
Aggregate-Signcryption for Securing Smart Camera
IoT Applications

Subhan Ullah∗†, Federico Russo†, Lucio Marcenaro† and Bernhard Rinner∗
∗Institute of Networked and Embedded Systems

Alpen-Adria-Universität Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt, Austria
Email: {subhan.ullah, bernhard.rinner}@aau.at

†Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture
University of Genova, Via all’Opera Pia 11, 16145 Genova, Italy

Email: lucio.marcenaro@unige.it

Abstract—Smart cameras are considered as key sensors in
Internet of Things (IoT) applications ranging from home to
city scales. Since these cameras often capture highly sensitive
information, security is a major concern. An elliptic curve (EC)
based signcryption achieves resource-efficiency by performing
data encryption and signing in a single step. In this work,
we present aggregate-signcryption which extends the EC-based
signcryption approach to a cluster-based multi-camera setup. The
signcrypted data from the smart cameras within a cluster is
aggregated on a specific node called cluster head. Aggregate-
signcryption reduces the communication overhead and requires
fewer steps for the unsigncryption as compared to individual
signcryption.

Index Terms—Smart cameras; Aggregate-signcryption; Data
Security; Internet of Things;

I. INTRODUCTION

Smart cameras are real-time computer vision systems that
combine onboard sensing, processing and communication
capabilities [1]. These devices play an important role in
several IoT applications [2]. However, security and privacy
protection has become a major concern due to their widespread
deployment, the sensitive nature of the captured data and the
open infrastructure [3]. Visual data captured by smart cameras
might reveal not only the identity but also clues about the
habits, preferences and social interests of a person [4]. The
basic security objective for a smart camera is thus to prove
the originality of images or video data (integrity), its origin
(authenticity) and the protection from unauthorized access
(confidentiality) throughout the entire lifetime of the data.

In our preliminary work [5], an EC-based signcryption tech-
nique has been proposed as an efficient solution for securing
the smart camera by separating the platform into a trusted
sensing unit and an untrusted camera host unit [6]. In that
case, security was ensured by individually protecting images
transmitted from the smart camera. In an IoT environment
more than one smart camera are often required to monitor a
wide area [7]. The transmission of signcrypted images or video
frames from co-located distinct smart cameras at the same
time might saturate the communication channel and overload
the end-user device during the verification and unsigncryption
process.

In this work, we propose a cluster-based multi-camera
architecture (Figure 1) which is able to efficiently process
and secure the captured data. We divide the network of
smart cameras into distinct clusters and extend the EC-based
signcryption [5] to an aggregate-signcryption approach. The
aggregate-signcryption is entirely performed on a cluster head
by merging the signcryptexts and corresponding public keys of
the smart cameras in the same cluster. Aggregate-signcryption
combines signcryptexts to reduce the signature data without
losing any security properties of the individual signcryptexts.
The aggregate-signcryption saves communication costs during
transmission and computation resources during verification
on the end-user device (e.g., smartphone). The clustering
approach provides scalability and management to the network
of smart cameras, where aggregate-signcryption provides an
efficient approach for data protection.

The contribution of this work lies in the deployment
and evaluation of EC-based aggregate-signcryption in cluster-
based smart camera IoT applications. We enable the cluster
head to efficiently apply aggregation on the collected sign-
cryptexts of distinct smart cameras. The proposed architecture
has been implemented and evaluated on a network based on
Raspberry Pi nodes.

The rest of the paper is organized as follows: Section II
discusses the state-of-the-art. Section III introduces the system
architecture, assumptions and threat model. Sections IV and
V describe the proposed solution and experimental evaluation,
respectively. Finally, Section VI concludes the paper.

II. STATE-OF-THE-ART

In the following, we briefly review smart camera based
surveillance systems and security techniques for captured im-
age and video data in the context of IoT [8] and visual sensor
networks (VSN) [3]. The main focus of these applications is
video surveillance of private [9] [10] or public premises [11].

A. Smart cameras in IoT applications

A smart camera is a key sensor for video surveillance in IoT
applications. Najjar et al. [12] briefly introduced some basic
VSN platforms (Cyclops, MeshEye, Vision Mote, MicrelEye),
related architectures and challenges. They further highlighted



the need of lightweight algorithms for image processing and
identified the trade-off between accuracy of algorithms, mem-
ory, processing and power consumption. Winkler and Rinner
[10] presented a novel platform, TrustEYE.M4, to provide
security and privacy of data in VSN applications. Baran et al.
[13] used a smart camera for the identification and recognition
of vehicles in transportation system for the law enforcement
authorities.

B. Video surveillance systems

A generic architecture of video surveillance consists of
smart cameras, backup servers and end-user monitoring de-
vices [14] [9]. A network of smart cameras is required for the
surveillance of a large area, and can be classified into cen-
tralized, distributed or cluster-based networks [15]. Natarajan
et al. [16] summarized the related work of multi-camera on
object detection, tracking, security, privacy, coordination and
control strategies for video surveillance applications. Chien et
al. [8] used a special node for aggregation of data from video
sensors in the IoT-based video surveillance and recommended
lightweight algorithms and system on chip (SoC) approaches
to further improve the computation power of sensors. Mora
et al. [17] proposed an IoT-based framework for healthcare
monitoring and proposed a scheduling technique for sharing
the resources among the nodes to minimize computational
costs. This approach preserved local resources for critical
processing only.

C. Security approaches in video surveillance

In video surveillance a smart camera captures large volumes
of data in the form of images and videos and efficient security
techniques are needed for data protection [3]. Usually, stan-
dard security techniques are used to provide confidentiality,
authenticity and integrity of the data [18] in IoT applica-
tions. Alsmirat et al. [19] presented a framework for secure
surveillance system [20]. They used the advanced encryption
standard (AES) for confidentiality and the RSA algorithm
for key distribution. The session key was further secured by
using (HMAC-MD5) hashing and provided authentication and
integrity of the video streams. This approach was implemented
by using the NS-3 simulator for evaluating the trade-off
between communication delay and security. The computation
and communication overheads were reduced by encrypting
the whole video frame instead of encrypting each packet
of data. Winkler and Rinner [10] used the hardware-based
trusted platform module (TPM) security chip for onboard
security and privacy protection on the smart camera. They used
AES for encryption and the RSA digital signature for signing
with time-stamping techniques, and proved confidentiality,
integrity and authentication for the captured data. Haider and
Rinner [9] used on-chip physical unclonable functions (PUF)
and provided onboard protection for image and video data.
They followed the encrypt-then-sign approach by using PUF-
based secure key generation. They evaluated the results on a
Zynq7010 SoC-based prototype. A secure remote authentica-

tion of the user was performed for the smart cities applications
[21]. A PUF-based CMOS image sensor was proposed by [22].

D. Comparison with our approach

We implemented the EC-based signcryption techniques [5]
on each smart camera in a cluster-based network for securing
the video frames and proposed a cluster head as an aggre-
gator for all the signcryptexts to reduce the computation and
communication overhead. The smaller key size of EC [23]
and the implementation of signcryption [24] supports real-time
data security directly on the sensing unit. To the best of our
knowledge, our approach is the first deployment of aggregate-
signcryption in this context.

III. SYSTEM ARCHITECTURE

In this section, we present our proposed system architecture,
its integral components and connectivity in a typical IoT
environment (Figure 1). The integral components are smart
cameras, a backup server and a set of monitoring devices. The
smart cameras are able to detect predefined events due to their
local processing capabilities. Once an event has been detected,
the camera triggers a description of the event and identifies a
region of interest. We group the co-located smart cameras into
distinct clusters [25]. Each cluster has a pre-defined cluster
head, which works as a gateway [26] and connects the smart
cameras with the rest of the system. The identities of the clus-
ter heads and its corresponding smart cameras are represented
as CHi and Cj.i where i and j represent the identifiers for
the cluster and the camera, respectively. Typically, a smart
camera has not sufficient storage for all captured data because
of resource limitations, so we use a backup server (BS1) to
permanently store the aggregate-signcrypted data forwarded
by the cluster heads for the intended monitoring device. The
backup server provides an authorized access to that stored data
for the corresponding monitoring device (Mh).

Many-to-one-communication scenario: In this work, we
extend our previous security approach [5] to a many-to-one
communication scenario. Here, multiple cameras provide data
for detected events and need to secure it for an individual
monitoring device. The processing for such scenario can be
summarized as follows: (i) onboard detection of predefined
events on smart cameras in a cluster, (ii) aggregation of the
information on the cluster head, (iii) transfer and storage of the
aggregated information on a backup server, (iv) and download
of the information by monitoring device which are already
stored on the backup server to complete the surveillance
procedure.

A. Assumptions

We assume that each smart camera consists of a trusted
sensing unit and camera host unit [6]. The host unit is not ex-
plicitly trusted because of the operating system (OS), libraries,
middle-ware and other user-specific applications. The camera
host unit is responsible for the configuration, management and
running of the application and system libraries. The protection
of the sensing unit is built upon our previous work [10], [9]



Fig. 1. The system architecture composed by several clusters of smart
cameras, dedicated cluster heads, monitoring devices and a backup server.

and has exclusive access to the raw data (images and videos).
We assume no explicit protection of the denial of service
(DoS) attacks on the other components of the system. While
assuming the sharing of public parameters and public keys, we
can verify the authenticity and reduce incoming requests of an
attacker by using public verification (a property of signcryption
technique). Moreover, we assume that the monitoring device
is trustworthy and that private keys are securely stored on it.

B. Threat model

In the proposed system architecture (Figure 1), an attacker
may get access to image or video data by compromising the
camera host unit, the cluster head or the backup server. The
attacker can access the data possibly on the camera host part,
cluster head, and communication channels or backup server,
as reported in the context of IoT smart home [27] and VSN
[3] scenarios. The attacker can compromise the integrity and
alter the data while remain undetected. Another capability of
the attacker is to compromise the authenticity and insert their
own information by using the identity of smart cameras.

IV. PROPOSED SOLUTION

In this section, we present lightweight security techniques
to protect and secure the sensitive information in the pro-
posed system architecture. The design goals of the security
techniques are (i) to reduce the transmission of unnecessary
data, (ii) to protect the captured information from unau-
thorized access throughout its lifetime, and (iii) to prove
the authentication and integrity of the information on the
intended monitoring devices. In the following, we present an
overview of the lightweight security approaches, as well as its
deployment, and operational phases in the system architecture.

A. Overview of security techniques

We present aggregate-signcryption, in order to merge the
signcrypted information from individual smart cameras of a
cluster and to reduce the transmission of redundant informa-
tion. The deployment of aggregate-signcryption requires the
following steps:

Key generation: We use a key generation center (KGC)
[28], a trusted entity in the system to generate the partial
private keys for all devices of the system. The KGC securely
shares the partial private keys with the respective devices, and
then the devices generate their full private and public keys.
We assume that all devices keep the private keys secret and
share their public keys with each other in the system.

Local analysis and onboard signcryption: The smart cam-
eras perform local event detection and then extract the region
of interest (RoI). The smart camera applies EC-based sign-
cryption to protect the selected data on the sensing unit [5].
The protected information is forwarded to the camera host
unit, which can verify the integrity of the data and transfers it
to the cluster head for aggregate-signcryption.

Aggregate-signcryption: The cluster head of each cluster
verifies and aggregates the individual signcryptexts of the
received data from the detected event. The algorithm of
aggregate-signcryption is defined in Section IV-C. There is no
need to share private keys with the cluster head but only the
identities and public keys of the corresponding smart cameras
and the receiving monitoring device is needed as input for the
aggregate-signcryption. An aggregate-signcryption efficiently
merges the signcryptexts of distinct smart cameras into a single
and smaller aggregate-signcryptext. It merges the public key
information of the intended monitoring device in a compact
form. Then the monitoring device uses that information and
verifies the authenticity and integrity of all data in a single
step. Aggregate-signcryption does not affect the security of
individual signcryptexts.

Permanent backup of data and accesses authorization:
The cluster head forwards the aggregate-signcryptexts to a
backup server for permanent storage and alerts the moni-
toring device. The monitoring device accesses the relevant
aggregated-signcryptext and then performs the verification and
unsigncryption on it.

B. Deployment phase

In deployment phase, the system initiates a setup of the
entities and shares the identities along with the associated
public keys and other state information.

Setup initialization: The KGC runs the setup algorithm and
takes k ∈ Z+ as input (k specifies the bit length) to generates
the partial private keys and public parameters [28] [24]. An
EC over the finite field Fp is represented by E(Fp) with a
base point G ∈ Fp of order q, where G is chosen randomly
from the set of points on E(Fp). The parameter p is a prime
number specifying the finite field Fp. It is assumed that each
device generates its full private key sk and the public key
pk on the basis of the partial private key. The smart cameras
Cj.i generate their private keys as skCj.i

and the public keys
pkCj.i

. The monitoring device also generates its private key
skM1 and the public key pkM1 . Each device keeps the private
key secret and shares the public key during the initialization
of the system or joining of a new device.



Fig. 2. Processing flow of the cluster-based aggregate-signcryption.

C. Operational phase

In the operational phase each smart camera initiates the
signcryption process and generates a session key k2(j) by using
the public key pkM1

of a monitoring device. The smart camera
uses its private key skCj.i

for the signature part, while the
session key for the encryption part and performs signcryption
on the captured data as following.

Signcryption by smart camera: Let’s suppose that a smart
camera of cluster i detects an event and starts the signcryption
procedure. Each smart camera Cj.i selects the internal state
information ω (e.g., number of smart cameras in the cluster,
system time) and then performs the signcryption by executing
the following steps:

• selection of a prime number vj ∈ Z∗q ,
• computation of k1(j) = hash(vj .G),
• generation of the session key as k2(j) = hash(vj .pkM1

),
• encryption of the RoI of the video frames.

cj = enck2(j)
(RoIframes(timestamps)

)j (1)

rj = hash(cj , k1(j)) (2)

sj =
vj

(rj + skcj.i)
mod q (3)

Rj = (rj .G) (4)
Signcryptext = (cj , Rj , sj) (5)

Each smart camera forwards its signcryptext packet
(cj , Rj , sj) to the cluster head i.

Aggregate-signcryption algorithm: The cluster head i per-
forms the aggregation of the individual signcryptexts received
from the cameras. The aggregate-signcryption takes the public
keys of the smart cameras pkCj.i

, the public key of monitoring
device pkM1 and corresponding signcryptexts. The cluster

head first verifies the individual signcryptexts and then gener-
ates the aggregate-signcryptext as following:
• computing S =

∑n
j=1 sj and parse the cj and Rj in a

specific order.
• merging signatures and encrypted data

(cj · · · cn, Rj · · ·Rn, S) as aggregate-signcryptext.
Aggregate unsigncryption algorithm: prior to the decryption

of aggregated data, the monitoring device first verifies the
acceptance (authentication and integrity) of the aggregate-
signcryptext data by using its own private key skM1 , the
associated public keys of the smart cameras pkCj.i and the
received aggregate.signcryptext. In case of success, the output
of the unsigncryption algorithm is the individual signcryptexts
(cj , Rj , sj). This single step verification of aggregated data
is true for all individual signcryptexts and there is no need
to run the acceptance procedure individually. The monitoring
device needs the individual session keys of the smart cameras
to proceed with the decryption of cj . It starts recovering the
session keys k2(j) = hash(skM1

(sj(Rj + pkCj.i
))) and then

performs the decryption to get the required video frames of
the RoI, e.g., (RoIframes(timestamps)

)j = deck2(j)
(cj).

Figure 2 shows the processing flow of the signcryption,
aggregation and unsigncryption procedure for many-to-one
communication scenario. The correctness of the scheme to
recover k2(j) on the motoring device is based on the following
reasoning:
hash(skM1(sj(Rj + pkCj.i))) = hash(skM1(sj .Rj +
sj .pkCj.i)) = hash(skM1(vj .G)) = hash(vj(skM1 .G)) =
hash(vj .pkM1

) = k2(j)

D. Security analysis

The security analysis of the aggregate-signcryption scheme
with specific attention to the system architecture can be
summarized as follows: The basic security goals are confi-
dentiality, integrity, authenticity and freshness of the image
or video data. The security of signcryption is based on the
assumption of computational hardness of EC-based discrete
logarithm problem (ECDLP) [29].

Confidentiality: Confidentiality is provided by AES encryp-
tion using a session key k2(j) during the signcryption process.
The guessing of k2(j) by attackers corresponds to solving the
ECDLP.

Integrity: The sensing unit of smart camera processes a
valid signcryption part rj by hashing the encrypted data cj
with k1(j) as in Eq. (2). If an attacker modifies the encrypted
data cj to c′j , the change will be detected on the monitoring
device because of collision resistance of the hash function.

Authentication: The signcryption technique provides the
authentication and prove the authenticity of data e.g.,
if hash(sj(Rj + pkCj.i

)) = hash(vj .G) = (k1(j)).
The correctness of the scheme to recover k1(j) on the
monitoring device is based on the following reasoning,
sj(Rj + pkCj.i

) = sj .Rj + sj .pkCj.i
=

(
vj

(rj+skcj.i
) )R + (

vj
(rj+skcj.i

) )pkCj.i
= (

vj
(rj+skcj.i

) )rj .G +

(
vj

(rj+skcj.i
) )skCj.i .G =

vj .G(rj+skcj.i
)

(rj+skcj.i
) = vj .G = k1(j)



Freshness of the captured data: Image or video frames are
timestamped during signcryption and the monitoring device
verifies the validity after the processing of unsigncryption.

V. EXPERIMENTAL EVALUATION

In this section, we compare the computational and commu-
nication overhead for individual and aggregate-signcryption.
A complete prototype of our system architecture (Figure 1)
has been implemented and can be summarized as follows:
Raspberry Pi 3 serve as platforms for the smart cameras. We
use the JRPiCam [30] Java library for image capturing and
processing. Each image has a pre-defined QVGA resolution
of 320 × 240 pixels. The open source library BouncyCastle
[31] is used as cryptographic service provider (CSP) with the
Java cryptography extension (JCE) and the Java cryptography
architecture (JCA) as interface. Signcryption is implemented
using the EC-finite field of P-384 and a 256 bit AES key.
The cluster head is implemented on a standard laptop (core
i5 with 2.6 GHz and 8 GB RAM) running Windows 10. We
used another laptop as prototype for the monitoring device. All
platforms are connected via WiFi and data transfer is realized
via sockets.

A. Experimental results

In the first experiment, we measured and evaluated the
computational and communication overheads of individual-
signcryption and aggregate-signcryption by securing 15 im-
ages (total size of 74.854 kB data) on each Raspberry Pi
device. First, we varied the number of devices for initiating
the signcryption at the same time and measured the total
computation and communication overhead of signcryption
(on Raspberry Pi 3) and unsigncryption (on the monitoring
device). Second, we measured the total computation and com-
munication overhead for aggregate-signcryption (on Raspberry
Pi 3 and on the laptop used as cluster head) and aggregate-
unsigncryption (on another laptop used as monitoring device).
Table I shows the comparison of individual and aggregate-
signcryption with varying number of smart cameras.

In the second experiment, we varied the number of images
and thus the data size and measured the signcryption time
(on Raspberry Pi 3) and unsigncryption time (on monitoring
device). We performed this experiment in a cluster of five
cameras where each camera secured a different number of
images. Table II shows the measured runtimes for signcryption
and unsigncryption, respectively. The total time for individual-
signcryption can be determined for the second experiment as
follows: Signcryption is executed in parallel on the cameras,
thus the maximum runtime (760 ms) is the limiting factor for
this step. Unsigncryption has to be performed sequentially on
the monitoring device and can be estimated by the sum of the
unsigncryption times (1502 ms) resulting in a total time of
2262 ms. For aggregate-signcryption, the total time is given
by the maximum signcryption time (760 ms), the aggregate-
signcryption time (349 ms) and the aggregate unsigncryption
time (634 ms) which sums up to 1743 ms resulting in a perfor-
mance ratio of 77%. Table II also shows that the signcryption

time only slightly increases with increasing data size. This
effect is because the intensive EC-point computations needs
to be executed at the beginning of the signcryption process
and only the encryption algorithm is dependent on the data
size.

As depicted in Table I, aggregate-signcryption shows a mod-
erate increase of the runtime with increasing number of cluster
cameras. This additional effort of aggregate-signcryption is
clearly compensated by the signification reduction of unsign-
cryption time, in particular with larger numbers of cluster
cameras. Table I also shows that the ciphertext part cj of each
signcryptext packet (cj , Rj , sj) has the same size of 74.854
kB (size of 15 images) for the individual-signcryption and
aggregate-signcryption, while the signature part varies with the
number of cameras in the cluster. As we use the finite field
P-384, so the signature part (sj) in Eq. (3) of signcryption
scheme results in 48 Bytes. The rj in Eq. (2) has 48 Bytes
because of the keyed hash function of SHA-384 and it is
further used for the computation of the Rj part using the
finite field P-384 as shown in Eq. (4) of the signcryption
algorithm which also results in 48 Bytes. However, we use
point compression [32] for Rj part which reduces the size
to the half of its length (24 Bytes). Hence the total extra
overhead per individual signcryptext of Rj and sj results in 72
Bytes. In the case of individual signcryption each signcryptext
carry 72 Bytes of extra data, while in the case of aggregate-
signcryption the sj part is merged into S using the finite field
of P-384, which results in 48 Bytes for the aggregated packet
and decreases the extra communication overhead.

VI. CONCLUSION

In this work, we investigated the performance of aggregate-
signcryption for cluster-based smart camera IoT applications.
First, we implemented the EC-based signcryption for the
security of multiple images on smart camera and reduced
the average running time per image. Second, we imple-
mented the aggregate-signcryption and investigated the perfor-
mance in cluster-based multi-camera network. We reduced the
communication and computation overheads by implementing
aggregate-signcryption. We evaluated the performance ratio
between individual and aggregate-signcryption for communi-
cation and computation overhead in many-to-one communica-
tion scenario. In future, we will extend this work for one-to-
many and many-to-many communication scenarios.

ACKNOWLEDGMENT

This work is supported in part by the Erasmus Mundus Joint
Doctorate in Interactive and Cognitive Environments, which
is funded by the Education, Audiovisual & Culture Executive
Agency. This work is also supported by the research initiative
Mobile Vision Austria with funding from the Austrian Federal
Ministry of Science, Research and Economy and the Austrian
Institute of Technology.

REFERENCES

[1] W. Wolf, B. Ozer, and T. Lv, “Smart cameras as embedded systems,”
Computer, vol. 35, no. 9, pp. 48–53, Sep 2002.



TABLE I
COMPARISON BETWEEN INDIVIDUAL SIGNCRYPTION VS AGGREGATE-SIGNCRYPTION. LEGENDS: (ST: SIGNCRYPTION TIME (ON CAMERA NODES), UST:

UNSIGNCRYPTION TIME (ON MONITORING DEVICE), TT: TOTAL TIME, NT: NUMBER OF TRANSFERS, CD: CIPHERTEXT DATA, SD: SIGNATURE DATA,
AST: AGGREGATE SIGNCRYPTION TIME (ON CLUSTER HEAD), AUST: AGGREGATE UNSIGNCRYPTION TIME (ON MONITORING DEVICE))

Individual-signcryption Aggregate-signcryption Performance ratio

ST(ms) UST (ms) TT (ms) NT CD (kB) SD (Bytes) ST (ms) AST (ms) AUST (ms) TT (ms) NT SD (Bytes) Computing Signature data

N
o.

cl
us

te
r

m
em

be
rs 1 741 358 1099 1 74.854 72 741 138 358 1237 2 72 112.5% 100%

2 741 716 1457 2 149.708 144 741 264 388 1393 3 96 95.6% 66.6%

3 741 1074 1815 3 224.562 216 741 280 453 1474 4 120 81.2% 55.5%

4 741 1432 2173 4 299.416 288 741 325 581 1647 5 144 75.8% 50%

5 741 1790 2531 5 374.270 360 741 389 700 1830 6 168 72.3% 46.6%

TABLE II
RUNTIME OF SIGNCRYPTION (ON CAMERA NODE) AND UNSIGNCRYPTION

(ON MONITORING DEVICE) FOR DIFFERENT NUMBER OF IMAGES.

Camera ID No. images (size in kB) Signcryption time (ms) Unsigncryption time (ms)

1 1 (5.173) 636 221

2 5 (25.077) 677 242

3 10 (49.99) 721 313

4 15 (74.854) 741 358

5 20 (99.717) 760 368

[2] M. Reisslein, B. Rinner, and A. Roy-Chowdhury, “Smart camera net-
works,” Computer, vol. 47, no. 5, pp. 23–25, May 2014.

[3] T. Winkler and B. Rinner, “Security and privacy protection in visual
sensor networks: A survey,” ACM Comput. Surv., vol. 47, no. 1, pp.
2:1–2:42, May 2014.

[4] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging
smart home applications,” in Proc. IEEE Symposium on Security and
Privacy (SP), May 2016, pp. 636–654.

[5] S. Ullah, B. Rinner, and L. Marcenaro, “Smart cameras with onboard
signcryption for securing iot applications,” in Proc. IEEE Global Internet
of Things Summit (GIoTS), June 2017, pp. 1–6.

[6] T. Winkler, A. Erdelyi, and B. Rinner, “Trusteye.m4: Protecting the
sensor not the camera,” in Proc. 11th IEEE International Conference on
Advanced Video and Signal Based Surveillance (AVSS), Aug 2014, pp.
159–164.

[7] A. Khan, B. Rinner, and A. Cavallaro, “Cooperative robots to observe
moving targets: Review,” IEEE Transactions on Cybernetics, vol. 48,
no. 1, pp. 187–198, Jan 2018.

[8] S. Chien, W. Chan, Y. Tseng, C. Lee, V. Somayazulu, and Y. Chen,
“Distributed computing in iot, system-on-a-chip for smart cameras as
an example,” in Proc. 20th Asia and South Pacific Design Automation
Conference, Jan 2015, pp. 130–135.

[9] I. Haider and B. Rinner, “Private space monitoring with soc-based smart
cameras,” in Proc. IEEE 14th International Conference on Mobile Ad
Hoc and Sensor Systems (MASS), Oct 2017, pp. 19–27.

[10] T. Winkler and B. Rinner, “Secure embedded visual sensing in end-
user applications with TrustEYE.M4,” in Proc. IEEE International
Conference on Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), Apr 2015, pp. 1–6.

[11] D. Lee and N. Park, “Geocasting-based synchronization of almanac on
the maritime cloud for distributed smart surveillance,” The Journal of
Supercomputing, vol. 73, no. 3, pp. 1103–1118, Mar 2017.

[12] M. Al Najjar, M. Ghantous, and M. Bayoumi, Visual Sensor Nodes.
Springer, New York, 2014, pp. 17–35.

[13] R. Baran, T. Rusc, and P. Fornalski, “A smart camera for the surveillance
of vehicles in intelligent transportation systems,” Multimedia Tools
Appl., vol. 75, no. 17, pp. 10 471–10 493, Sep. 2016.

[14] F. Porikli, F. Bremond, S. L. Dockstader, J. Ferryman, A. Hoogs, B. C.
Lovell, S. Pankanti, B. Rinner, P. Tu, and P. L. Venetianer, “Video
surveillance: past, present, and now the future [dsp forum],” IEEE Signal
Processing Magazine, vol. 30, no. 3, pp. 190–198, May 2013.

[15] H. Aghajan and A. Cavallaro, Multi-Camera Networks: Principles and
Applications. Academic Press, 2009.

[16] P. Natarajan, P. K. Atrey, and M. Kankanhalli, “Multi-camera coor-
dination and control in surveillance systems: A survey,” ACM Trans.
Multimedia Comput. Commun. Appl., vol. 11, no. 4, pp. 57:1–57:30,
Jun. 2015.

[17] H. Mora, D. Gil, R. M. Terol, J. Azorn, and J. Szymanski, “An iot-
based computational framework for healthcare monitoring in mobile
environments,” Sensors, vol. 17, no. 10, 2017.

[18] J. H. Kong, L.-M. Ang, and K. P. Seng, “A comprehensive survey
of modern symmetric cryptographic solutions for resource constrained
environments,” Journal of Network and Computer Applications, vol. 49,
no. Supplement C, pp. 15 – 50, 2015.

[19] M. A. Alsmirat, I. Obaidat, Y. Jararweh, and M. Al-Saleh, “A security
framework for cloud-based video surveillance system,” Multimedia Tools
and Applications, vol. 76, no. 21, pp. 22 787–22 802, Nov 2017.

[20] M. A. Alsmirat, Y. Jararweh, I. Obaidat, and B. B. Gupta, “Internet of
surveillance: a cloud supported large-scale wireless surveillance system,”
The Journal of Supercomputing, vol. 73, no. 3, pp. 973–992, Mar 2017.

[21] G. Sharma and S. Kalra, “A secure remote user authentication scheme for
smart cities e-governance applications,” Journal of Reliable Intelligent
Environments, vol. 3, no. 3, pp. 177–188, Sep 2017.

[22] Y. Cao, L. Zhang, S. S. Zalivaka, C. H. Chang, and S. Chen, “Cmos
image sensor based physical unclonable function for coherent sensor-
level authentication,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 62, no. 11, pp. 2629–2640, Nov 2015.

[23] A. K. Lenstra and E. R. Verheul, “Selecting cryptographic key sizes,”
Journal of cryptology, vol. 14, no. 4, pp. 255–293, 2001.

[24] E. Mohamed and H. Elkamchouchi, “Elliptic curve signcryption with
encrypted message authentication and forward secrecy,” International
Journal of Computer Science and Network Security, vol. 9, no. 1, pp.
395–398, 2009.

[25] A. A. Zarezadeh, C. Bobda, F. Yonga, and M. Mefenza, “Efficient
network clustering for traffic reduction in embedded smart camera
networks,” Journal of Real-Time Image Processing, vol. 12, no. 4, pp.
813–826, Dec 2016.

[26] V. P. Venkatesan, C. P. Devi, and M. Sivaranjani, “Design of a smart
gateway solution based on the exploration of specific challenges in iot,”
in Proc. International Conference on IoT in Social, Mobile, Analytics
and Cloud (I-SMAC), Feb 2017, pp. 22–31.

[27] J. Pacheco and S. Hariri, “Iot security framework for smart cyber
infrastructures,” in Proc. International Workshops on Foundations and
Applications of Self* Systems (FAS*W), Sep 2016, pp. 242–247.

[28] S. S. Al-Riyami and K. G. Paterson, “Certificateless public key cryptog-
raphy,” in Advances in Cryptology - ASIACRYPT 2003, C.-S. Laih, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 452–473.

[29] M. Yasuda, T. Shimoyama, J. Kogure, and T. Izu, “Computational
hardness of ifp and ecdlp,” Applicable Algebra in Engineering, Com-
munication and Computing, vol. 27, no. 6, pp. 493–521, 2016.

[30] A. Dillon, https://github.com/Hopding/JRPiCam, [Last accessed: 15-04-
2018].

[31] https://www.bouncycastle.org/, [Last accessed: 15-04-2018].
[32] M. Khabbazian, T. A. Gulliver, and V. K. Bhargava, “Double point com-

pression with applications to speeding up random point multiplication,”
IEEE Transactions on Computers, vol. 56, no. 3, pp. 305–313, March
2007.


