

From Smart Cameras to Visual Sensor Networks

Prof. Bernhard Rinner

Pervasive Computing Institut für Vernetzte und Eingebettete Systeme Alpen-Adria Universität Klagenfurt http://pervasive.uni-klu.ac.at

B.Rinner

From Smart Cameras to Visual Sensor Networks

Revolution in Cameras

- Ongoing technological advances
 - lenses
 - image sensors
 - onboard processing
 - networking
 - ...

transform camera as box delivering images into spatially distributed that generate data and events

Smart Cameras are one aspect of this revolution

UNIVERSITÄT KLAGENFURT

Agenda

1. Smart Cameras

Integration of sensing & processing

2. Distributed Smart Cameras Distribution of sensing & processing

3. Toward Visual Sensor Networks Applications & case studies

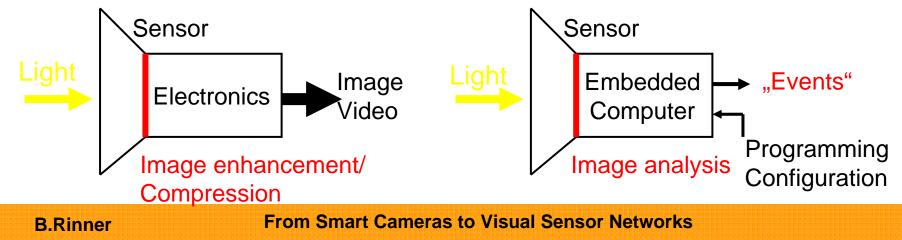
Smart Cameras

Basic Principle of Smart Cameras

- Smart cameras combine
 - sensing,
 - processing and
 - communication
 - in a single embedded device
- perform image and video analysis in real-time closely located at the sensor and transfer only the results
- collaborate with other cameras in the network

Differences to traditional Cameras

Traditional Camera


- Optics and sensor
- Electronics
- Interfaces

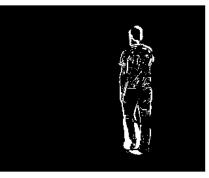
delivers data in form of (encoded) images and videos, respectively

Smart Camera

- Optics and sensor
- onboard computer
- Interfaces

delivers abstracted image data is configurable and programmable

UNIVERSITÄT KLAGENFURT


Smart Cameras look for important things

- Examples for abstracted image data
 - compressed images and videos
 - features
 - detected events

UNIVERSITÄT KLAGENFURT

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT

Architectural Issues

- Embedded processing of image pipeline
 - low-level operations (regular patterns on many pixels)
 - high-level analysis (irregular on few objects)
- Memory often bottleneck in streaming applications
 - capacity
 - bandwidth
 - standard techniques (caches etc.) may not be sufficient
- Processing platforms
 - FPGAs, DSPs, specialized processors (SIMD)
 - microcontroller, g-p processors
- Power consumption!

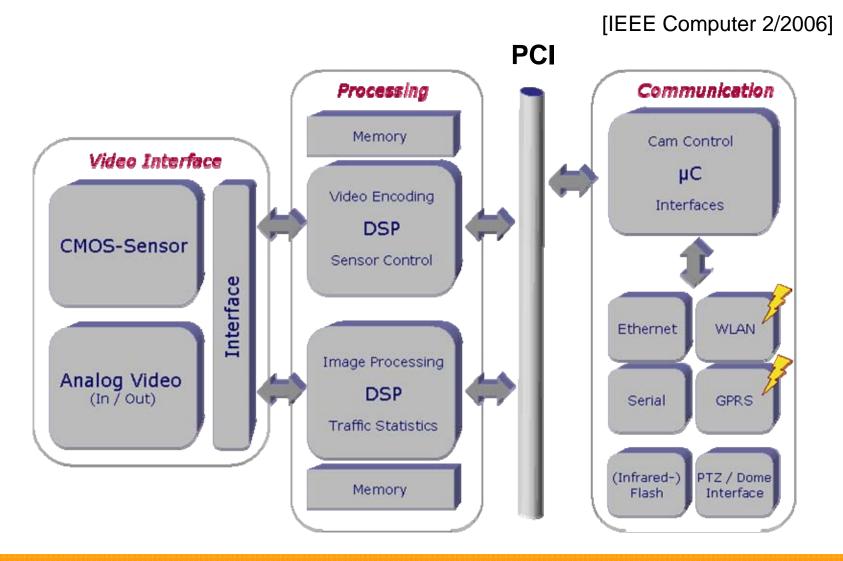
Various Prototypes

- Prototypes differ in various aspects
 - computing power, energy consumption
 - wired and wireless communication
 - optics and sensors

Rinner et al. (multi-DSP) 10 GOPS @ 10Watt

WiCa/NXP (Xetal SIMD) 50 GOPS @ 600mWatt

CMUcam3 (ARM7) 60 MIPS @ 650mW



UNIVERSITÄT KLAGENFURT

CITRIC (PXA270) 660 MIPS @ 970mW

From Smart Cameras to Visual Sensor Networks

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT

(Selected) Smart Camera Systems

System	Year	Platform	Distribution/Proc.	Autonomy
[Moorhead&Binni]	1999	ASIC	local	static
VISoc [Albani]	2002	SOC	local	static
[Wolf et al.]	2002	DPS (PC)	local	static
[Bramberger&Rinner]	2004	DSP	local	rem. conf.
[Dias&Berry]	2007	FPGA	local	active vis.
[Bauer]	2007	DSP	local	static
GestureCam [Shi]	2007	FPGA	local	static
[Bramberger et al.]	2006	multi-DSP	cooper. tracking	dyn. conf.
[Micheloni et al.]	2005	(PC)	MC-tracking	PTZ
[Fleck&Strasser]	2007	PowerPC	MC-tracking	static

(Selected) Smart Camera "Sensors"

System	Year	Platform	Distribution	Radio
Cyclops [Rahimi]	2005	ATmega128	coll. tracking	via Mica2
CMUcam 3 [Rowe]	2007	ARM7	local proc.	-
Meerkats [Margi]	2006	StrongARM	coll. tracking	ext. 802.11b
MeshEye [Hengstler]	2006	ARM7	local	via CC2420
WiCa [Kleihorst]	2006	Xetal (SIMD)	coll. gesture rec	via CC2420
CITRIC [Chen]	2008	PXA	tracking	via Tmote

More details

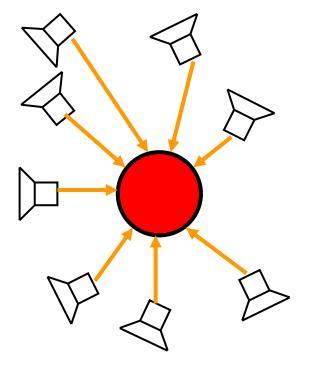
[Akyildiz et al., PIEEE 2008] [Rinner et al., ICDSC 2008]

Distributed Smart Cameras

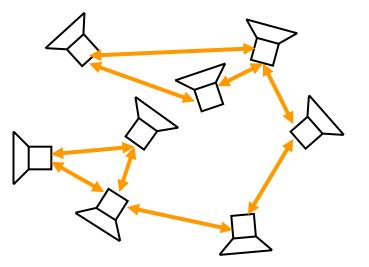
Smart Cameras collaborate

- Connect autonomous cameras in a network
 - exploit smart cameras' capabilities (eg. avoid raw data transfer)
 - relax centralized/hierarchical structure of MC networks
 - introduce dynamic configuration (structure and functionality)
- Challenges for distributing sensing & processing
 - camera selection and placement
 - calibration & synchronization
 - distributed processing
 - data distribution and control, protocols and middleware
 - distributed computer vision (distributed signal processing)
 - real-time, energy-awareness, ...

(Potential) Advantages of DSC


- Scalability
 - no central server as bottleneck
- Real-time capabilities
 - Short round-trip times; "active vision"
- Reliability
 - High degree of redundancy
- Energy and Data distribution
 - Reduced requirements for infrastructure; easier deployment?
- Sensor coverage
 - Many (cheap) sensors closer at "target"; improved SNR

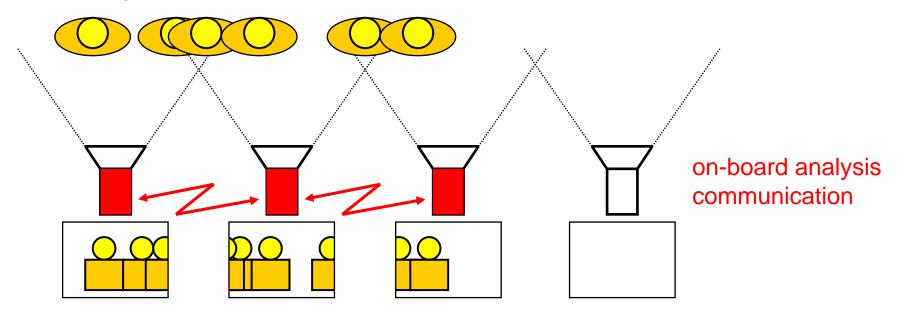
B.Rinner


. . .

Networking

Traditional Camera Networks

Smart Camera Networks


Cameras stream images/ videos to "server" Cameras collaborate directly (spontaneous, p2p, ad-hoc)

UNIVERSITÄT KLAGENFURT

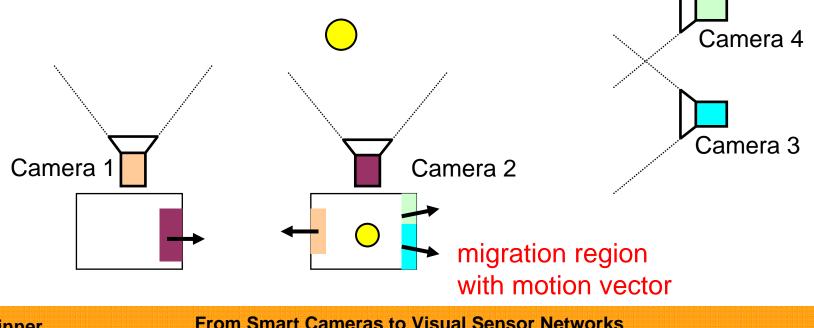
Distributed Processing in Network

 Example: autonomous tracking of mobile objects among multiple cameras

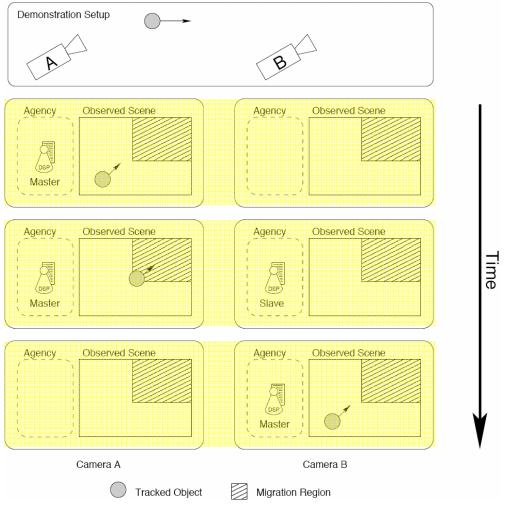
- Computation follows (physical) object
 - requires spontaneous communication; distributed control & data

From Smart Cameras to Visual Sensor Networks

Autonomous Multi-Camera Tracking


[EURASIP JES 1/2007]

- Assumptions for multi-camera tracking
 - implement on distributed embedded smart cameras
 - avoid accurate camera calibration
 - do not rely on central coordination
- Important design questions
 - What (single-camera) tracking algorithm to use?
 - How to coordinate the cameras?
 i.e., distributed control, exploit locality
 - How to hand over tracking from one camera to next?
- Treat questions independently
 - standard ("color-based") CamShift tracker
 - focus on hand over strategy


Spatial Relation among Cameras

- Camera neighborhood relation
 - important for determining "next camera(s)"
 - based on pre-defined "migration region" in camera's FOV (overlapping or non-overlapping FOVs)
 - no pixel correspondence required

Multi-Camera Handover Protocol

Master/Slave handover

- 1. camera A tracks object
- 2. whenever object enters migration region tracking agent is cloned on "next" camera (slave)
- 3. slave starts tracking when slave identifies object
 - master gets terminated

Tracker initialization

• color histogram a initialization data

Implementation & Results

Visualization

- migration region (magenta)
- tracked object (red rectangle)
- tracking agent (red box)

Code size	15 kB
Memory requirement	300 kB
Internal state	256 B
Init color histogram	< 10 ms
Identify object	< 1ms

Loading dynamic executable	8 ms
Initializing tracking algorithm	250 ms
Creating slave on next camera	18 ms
Reinitializing tracker on slave	2 ms
Total	278 ms

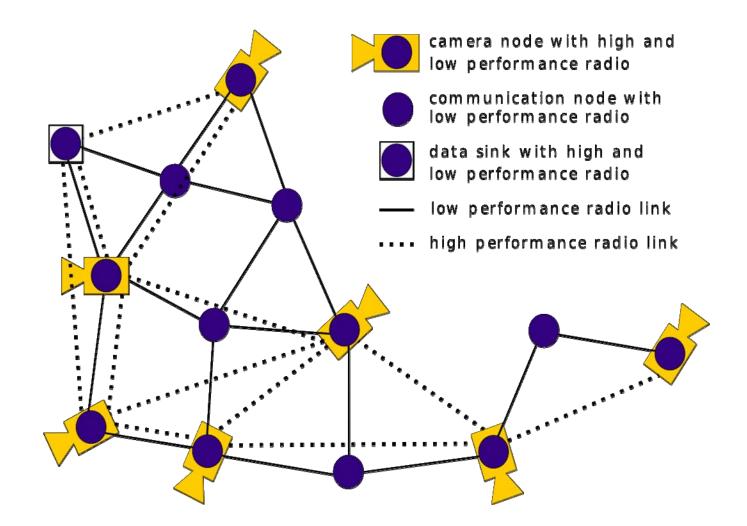
CamShift (single camera)

Multi-camera performance

Toward Visual Sensor Networks

Characteristics of VSN

- In-network image sensing & processing
- Data streaming as well as eventing
- Resource limitations (power, processing, bandwidth ...)
- Autonomy & service-orientation
- Ease of deployment



PSC Dual Radio Network

- Tradeoff among bandwidth, power consumption and streaming requirements in VSN
- One approach: dual radio networks
- Equip (some) nodes with two radios: low-bandwidth
 & high-bandwidth
- Use low-bandwidth radio for normal operation
 - coordination, eventing,
 - transfer of low-resolution (still) images
- Use high-bandwidth radio for streaming

PSC Network Architecture

PSC Camera Network

- Visual Sensor Network Platform
- Sensor Nodes
 - Embedded board with USB connected peripherals
 - TI OMAP3530 processor: ARM Cortex A8 @ 600MHz, TI C64x DSP @430MHz
 - 128MB RAM, 256MB Flash
 - SD-Card, USB, DVI, audio-i

UNIVERSITÄT KLAGENFURT

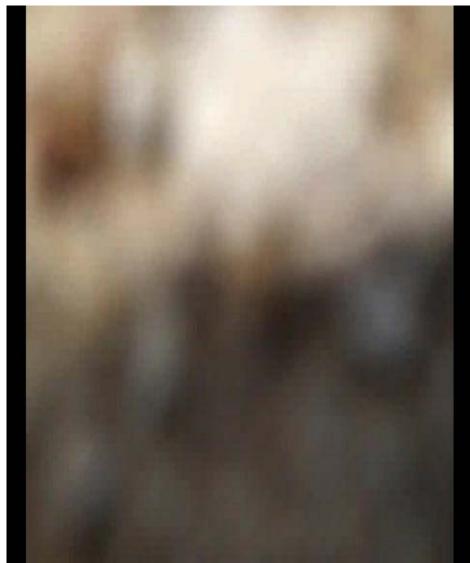
PSC Demo: Tracking

- Demonstrate tracking by using only low-bandwidth radio
 - initially transfer background image
 - perform tracking onboard
 - transfer tracking result (bounding box);
 8 bytes/frame

UNIVERSITÄT Klagenfurt

ALPEN-ADRIA UNIVERSITÄT KLAGENFURT

Network of Airborne Smart Cameras


- Project: Collaborative Microdrones (cDrones)
 - deploy a group of small UAVs for disaster management applications
 - fly over the area of interest in structured way (formations)
 - sense the environment
 - analyze the sensor data (image stiching, object detection etc.)
- Battery-powered quatrocopter as UAV platform
 - about 1 m size
 - 20 minutes operation time
 - onboard camera
 - GPS controlled

Bird's Eye View

- 10 MPixel still images
- Video@25 fps
- Image quality
 - Ego motion

Collaborative Aerial Imaging

- UAVs connected via wireless network (eg 802.11)
- Preliminary imaging: stiching
 - Cocoa [Shah@UCF]

From Smart Cameras to Visual Sensor Networks

CLIC Project

UNIVERSITÄT

- Closed-Loop Integration of Cognition, Communication and Control
- Combine real-time image analysis and adaptive motion control with tight real-time coupling
 - optimize control of physical objects (crane)
 - observe environment with DSCs for "disturbances"
 - "inform" controller in hard real-time
- Exploit highly-synchronized cameras
 - time-triggered communication (TT Ethernet)
 - detect, track and predict objects
 - transfer position to controller

CLIC Project

(Potential) further Applications

- Entertainment (computer games)
 - in 3D environments
- "Smart Rooms / Smart Environments
 - detection gestures, sign language, room occupancy ...
- Environmental monitoring
 - sensor fusion, habitat monitoring
- Security
 - Safety enhancement (trains, cars), access control, surveillance
- "Virtual Reality"
 - augment real world with digital information

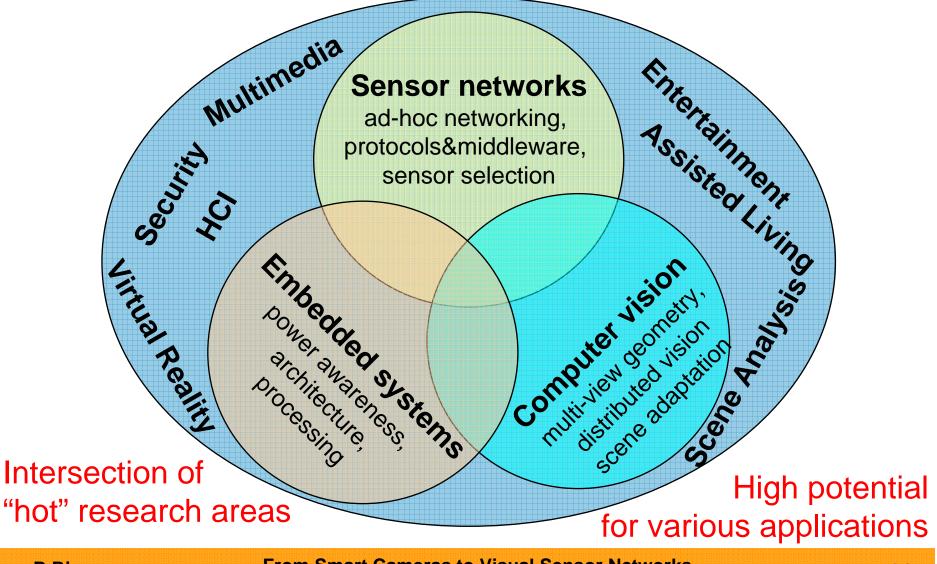
Trends and Challenges

- From static to dynamic and adaptive
 - Adaptation & learning (networking, functionality, scene,...)
- From small to large camera sets
 - E.g., more interest in statistics on behavior (instead of individuals)
- From vision-only to multi-sensor systems
 - Fusion of data from multiple (heterogeneous) sensors
- Development process of DSC
 - How to model, develop, deploy, operate, maintain applications
- Privacy & Security
 - Important cross-layer topic for user acceptance

Conclusion

Smart Cameras

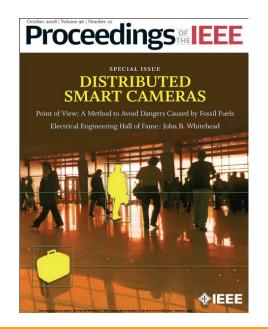
- combine
 - sensing,
 - processing and
 - communication
 - in a single embedded device
- perform image and video analysis in real-time closely located at the sensor and transfer only the results
- collaborate with other cameras in the network (multi-camera system)



Smart Cameras as Key Technology

- For many applications including
 - Life Sciences
 - Security & Monitoring
 - Traffic
 - Entertainment
- Distributed cameras migrate to smart networks, which helps to overcome "hard problems"
 - occlusion
 - communication bandwidth
 - energy supply
 - reliability

DSC is Interdisciplinary Research



To Probe Further

ACM/IEEE Int. Conf. on Distributed Smart Cameras

Como, Italy (Aug30-Sep2, 2009) www.icdsc.org

Further Information

Mail

Pervasive Computing Lakeside B02b 9020 Klagenfurt

- P: +43 463 2700-3670
- F: +43 463 2700-3679
- W: pervasive.uni-klu.ac.at

