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CHAPTER II:

Smart Camera Architectures

Richard Kleihorst, François Berry
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Wireless Camera (Wireless Camera (WiCaWiCa))

Contact: Richard Kleihorst
Richard.Kleihorst <AT> nxp.com

NXP Semiconductor Research
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Vision SystemsVision Systems

• Are systems that analyze images and video
• They report in events/objects/properties
• DVD recorders, set-top boxes, smart 

cameras 

VISION
SYSTEM

video

image
data
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““Smart CamerasSmart Cameras””

• =       Camera + intelligence
• =       The basis for new applications

Such as:  detection, tracking, scene analysis 

Automotive Surveillance ConsumerMobile Comm.
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Some LowSome Low--Cost Smart CamerasCost Smart Cameras

CMUcam3 (ARM7)
60 MIPS @  650mW

Stanford MesyEye
Mote (ARM7)
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Smart Wireless Camera PlatformSmart Wireless Camera Platform

WiCa (Xetal SIMD)
50 GOPS @ 600mWatt

Cyclops (AVR RISC)
8 MIPS @ 50mWatt?
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Distributed Vision SystemsDistributed Vision Systems

• Use multiple cameras
to analyze the scene

• Less problems with 
occlusion

• Camera networks
• Distributed processing
• Distributed reasoning
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Requirements in System IntegrationRequirements in System Integration

• Performance
• Energy consumption 
• Cost
• Architectural features (for active vision)
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Example Event Casting: Face DetectionExample Event Casting: Face Detection

CVPR 2007 Short Course 12Distributed Vision Processing in Smart Camera Networks

Face Detection Application MappingFace Detection Application Mapping

Image processing:
Image pyramid

Application:
Draw box, event

low 
level
low 
level

intermediate
level

intermediate
level

high 
level
high 
levelVideo Data

Pixel processing:
Haar filters

for every pixel 
similar

for every image 
similar

For every event 
different

SIMD 
10++GOPS

FPGA/DSP
100MOPS

CPU
1MOPS

SIMD Single Instruction Multiple Data
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Why SIMD for LowWhy SIMD for Low--Level?Level?

• High-performance            (need > 10GOPS)
• High internal- bandwidth (need > 500Gb/s)

PE

A

instruction

B

C

10GOPS * 3 * 16bits
Bandwidth = 
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UniprocessorUniprocessor to SIMD: 1 PEto SIMD: 1 PE

4.6mm2
0.6mm2

1mm2

0.02mm2

DSP Control
Program 
Memory

4.8Gb/sBandwidth
26%Overhead
19MOPS/mm2Performance/area
5.22mm2Size
100MOPSPerformance

100MHz

Data Memory
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UniprocessorUniprocessor to SIMD: 2PEsto SIMD: 2PEs

4.6mm2

0.6mm2

1mm2

0.02mm2

DSP Control
Program
Memory

9.6Gb/sBandwidth
25%Overhead
38MOPS/mm2Performance/area
5.24mm2Size
200MOPSPerformance

0.02mm2

1 2

100MHz
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UniprocessorUniprocessor to SIMD: 100PEsto SIMD: 100PEs

4.6mm2

0.6mm2

1mm2

0.02mm2

DSP Control

480 Gb/sec.Bandwidth
20%Overhead
1.2 GOPS/mm2Performance/area
8.2 mm2Size
10 GOPSPerformance

0.02mm2

1 2 100
Program
Memory

100MHz
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UniprocessorUniprocessor to SIMDto SIMD

58 Gb/S1.5Tb/S2 Gb/SBandwidth

1.0
Watt

12%

2.25
GOPS/mm2

44.4 (0.18u)
11.1 (0.09u) mm2

100
GOPS

Xetal-II SIMD : 
320PE@150MHz

Pentium4
2.4GHz

RISC : 1PE
50MHz

26%

0.008 GOPS/mm2

6.4
mm2

0.05
GOPS

59
Watt

Peak Power 
Consumption

??%Overhead

0.045
GOPS/mm2

Performance 
/area 0.18u

131
mm2

Size

6
GOPS

Peak 
Performance
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Why is SIMD LowWhy is SIMD Low--Power?Power?

• Typical DSP 
instructions need 4 
accesses to memory

PE

A

instruction

B

C
C = A + B;
C = A > B ?  A : B;
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Why is SIMD LowWhy is SIMD Low--Power?Power?

• SIMD has multiple PEs in parallel
• Arithmetic always has to be done
• But: Instruction fetch is shared multiple times
• Data (A,B,C) access is shared in 

multiple-word-wide memories
• Accessing an 8 times wider memory takes 

half the amount of energy per data entity
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SIMD Energy ConsumptionSIMD Energy Consumption
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• Basis: Convolution 
– Computation
– Communication
– Memory access

Parallelism Memory Localization

Without voltage scaling, 
energy saving levels off
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Computational Efficiency Growth (Moore)Computational Efficiency Growth (Moore)

[GOPS 
per 

Watt]

Feature size [um]

ASICs

CPUs

2 1 0.5 0.25 0.13 0.07

Pentium 4
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20 Age in Years80
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SIMD Processor
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Smart Wireless Camera ArchitectureSmart Wireless Camera Architecture

SIMD CPU

Event reporting

DSP
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Connecting The ProcessorsConnecting The Processors

SIMD 8051Dual Port
RAM

R

G

B

Ax
Ay

Data

Ax

Ay

Data

Feedback loop:
-Frame buffer, working with multiple images
-Look-Up-Table
-Image down-up sizing for pyramid approaches
-Image rescanning for lens-distortion correction

CVPR 2007 Short Course 24Distributed Vision Processing in Smart Camera Networks

Smart Wireless Camera PlatformSmart Wireless Camera Platform

“WiCa”

• IC3D/Xetal3 based
• Stereo sensor input
• 50GOPS performance
• Typical 100milli-Watts
• ZigBee node
• Battery powered
• C++ programmed
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Smart Wireless Camera PCBSmart Wireless Camera PCB

Ben Schueler, NXP

ZigBee module

Battery module
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What Have We Mapped to What Have We Mapped to WiCaWiCa??

Object recognition applications
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What Have We Mapped to What Have We Mapped to WiCaWiCa??
Depth estimation from stereo
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What Have We Mapped to What Have We Mapped to WiCaWiCa??

Alexander Danilin, NXP

Gesture recognition
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What Have We Mapped to What Have We Mapped to WiCaWiCa??

Face detection: soft edge features

Horizontal soft edges

Vertical soft edges
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Which Algorithms Run Easily on Which Algorithms Run Easily on WiCaWiCa??

• Where much of the application is running on the 
SIMD

• Where the DSP/CPU is used for limited or 
occasional tasks only

• Choose appropriate algorithmic basis for scene 
analysis
– For example: “feature based”
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Some Power Consumption ResultsSome Power Consumption Results

• Object recognition                       25mWatt
• Face detection                             40mWatt
• Stereo depth estimation               50mWatt
• Gesture recognition                     15mWatt
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Requirements in System IntegrationRequirements in System Integration

• Performance
• Energy consumption 
• Cost
• Architectural features (for active vision)
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