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Smart Camera Networks

Time
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O
Space ol w5 5
(Views)
Fusion Dimensions Feature ° i
. Levels
QSpace (views) N\
< Overcome ambiguities, occlusions
* Enhance estimate robustness P 3
UTime b

* Increase confidence level of estimates
« Detection of key frames

QFeature levels
« Exchange of features with other nodes across algorithmic layers
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Fusion Mechanisms

> Feature fusion: > Spatial fusion:
* Use of multiple, complementary = Localization, epipolar geometry, ROI
features within a camera node and feature matching

= Validation of estimates by checking
consistency, outlier removal
= 3D reconstruction

» Temporal fusion:
= Local interpolation / smoothing

of estimates »Model-based fusion:

= Exchange of updates via = 3D human body reconstruction,
spatial fusion human gesture analysis

» Spatiotemporal estimate = Feedback to in-node feature
smoothing and prediction extraction

»Key features and key »Decision fusion:
frames: = Estimates based on soft decisions
= Adequate features in own

= Information assisting other

nodes observations

= Cost, latency of communication
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Layered Spatial Collaboration

Case Study: Human Gesture Analysis

] Description Layers Decision Layers
Final decision

Description Layer 4 ;
Gestures ¢
| Decision Layer 3 :

Soft decjision fusion 2 «— collaboration between
cameras

Description Layer 3/
Gesture Elementd

E
Decision Layer 2 :
Feature-based fusion ——» é ~«— collaboration between

\ cameras

—

Description Layer 2 ; \f/w‘r{)zu :D > @fﬁi_ﬂ N % D
Features FT—~ R~—=== N
In-node feature | | [
. _— - Decision Layer 1:
extractign — 7 T T 7 within a single camera S t
Description Layer 1 ; (5 (5 é) mart.
Images R R2 R3 Presentation
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L

Opportunistic / Fusion of features within a single camera

data fusion ~.

Fusion based on collaboration among multiple cameras Accident
Detection
7
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Layered Spatial Collaboration

Case Study: Human Gesture Analysis

) Description Layers Decision Layers
Final decision

Description Layer 4 ;
Gestures ¢
+ Mutual reasoning: [ Decision Layer 3

X . . 7 «— collaboration between
- Joint estimation e — cameras

* Assisted reasoning:

_ . R Decision Layer 2 :
Estimate validation @ ~— collaboration between

- Key feature exchange / T \ cameras

Description Layer 2/ & 5 ::/\ %f?m%i 2 A/y F“?fs'nzjun D:j
:

Features FI=r— "
* Self reasoning: > w [ [ Decision Layer 1
- In-node feature extraction | = 7 " Within a single camera
Smart
‘ Images S RL S e S e Presentation

L

"

Opportunistic / Fusion of features within a single camera

data fusion ~.

Fusion based on collaboration among multiple cameras Accident
Detection
5

CV/PR 200 bort Colrse. Distributed Vision P ingin letworks




Fusion Mechanisms

CAM 1
R Early vision
processing }—“( Features ’7
Temporal
fusion
CAM 2

| Early siol H Features
processing

Temporal

fusion

= Estimate fusion

———F « Decision fusion
= Model-based fusion

-

Spatial
fusion

CAM N
Early vision
‘F( processing }—F( Features }—/

:
gic-anl
: i | Mutual Reasoning | | Assisted Reasoning |

|
sion
. Exch f key f
Self Reasoning | . : xchange of key features
; * Spatial fusion * Model-based
» Feature fusion Spatiotemporal fusion é- Active vision
L]

e Temporal fusion P P + Feedback
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The Big Picture

updating through
model history and
new observations

N old model

O Moce > dated mod \O
gesture interpretations™ - , Updated model
Pecision Layers O @ output of spatiotemporal fusion

«

Description Layers

/Dé/c':ision feedback te
update the model
(spatial fusion)

Active vision

10

a Networks
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Model-based Fusion

» Motivation to build a human model:
» A concise reference for merging information from cameras
» Offers flexibility for interpretation in different applications:
 Various gesture interpretation applications
» Allows recreation of body gesture in virtual domain
 Viewing angles to body not available from any of the cameras
» Allows employment of active vision methods:

« Focus on what is important
< Develop more detail in time

» Helps address privacy concerns in various applications

Human Model

Vision » Kinematics Reasoning /
= Attributes Interpretations
= States <
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Model-based Fusion

* Approach: 4
»Exchange segments and attributes, combine
to reconstruct a 3D model )
» Subject’s information mapped and maintained

) _— t
in the model: Clipses
JAEm

i

cam1

*Geometric configuration: dimensions, lengths, angles
*Color / texture / motion of different segments

* Advantages:
»Employ higher level of in-node processing
»Exchange descriptions only relevant to model
> Affordable communication for multi-camera collaboration *

»Initialization for active vision in nodes:
*Provides color (other feature) distributions for rough segmentation
*Helps with body part tracking (motion flow)
« Offers hint on what is important to look for in images
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Data Flow

The collaboration routine

2D attribute 2D attribute 2D attribute
descriptions descriptions descriptions

in l ﬁ out in l ﬁ out in l ﬁ out
interface interface interface

local processing routines local processing routines local processing routines
Cam 1 Cam 2 Cam 3
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Use of Feedback

CAM 1

3D

inf . o Project / decompose to
CAM 2 Merge information each image plane again

Y

A

Gesture

CAM N extraction

Gestures

« Initialize in-node feature extraction
« Active vision (focus on what is important)
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Feature Fusion: Optical Flow and Color

» Use of complementary features
« Edge and color
* Color and motion

» Combine pixel-based and
region-based methods

N 4o

background
subtraction

markers

/ background
A i

body part ellipse fitting and ) K-means
. B watershed .| .
segments attributes extraction clustering (color)

Markers
for the person

watershed
segmentation

images

optical flow

o markers
estimation

4
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Model-based Human Posture Reconstruction

or via k-means (Perceptually 8 method with constraints segments
s

/ \ Organized) rﬂ / :! )

Color segmentation aNellipse fitting in local processing

From model, Refine color models Or other morphological ﬁ Concise description of

Background Rough EM: refine
" ! |l .
subtraction segmentation color models segmentation

Ellipse fitting

*__Segmentation function: Single camera

Previous color Fee
distribution

Previous geometric

3D human body model configuration and motion

Maintain current

model
Combine 3 views to get 3D skeleton geometric configuration \
Update 3D model Update each test Local
(color/texture, i " Cherﬁkri -—  configuration using  fe— izorer ﬁst] Genr;iera\’teli(e:t proc(z’ecsimg
motion) stop criteria PSO configurations configurations B othoy
cameras
Mode’i‘ fitfing function: ACollaborative
Goodness of ellipse Projection on image E.g. parameters for the

fits to segments planes upper body (arms)

L4 L]

= :.l \. !

-4 83N
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In-Node Feature Fusion for Segmentation

i




Collaborative Model Fitting
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Spatial Fusion

« Geometric fusion — Makm'g correspondences
i — Tracking
« Mutual reasoning — Reconstruction of 3D models

. . . — Camera network calibration
— Joint estimation — Use of epipolar geometry to:
— Joint refinement pipo'ar g yio:

. . . «Feature matching
— Decision fusion «Outlier removal

*«ROI mapping between camera views

» Assisted reasoning
— Estimate validation
— Key frame exchange

no.

Face Orientation Estimation
 Color and geometry-based method
* Spatial / temporal validation method

—
Camera 3 Camera 1
(Test set) (Training set)

Mapped to an ellipsoid
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Color and Geometry Fusion

» Face orientation analysis

» In-node feature extraction by fusion of Color and Geometry
= Apply position constraints for the eyes when thresholding Cb/Cr

T

ompensated
Image \ Cb/Cr 4L Eye-map 3 / ‘
|
| / . |
- | Gaussian-
1?.km col(zirl\ Mean and I‘/_> E]g/e-qussum» / Chrominance L»C Ejf&;
€ 1ps<z mode \ Covarlance 1stribution Distribution andidate
Skin mask

L)
e

IF mee
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Color and Geometry Fusion

»Face orientation analysis
= Feature matching with epipolar geometr

» Use geometry of cameras to:

— Match features ﬂ\l baseline
— Remove false feature candidates

Epipolar
line for x;

candidate

candidates

\ False eye \ False face

[—

Epipolar lines for An Example of
false candidates MutuallReasoning
C\VPR 2007 Short Course Distributed \ision P i in

Feature Fusion

» Level of features for fusion between cameras?
— Features are typically dense fields
» Edge points, motion vectors
— They are locally fused to derive descriptions (sparse)
 Descriptions are exchanged

— Valuable features may be exchanged as dense descriptors
« Communication cost issues need to be considered

Collaboration

’ High-level descriptions ‘ Sparse
between cameras

Features (single camera) | | ’ Low-level descriptions ‘

or descriptions (shared) ’ High-level features ‘

Processing within *
a single camera ’ Low-level features ‘ Dense

< Key features and key frames allow selective sharing of dense features
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Key Frames

* Frames with high confidence estimates
— Node with key frame observation broadcasts derived

information
— Other nodes use them to refine their local estimates
cameral camera n
Cimages > Cimages>
[ in-node Feature extraction | [ in-node fearure extraction |
fe:mlres| I feanures |

atiol ral spatiol ral
Nl]l Il.] C]II.I)H] 1 ) El‘f“ l} \]L] .'ll-! El'l].llﬂl A E"((x_._}
estimation . estimation
.."' .".
collaboration -~ Temporal fusion
(refinement — — \(forward-backward — S
based on <__estimates £, (r, 7> < estimates E, (7,7~
key frame)
I - 1
! A . key frame |
| < key frame? s > ereane -] “key frame? > Dofification i
1 ~ o - o i
| ~ e i
Y Y
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» Use key frames to re-initialize local face angle estimate
— Use angle estimates close to zero (frontal view)
» Aims to limit error propagation in time
— Use optical flow to locally track angle changes between frames
— Interpolate between two key frames to limit optical flow error propagation
-0 - 0 n-al - L] -0
Cameras initialize . Cameras initialize [
facdangles face angles I ’“l = i - N
_ B ah o)) Wi\ W) W
€ - ~ ML\ Y /Y b A\ \
g ST e SN , , .
o s o —a Local optical flow is used |
5 - i to track face angle | = | =) =) =
§ sh - X between key frames . \ Ic" . .
2 =T ]
o -2 T = i of
3 P 3 ! ’
‘gf P Cameras interpolate
E Key frame face angles bgtvveen Key frame
key frames using
-5¢ local optical flow |
100l ; ; . .
4 5 6 7 g 9
frame # | ¥ : iy
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Spatial / Temporal Validation

« Estimates between key frames are
corrected by:
» Temporal smoothing (one camera)
* QOutlier removal (multiple cameras)

Estimated Orientation (degree)

 Can this be done more effectively?

Estimated Orlentation (degree)

Distributed \fision b

10 Temporal /

» Spatiotemporal filtering e e

‘Spatiotemporal Feature Fusion before Validation N
Spatial

:

smoothmg )

. Key frames

Spatiotemporal Featurg Fusion afisr Validation
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Spatlotemporal Fusion
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» Opportunistic creation of face profile

u® ‘-”‘ ‘- nH-@‘-@ ‘li" ‘."“
] I T entation '
150 T
Right 100 \ / \
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Spatiotemporal Fusion

o 9 4
_.*.rl ‘

200
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Decision Fusion

Accelerometer

« Smart home care network for fall detection

» States are combined as soft decisions to create a report

Trigger IrrlaiE_Analms \L \L

Camera 1 Camera 2 Camera 3

State2 State3

ime (¢
Falling versus Sitting Down

Signal Classifier State0|
ignal for Falling and Sitting Down
=
Fal Sitting Down i
w N o
T
ém |
[ Statel

——)| Decision Making Process |

18

. [* Sitting Down
. : ,LE"“*"P' Report All
[ R 4 Useful

. 7’
$12 o gmess o st Data
S10f .7 . Possible
% El . ’ Hazard
.

e s, :
Sap--loo ]
g 2 M
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Decision Fusion

Camera 1

Orientation Alert
Silhouette- Love
based Shape
Fitting .
LT3 \ Weight
‘ Shape Fi Camera 3

Logic to
Combine
States

<5
L= Posture | ; ;
- il == . A Vertical / Horizonta 27?

Multi-Camera Model Fitting g8 [* " Orientation =
= N

T o 2.

= g g g

2 | &3 =

S > Head [

) Position @®

I o

o o

® @
ey

5] <

| @ Arms {7 %—

{} = Positions i 2
o

E I . 3 Legs {
vent Interpretation = Positions ¢ i
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Alert level Alert level Alert level
=-0.9369 =-0.9107 =-0.9534
Confidence Confidence Confidence
=0.8391 =0.9282 =0.8298

Standing, safe
(-0.8075)
H Alert Levels E
ESafs Uncertain Danger J
. 1]
e 0 104
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Decision Fusion

Alert level Alert level Alert level
=-0.1651 =-0.7920 =-0.5945
Confidence Confidence Confidence
=0.7346 =0.8153 =0.6517

combine
Uncertain
(-0.3039)
T ]
i Alert Levels E
\Safe Uncertain Danger H
[ TN N
RS I S
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Alert level Alert level Alert level
= 0.6598 =0.8370 =0.8080
Confidence Confidence Confidence

=0 =0.7389 =0.7695
Lying down, danger
(0.6201)
...................... :
H Alert Levels E
ESafs Uncertain Danger J
. '
LD S
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Virtual Placement

Collaborative

Face Analysis

AN

Feature Fusion Ellipse Fitting ‘
: Model-based
In-node processing — Spatiotemporal
Fusion ﬂ
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Event Interpretation

Human Model
Ve | e e
= Attribute
: Swes |+
Behawpr ———————————— Al reasoning i Al
analysis {}
i Instantaneous .
Interpretation ton Posture / attributes
fevels aeen Vision
Low-level {} Processing
features Model parameters

Feedback * Queries
= Context

* Persistence
* Behavior attributes
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Event Interpretation
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