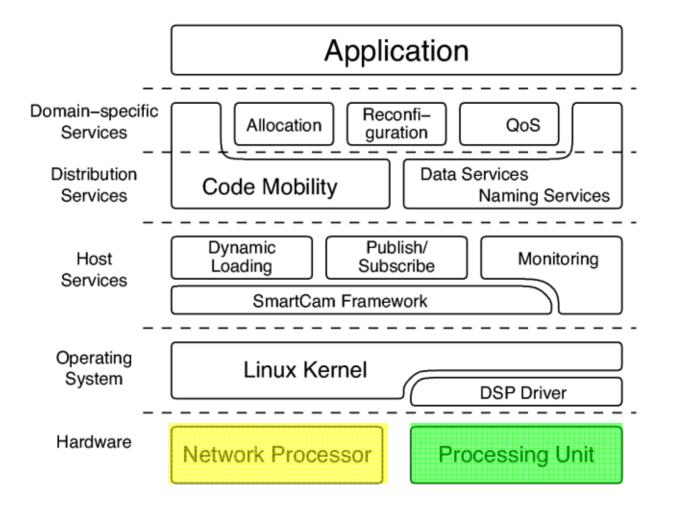
- Much more difficult than single-camera applications
 - collaboration requires communication & control
 - dynamic network (QoS adaptation, scalability, ad-hoc networking)
 - distributed computing (concurrent threads of control)
- Middleware would help throughout the development ...
 - design
 - deployment
 - operation/reconfiguration
- ... but available MW does not fit
 - general "CORBA-like" MW are too heavy
 - WSN MW focus on ad-hoc networking, power awareness


ALPEN-ADRIA UNIVERSITÄT KLAGENFURT

Middleware Services we'd like to have

- Deployment services
 - help to initiate the DSC network (loading, allocation, update ...)
- Operational services
 - responsible for efficient coordination and configuration
- Networking services
 - establish transparent communication, data transfer and resource management
- Application-specific services
 - specific to image processing applications, e.g., calibration, registration, QoS adaptation
- On embedded, resource-limited, image networks

Our SmartCam Architecture


[IEEE Computer 2/2006]

B.Rinner

Embedded Middleware on Distributed Smart Cameras

SmartCam Middleware

B.Rinner

Embedded Middleware on Distributed Smart Cameras

8

SmartCam MW: Host Services

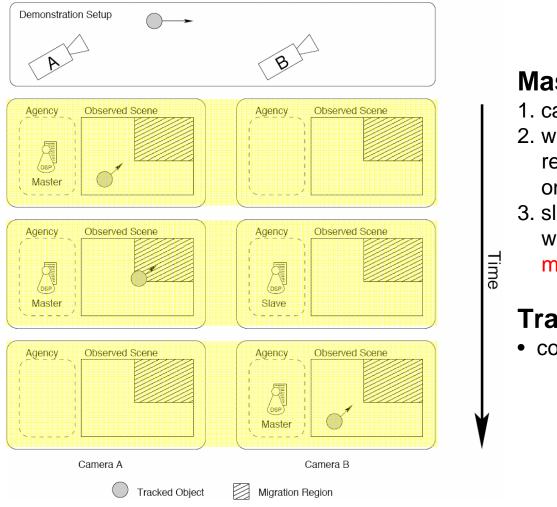
- Dynamic Loading
 - change functionality on SmartCam during runtime ("DLL-like")
 - basis for many other services
- Publish/Subscribe
 - provides transparent (inter-processor) communication on SmartCam
- Monitoring
 - observes dynamic resource utilization on SmartCam
 - focuses on critical resources on embedded platform (CPU, memory, DMA, PCI bus)

SmartCam MW: Distribution Services

- Mobile agent system (MAS)
 - foundation for distributed applications
 - provides mechanisms for code and data migration among SmartCams
 - abstracts image processing as tasks (executed on DSP)
- Mobile agent
 - contains application logic and controls image processing tasks
 - improves scalability
- Data and naming services
 - distinguish between control messages and image data

SmartCam MW: Domain-spec. Services

- Allocation
 - assigns image tasks to individual cameras
- Dynamic reconfiguration
 - modifies allocation and functionality (tasks) during runtime
 - requires reasoning about current configuration and resource utilization
- QoS adaptation
 - eg, combined power and QoS


Autonomous Multi-Camera Tracking

[EURASIP JES 1/2007]

- Develop autonomous multi-camera tracking
 - on embedded smart cameras
 - using an arbitrary tracking algorithm
 - without central coordination
- Tracking algorithm
 - standard ("color-based") CamShift tracker
 - tracker encapsulated in mobile agent
 - one tracking agent for each tracked object/person
- Camera handover
 - based on pre-defined "migration region" in camera's FOV
 - tracking agent autonomously migrates to "next" camera(s)

Multi-Camera Handover Strategy

Master/Slave handover

- 1. camera A tracks object
- 2. whenever object enters migration region tracking agent is cloned on "next" camera (slave)
- 3. slave starts tracking when slave identifies object
 - master gets terminated

Tracker initialization

• color histogram a initialization data

Multi-Camera Tracking Demo

Supporting Middleware Services

- Abstraction of image processing
 - Mobile Agent: application logic
 - Tracking algorithm: identify position of object
- Code Migration and dynamic loading
 - Tracker is executed only on the camera observing the object
- Transparent messaging
 - Communication between neighboring cameras
 - Communication between tracking agent and visualizer

Conclusion

- Distributed Smart Cameras are likely to become an enabling technology for various applications
- Exploit and advance methods from related fields
 - vision, sensor networks, embedded systems, distributed computing, multimedia, ...
- Open Research Challenges
 - architecture & networking
 - collaborative multi-camera vision, sensor fusion
 - (semi-)automatic deployment, eg. calibration, synchronization
 - design support, tools etc.
- Most of these challenges have a strong influence on system-level software (middleware)

B.Rinner

Acknowledgements

This work has taken place at Graz University of Technology. Further information available at

www.iti.tugraz.at/smartcam

This research has been partially supported by the Austrian Promotion Agency under grant 810072.

See you at ICDSC-07 (www.icdsc.org)

