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Abstract Ubiquitous and networked sensors impose a huge challenge for privacy
protection which has become an emerging problem of modern society. Protecting
the privacy of visual data is particularly important due to the omnipresence of
cameras, and various protection mechanisms for captured images and videos have
been proposed. This paper introduces an objective evaluation framework in order
to assess such protection methods. Visual privacy protection is typically realised
by obfuscating sensitive image regions which often results in some loss of util-
ity. Our evaluation framework assesses the achieved privacy protection and utility
by comparing the performance of standard computer vision tasks, such as object
recognition, detection and tracking on protected and unprotected visual data. The
proposed framework extends the traditional frame-by-frame evaluation approach
by introducing two new approaches based on aggregated and fused frames. We
demonstrate our framework on eight differently protected video-sets and measure
the trade-off between the improved privacy protection due to obfuscating cap-
tured image data and the degraded utility of the visual data. Results provided by
our objective evaluation method are compared with an available state-of-the-art
subjective study of these eight protection techniques.

Keywords visual privacy · video surveillance · privacy evaluation framework ·
privacy/utility trade-off

1 Introduction

Privacy concerns have been raised by the rapidly increasing number of visual
data capturing devices. Not only surveillance cameras threaten privacy but also
other video-capable multimedia devices such as smart phones, tablets and wear-
able smart technology including Google Glass and Microsoft HoloLens when used
in public areas. Web cameras also pose privacy threats—especially when abused
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through spy-ware. Domestic IP cameras designed for home surveillance can also
lead to privacy loss due to careless installation [2]. Furthermore, an emerging pri-
vacy threat is posed by camera-equipped unmanned aerial vehicles (UAVs) also
known as drones [18, 4, 12, 49]. Traditional CCTV (closed-circuit television) and
other old-fashioned surveillance camera systems are continuously replaced recently
by visual sensor networks (VSNs) which consist of smart cameras [45, 44]. Due
to networking and on-board processing capabilities of the above mentioned vi-
sual data capturing devices, sophisticated artificial vision tasks can be performed.
Therefore, privacy is at an even higher risk nowadays.

So-called privacy filters are often applied to protect visual data by obfuscating
the sensitive parts of the captured data or replacing them with a de-identified
representation—both of which entails some loss of utility. By the term utility we
refer to certain system properties (e.g., the operating speed of a filter) and to intel-
ligibility which represents the amount of useful information that can be extracted
from the visual data. For example in case of a retail surveillance camera, pri-
vacy protection means that the identity of monitored people cannot be disclosed,
and utility refers to the ability of still being capable to recognise the behaviour
of monitored people such as detecting shoplifting. The privacy protection perfor-
mance and the utility of the protected visual data represent two important (and
inter-dependent) design aspects of various video applications. Finding an accept-
able trade-off between privacy protection and utility is therefore an essential issue
in the development and deployment of privacy protection methods. Therefore, it
is essential to have a tool by which privacy filters can be evaluated and compared
in terms of privacy and utility. Furthermore, privacy is scenario dependent and
an ideal privacy-preserving method should be able to adapt to various scenarios
by automatically selecting the most useful protection filter and hence selecting a
Pareto-optimal point in the privacy-utility trade-off [20]. In order to support such
automatic protection selection, the ability to evaluate the actual effectiveness of the
privacy protection filters in use is essential. Such evaluation can be realised by sub-
jective or objective methods. This paper focuses on an objective evaluation method
due to its advantages over a subjective evaluation such as the support for automatic
operation (no human assessment required), the reduced costs of implementation,
and the increased reproducibility. Many techniques have been proposed for visual
privacy protection [37, 17, 24, 5, 59, 38, 31, 20, 32, 22, 7, 41, 21, 36, 50, 42], but
only a few papers have been published on how to evaluate, assess or compare these
techniques [13, 53, 46, 29, 19, 8, 52, 33]. The main motivation behind this work
was therefore to comprehensively explore the objective evaluation of the privacy-
utility design space for visual privacy filters. Exploiting sequences of frames or the
fusion of frames can reveal significant identifying information, however this aspect
has not intensively been studied in related evaluation approaches so far (e.g., in
[19, 8, 33]).

The contribution of this paper includes (1) a formal definition of privacy pro-
tection and utility in visual data based on the performance of standard computer
vision tasks, (2) the introduction of aggregated and fused frames based evaluation
approaches, (3) a concrete implementation to realise an objective evaluation frame-
work, and (4) an extensive comparison of the results of our framework prototype
with the results of a recent subjective study [9] on privacy protection mechanisms.

The remainder of this paper is structured as follows. Section 2 discusses related
work in the area of privacy protection methods and their evaluation. In Section 3



Privacy Protection vs. Utility in Visual Data 3

we introduce our proposed objective evaluation framework and a formal definition
is provided in Section 4. Section 5 presents implementation details and the evalu-
ation results of eight different privacy protection filters. Section 6 concludes this
paper with a summary and a brief discussion of future work.

2 Related Work

We start our discussion of related work with highly abstracted and multidisci-
plinary aspects of privacy in general and continue then with the evaluation of
visual privacy protection methods.

A traditional approach of protecting privacy is called privacy enhancing tech-
nologies (PET) meaning that already existing systems are patched with protective
mechanisms retroactively. Privacy by design (PbD) on the other hand pursues that
privacy should be considered as an indispensable part of system design. PbD is
built upon seven foundational principles [14]. According to these principles, pri-
vacy should be protected in a proactive instead of a reactive manner, and a default
protection level should always be provided without any extra intervention. The
protection of privacy should not restrict the original functionality of a system and
make unnecessary trade-offs. Furthermore, privacy protection should be extended
throughout the entire life-cycle of the data involved from start to finish. It has
to be done transparently so that all stakeholders can be assured that the stated
promises and objectives are actually kept. A privacy-preserving system should also
respect user-privacy by being user-centric and keeping the interests of individuals
uppermost. Cavoukian [15] also stated that privacy does not equal secrecy, but pri-
vacy equals control. The problem with this statement regarding visual privacy is
that most people do not even know they are being observed by visual surveillance
devices. If they are unaware of the existence of these devices, how could they have
control over the captured data. Furthermore, people do not really feel the value
of privacy until they have problems as a consequence of privacy loss. In addition,
people usually do not live up to their self-reported privacy preferences and they
regularly share sensitive information. This is called privacy paradox. More details
about the issues around awareness and the so-called privacy paradox can be found
in [39].

A multidisciplinary framework to include privacy in the design of video surveil-
lance systems is described in [35]. It covers the field of privacy from political science
to video technologies and points out that there are grey areas posing serious pri-
vacy risks. Furthermore, it raises the question of the definition of personal and
sensitive information. Table 1 summarises a possible answer to this question with
regard to visual privacy. Chaaraoui et al. [16] also describe a new approach called
privacy by context (PbC) which supports the idea that privacy is scenario/context
dependent.

Over the last decade various methods have been developed to protect visual
privacy. These privacy-preserving techniques basically rely on image processing
algorithms such as scrambling by JPEG-masking [37], in-painting [17], pixela-
tion [24], blanking [5], replacement with silhouettes [59], blurring [38], warping or
morphing [31]. In a recent workshop dedicated protection methods have been pro-
posed in order to solve the specified visual privacy task [32, 22, 7, 41, 21, 36, 50, 42].
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Information Related Visual Clues

Who is the person? (identity) Face, hair, skin, height, clothes, gait

How is the person displayed? (appearance) Face expressions, hair (e.g., colour, hairstyle,
etc.), body (e.g., nudity), posture, shape, colour

Where is the person? (location) Room, spatial position (e.g., on the floor, on the
bed, etc.), room signs

What is the person doing? (activity) Behaviour (i.e., movement, gesture, action, ac-
tivity), gaze, spatial position, objects and inter-
actions

When is the activity taking place? (time) Temporal clues (e.g., a wall clock, weather)

Table 1: The types of information that can be extracted out of image sequences
and the related visual clues that can provide this information [16].

A comprehensive discussion on the state of the art in this field can be found in
the surveys of Winkler et al. [58] and Padilla-López et al. [40].

Due to the steadily increasing number of protection approaches as well as high
variability of visual tasks and scenes, an evaluation methodology for comparing the
approaches is urgently needed. Privacy impact assessments (PIAs) are an integral
part of the above mentioned privacy by design approach [28]. Existing evaluation
methods usually consider two aspects, namely privacy and utility. The levels of pri-
vacy protection and utility can be assessed by subjective and objective evaluation
methods. Subjective methods are quite common and include techniques such as
questionnaires and user studies [13, 53, 46, 29, 12, 11]. Naturally, they are tedious
and expensive to implement, and the assessment may depend on the study group.

Objective evaluation of privacy-preserving techniques in the field of visual
surveillance is a challenging issue because privacy is highly subjective and depends
on various aspects such as culture, location, time and situation. Nevertheless, a
couple of techniques have been developed which are mostly based on computer
vision algorithms. Dufaux and Ebrahimi [19] proposed an evaluation method that
uses the face identification evaluation system (FIES) of Colorado State University
(CSU), which provides standard face recognition algorithms and standard statisti-
cal methods for assessment. Principal components analysis (PCA) [54] and linear
discriminant analysis (LDA) [10] are used as face recognition algorithms together
with the grey-scale facial recognition technology (FERET) dataset. A more com-
prehensive evaluation framework is described in [8], where Badii et al. carried out
both subjective and objective evaluation along the following five crucial categories.

– Efficacy – The ability to effectively obscure privacy-sensitive elements.
– Consistency – In order to successfully and continuously track a moving subject,

the details of its shape and appearance have to be maintained on a reasonable
and consistent level.

– Disambiguity – The degree by which a privacy filter does not introduce addi-
tional ambiguity in cross-frame trackability of same persons/objects.

– Intelligibility – The ability to only protect the privacy-sensitive attributes and
retain all other features / information in the video-frame(s) in order not to
detract from the purpose of the surveillance system.

– Aesthetics – To avoid viewers’ distraction and unnecessary fixation of their
attention on the region of the video-frame to be obscured by the privacy filter,
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it is important for the privacy filter to maintain the perceived quality of the
visual effects of the video-frame.

Subjective and objective evaluations are cross-validated and the authors claim
that the results indicate the same trend. Unfortunately, this paper does not provide
sufficient details of the study.

Sohn et al. [52] have also carried out objective and subjective evaluations to-
gether. They assessed their JPEG XR based privacy filter in four aspects: spatial
resolution, visual quality, replacement attack and non-scrambled colour informa-
tion. In their objective evaluation Sohn et al. [52] used various face recognisers
and the subjective evaluation was conducted with 35 participants whose task was
to match 45 privacy protected face images against the 12 original ones. Privacy
evaluation was exclusively focused on face recognition.

Korshunov et al. [33] evaluated privacy protection methods by measuring the
amount of visual details (such as facial features) in the sample images as a metric
of privacy and the overall shape of faces as a metric for intelligibility. In their
demonstration they used three different datasets with various resolutions and face
sizes, and three different privacy filter methods, namely blurring, pixelation and
blanking. For measuring the level of privacy, the failure rates of automatic face
recognition methods (PCA [54], LDA [10], LBP [3]) were considered, while the
accuracy rate of a face detector (Viola-Jones [55]) were used to measure intelli-
gibility. In these experiments only faces were considered, which is insufficient for
proper privacy protection taking into account the above mentioned privacy by
context approach or the secondary (implicit) privacy channels described by Saini
et al. [47].

Our paper focuses on establishing an objective evaluation framework by ex-
ploiting various evaluator functions to measure privacy and utility in various as-
pects. The main difference to the related work lies in its generalisation and flexibil-
ity. Our framework does not restrict the evaluation to a particular algorithm (e.g.,
a face detector) but rather uses a set of evaluator functions which can be easily
adapted to the specific application.1 It further does not impose constraints to the
visual data and the privacy filters. The privacy and utility evaluation is based
on the performance of the evaluator functions on the provided visual data. While
state-of-the-art evaluation frameworks [19, 8, 33] usually assess only individual
frames, we also consider aggregated and fused frames for the evaluation.

3 Objective Evaluation Framework

Our primary goal is to provide a framework that enables the evaluation of pri-
vacy protection techniques along two inter-dependent dimensions: (i) the achieved
privacy protection level and (ii) the utility of the technique and the overall sys-
tem. A particular protection technique (or a particular strength of a protection
filter) will therefore result in specific values for privacy and utility when using our
framework. Figure 1 presents an overview of the proposed framework. The “pri-
vacy protection filter” represents a computer vision algorithm which transforms

1 The output of the evaluator function is basically derived by comparing the performance of a
specific computer vision algorithm on the protected visual data with a “reference” performance.
Such reference can be provided either as (manually generated) ground truth data or as the
output of the computer vision algorithm on the unprotected visual data.
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an input video into an output video stream where privacy sensitive elements are
protected.

Privacy
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Fig. 1: Our objective evaluation framework.

The evaluator tools (Tools), the privacy-preserving algorithm under test A and
the unprotected visual data V together with the ground-truth GT serve as input
to our framework. The visual data is preferably captured in heterogeneous scenes
such as indoor and outdoor, day and night, empty and crowded environments in
order to achieve a comprehensive evaluation. The unprotected visual data V is
processed by the privacy protection filter which is the algorithm under test. The
unprotected V and the protected Ṽ visual data along with the ground-truth GT are
then fed into the main component of the framework, namely the evaluator. This
evaluator relies on two major sets of evaluator functions Fprivacy and Futility that
are used to evaluate the examined privacy protection filter from the perspectives
of privacy and utility. Each evaluation function provides a real number between
zero and one as a result. The implementation of these functions depends on the
selected tools which are based on computer vision algorithms. The output of the
evaluation framework is given by the set E which is determined by the results of
the evaluation functions.

3.1 Notation

In this section we describe the notation used in our framework for the unprotected
videos, the protected videos, the ground-truth data and the evaluator functions.

3.1.1 Unprotected Visual Data

The unprotected visual data is specified by a set of video clips

V =
{
1V, . . . ,NV

}
(1)

nV =
{
nv1, . . . , nv

nL
}
|n=1...N (2)

where
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nV represents the nth unprotected video clip composed by a set of image frames,
N is the number of all video clips being used in the evaluation process,

nvi is a single image frame with index i from the unprotected video clip nV , and
nL is the length of the nth video clip in V.

3.1.2 Privacy Protected Visual Data

The unprotected visual data is processed by the protection algorithm under test
and is transformed into the protected visual data. The protected visual data is
thus given by the set of video clips derived running the protection filter on V

Ṽ =
{
1Ṽ , . . . ,NṼ

}
(3)

nṼ =
{
nṽ1, . . . , nṽ

nL
}
|n=1...N (4)

where

nṼ represents the nth privacy protected video clip which is a set of filtered image
frames, and

nṽi is an image frame from the protected video clip nṼ .

3.1.3 Ground-Truth Data

The ground-truth data contains the position and size of the objects of interest
in form of bounding boxes along with their classification in form of descriptors.
Furthermore, each object of interest has an identity in form of a globally unique
number. The ground-truth data for all input video clips is available as

GT =
{
1Ogt, . . . ,

NOgt

}
(5)

nOgt =
{
nO1

gt, . . . ,
nO

nL
gt

}
|n=1...N (6)

nOi
gt =

{
noigt1 , . . . ,

noigtJ

}
|n=1...N,i=1...nL (7)

noigtj = (nbigtj ,
ndigtj )|n=1...N,i=1...Ln,j=1...J (8)

where

nOgt is a set that contains the ground-truth data for each frame of the nth video
clip,

nOi
gt is the ground-truth of frame i in the nth video clip,
J is the number of distinct objects in GT ,
j is a globally unique identifier of an object running from 1 to J ,

noigtj is a pair (b, d) for each object in frame i of the nth video clip,
nbigtj is the bounding box of object j in frame i of the nth video clip, and
ndigtj is the descriptor of object j in frame i of the nth video clip.

GT can be explicitly given (e.g., by manual video annotation) or derived by
running various computer vision algorithms such as object recognisers, detectors,
or trackers on the visual data.
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3.1.4 Evaluator Functions

The evaluation is based on comparing the results of selected algorithms on the
protected visual data with the ground truth or the performance on the unprotected
visual data, respectively. The set of evaluation functions is given as

F = {Fprivacy, Futility} (9)

where
Fprivacy =

{
fidind

, fidaggr
, fidfused

}
(10)

and
Futility =

{
fdetind

, fdetaggr
, fdetfused

, ftrack, fsim, fspeed
}
. (11)

The subscripts id, det, track, sim, and speed mark evaluation functions that are
based on object identification, detection, tracking, image similarity and the pro-
cessing speed of the privacy protection filter, respectively. Functions for object
identification correspond to functions for measuring the privacy protection per-
formance. The other functions represent examples for measuring the utility. The
subscripts ind, aggr and fused refer to independent, aggregated and fused frames.
More details about these functions and the different classes of frames are described
in Section 4.

The output of the evaluator is the set of results

E = {Eprivacy, Eutility} (12)

where
Eprivacy =

{
eidind

, eidaggr
, eidfused

}
(13)

and
Eutility =

{
edetind

, edetaggr
, edetfused

, etrack, esim, espeed
}
. (14)

These results are constituted by the outputs of the evaluator functions where eidind
,

eidaggr
, . . . , espeed represent the output values of the functions fidind

, fidaggr
,

. . . , fspeed, respectively and ∀e ∈ R | 0 ≤ e ≤ 1. The set E can be considered
as a “signature” of the evaluated privacy protecting method along the privacy
and utility dimensions. The evaluator functions represent different aspects of the
privacy-utility design space and were chosen based on the most commonly used
approaches of the related work and our own experience in the field. It is important
to note that these evaluator functions are examples, and our framework be can
easily adapted to functions covering different utility aspects.

4 Definition of the Evaluation Framework

State-of-the-art privacy evaluation frameworks [19, 8, 33] usually work on the basis
of individual frames. This means that the effect of a privacy protection filter is
evaluated by assessing the evaluator functions for each image frame independently.
Such frame-by-frame evaluation methods have limitations in revealing a privacy
loss caused by the exploitation of aggregated or fused frames from different time
instances and/or multiple cameras looking at the same object. In our framework
definition we attempt to overcome these deficiencies. For each evaluator function
f , if applicable, we will provide various measurement methods that take
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1. independent frames,
2. aggregated frames of the same visual data from different time instances or from

multiple capturing devices, and
3. fused frames of the same visual data from different time instances or from

multiple capturing devices

into account. Aggregated and fused frames may provide more information about
the objects of interest than individual frames. Thus, it might be helpful to con-
sider this additional information for the privacy evaluation. In case of aggregated
frames an evaluator function f has access to a set of frames and carries out the
measurements jointly for this set (i.e., multiple frames are used simultaneously
during the evaluation). The performance of a privacy protection filter might dete-
riorate using aggregated frames despite its good frame-by-frame performance. For
example, if there is at least one insufficiently protected frame in the visual data
where an object of interest can be recognised, this object may lose its privacy in
other frames as well due to successful object tracking even if the object’s identity
is well protected in all other frames. In case of fused frames, multiple frames from
the same or different cameras are analysed and combined in order to construct
a new set of abstracted visual data. It is possible that fused frames constructed
from multiple frames from different time instances or view angles may provide a
better view on an object. Examples for fusion methods include image stitching,
super-resolution or de-filtering. The fused information may lead to privacy loss as
well.

4.1 Evaluation of Privacy

In this section we define the evaluator functions used for privacy evaluation.

Fprivacy =
{
fidind

, fidaggr
, fidfused

}
(15)

In our framework we measure the privacy protection level of visual data by the
de-identification rate of protected objects as a successful identification of the object
of interest is the primary cause of privacy loss. The level of privacy is considered
to be low if objects can be clearly identified and high if the identification is not
possible.

1. Independent frames
Frame-by-frame evaluation of de-identification is performed by object recogni-
tion algorithms trained for the specific objects of interest. Object recognisers
are trained based on the unprotected visual data. Object recognition is carried
out within each annotated bounding box nbigtj of each privacy protected frame
nṽi in each video nṼ from Ṽ where object noigtj actually appears. If the output
of the recogniser does not match the ground-truth then the de-identification
was considered successful and hence privacy is protected. The privacy level
provided by the protection algorithm can be calculated depending on how of-
ten the object’s identity has been successfully recognized. Therefore, the final
output of the function fidind

is defined as the ratio between the number of

unrecognised objects in Ṽ and the total number of occurrences of all objects
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in GT which can be calculated as the inverse of the average hit-rate of the
recognitions.

fidind

(
Ṽ,GT

)
= 1− hidind

J∑
j=1

occurrences
(
ogtj

) (16)

The function occurrences () returns the total number of occurrences of the
object ogtj in GT , i.e., the number of frames where the object is visible. hidind

represents the number of successful object recognitions (hit-rate) in Ṽ and is
calculated as follows:

hidind
:= 0;

for j := 1 to J do
for ∀nṽi|n:=1...N,i:=1...nL where ogtj ∈ nṽi do

jrec := recognise
(
nbigtj

)
;

if j = jrec then
hidind

++;
end if

end for
end for

where the function recognise () performs object recognition within the bound-
ing box of a given object and returns the identifier of the top ranked object.
This is then stored in jrec and compared to the object’s true identifier. In our
framework, recognise () is not bound to any specific object recognition algo-
rithm. Any suitable algorithm that fits the purpose and the object type can
be used for the concrete framework implementation.

2. Aggregated frames
When using multiple frames simultaneously the de-identification rate can be
computed as follows. Object recognition is carried out within each annotated
bounding box nbigtj of each protected frame nṽi in each video nṼ from Ṽ where
noigtj actually appears. If a particular object noigtj can be recognised at least
once in the input data-set, then all the occurrences of that object are considered
as successfully recognised. This severe loss of privacy is due to the perfect object
tracking assumption among all aggregated frames. Although tracking does not
reveal the identity per se, the identity of a successfully recognised objected can
be propagated among all aggregated frames. The final output of the function
fidaggr

is the ratio between the number of unrecognised objects in Ṽ and the
total number of occurrences of all objects in GT which can be calculated as
follows:

fidaggr

(
Ṽ,GT

)
= 1−

hidaggr

J∑
j=1

occurences
(
ogtj

) (17)

where the function occurrences () returns the total number of occurrences
of the object ogtj in GT . hidaggr

stands for the number of successful object

recognitions (hit-rate) in Ṽ and is calculated as follows:

hidaggr
:= 0;

for j := 1 to J do
for ∀nṽi|n:=1...N,i:=1...nL where ogtj ∈ nṽi do

jrec := recognise
(
nbigtj

)
;
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if j = jrec then
hidaggr

+= occurrences
(
ogtj

)
;

break;
end if

end for
end for

where the function recognise () performs object recognition within the bound-
ing box of a given object and returns the identifier of the top ranked object.
This is then stored in jrec and compared to the object’s true identifier. As
previously mentioned, the recognition algorithm can be chosen arbitrarily.

3. Fused frames
If frames are fused in order to get abstracted information of the objects, de-
identification is measured as follows. A set of fused images is created, and object
recognition is carried out on each fused image. If an object can be recognised
based on fused images, then by assuming perfect object tracking all occurrences
of that object in GT are considered to be recognised in the data-set. The final
output of the function fidfused

is the ratio between the number of unrecognised

objects in Ṽ and the total number of occurrences of all objects in GT .

fidfused

(
Ṽ,GT

)
= 1−

hidfused

J∑
j=1

occurences
(
ogtj

) (18)

The function occurrences () returns the total number of occurrences of a cer-
tain object based on the ground-truth. hidfused

is the hit-rate of object recog-
nition and is calculated as follows:

hidfused
:= 0;

FI := { set of fused images }
for j := 1 to J do

for ∀ofused ∈ FI do
jrec := recognise (bfused);
if j = jrec then
hidfused

+= occurences
(
ogtj

)
;

break;
end if

end for
end for

where the function recognise () performs object recognition in a fused frame
within the bounding box of a given object and returns the identifier of the top
ranked object. This is then stored in jrec and compared to the object’s true
identifier. As previously mentioned, the recognition algorithm can be chosen
arbitrarily.

4.2 Evaluation of Utility

In our framework we measure utility by the performance ratio of various functions
on the protected and unprotected visual data. The utility of visual data includes
various aspects such as the capability of detecting specific objects or activities, the
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fidelity of the protected data or the complexity/efficiency of the protection filters.
We propose the following evaluator functions for utility evaluation.

Futility =
{
fdetind

, fdetaggr
, fdetfused

, ftrack, fsim, fspeed
}

(19)

For the detection capability, we focus on object detection in terms of indepen-
dent, aggregated and fused frames as well as on object tracking algorithms. For
the fidelity aspect, we measure the similarity between unprotected and protected
visual data, and we use the processing speed of privacy protection filters as a
measure for efficiency. In the following subsections we explain in detail how these
evaluator functions are determined.2

4.2.1 Utility Evaluation by Object Detection

One way of measuring utility is by the detection rate of privacy protected objects.
If the position and type of objects can be well detected, the utility level of visual
data is considered to be higher than in case of insufficiently detected objects. For
example, if an unattended baggage at an airport can be clearly localised in privacy
protected visual data, then the utility level is not decreased significantly due to
privacy protection. Below, we provide a detailed explanation on how to evaluate
utility in visual data based on independent, aggregated and fused frames.

1. Independent frames
Calculating the detection rate on a frame-by-frame basis can be done by com-
paring the detected objects to the ground-truth in each frame nṽi of each video
nṼ from Ṽ. If the bounding box nbidetjd

of the detected object is sufficiently close

to the annotated object nbigtj and their description is the same ndigtj = ndidetjd
,

the detection is considered to be successful. The output of the function fdetind

is the ratio between the number of successfully detected objects in Ṽ and the
number of all annotated objects in GT .

fdetind

(
Ṽ,GT

)
=

1

N · nL

N∑
n=1

nL∑
i=1

hnṽi (20)

hnṽi represents the number of successful detections (hits) in nṽi and is calcu-
lated by the following algorithm.

h := 0;
nOi

det := detect
(
nṽi
)
;

for ∀noidetjd |jd:=1...Jd
∈ nOi

det do

if ∃noigtj where nbigtj ≈
nbidetjd

and ndigtj = ndidetjd
then

h++;
end if

end for
if Jnṽi = 0 then
hnṽi := 1;

else

2 The evaluator functions can be easily modified/extended to represent different utility as-
pects such as pleasantness or intelligibility of visual data (e.g., [9]).
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hnṽi := h
Jnṽi

;

end if

The function detect() performs object detection on a given frame and returns
a set of object annotations about the detected objects, namely their bounding
boxes and descriptions. As previously explained for the recognise() function,
the detect() function is not bound to any specific algorithm. Any suitable
detection algorithm for the object type and the requirements of the evaluation
can be used for the framework implementation. For example, the Viola-Jones
face detector [55] is widely used if faces are the objects of interest. Jd is the
number of objects detected by the detector and Jnṽi is the number of objects
actually appearing in frame nṽi according to the ground-truth nOi

gt.
2. Aggregated frames

In case of independent frames we used only the information available at the
given frame. Here we use the information from all available frames together for
the detection. The performance of a generally trained object detector can be
increased by adapting its model specifically to the input data. Thus, before we
perform the evaluation, we further train the detector with aggregated frames
using the following algorithm.

for ∀nṽi|n:=1...N,i:=1...nL do
nOi

det := detect
(
nṽi
)
;

for ∀noidetjd |jd:=1...Jd
∈ nOdet do

if ∃noigtj where nbigtj ≈
nbidetjd

and ndigtj = ndidetjd
then

update (detector);
end if

end for
end for

Jd is the number of objects detected by the detector in the current frame (nṽi)
and the update() function is responsible for updating the detector’s model.
This process requires stored visual data. If the evaluation framework would be
used in an on-line manner, the detector’s model could only be updated on the
fly. After adapting the detector to the input data, the measurement can be
done similarly to independent frames.

fdetaggr

(
Ṽ,GT

)
=

1

N · nL

N∑
n=1

nL∑
i=1

hnṽi (21)

hnṽi is the hit-rate of the detector in the privacy protected frame nṽi and is
calculated by the following algorithm.

h := 0;
nOi

det := detect
(
nṽi
)
;

for ∀noidetjd |jd:=1...Jd
∈ nOi

det do

if ∃noigtj where nbigtj ≈
nbidetjd

and ndigtj = ndidetjd
then

h++;
end if

end for
if Jnṽi = 0 then
hnṽi := 1;
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else
hnṽi := h

Jnṽi
;

end if

The function detect() performs object detection on a given frame and returns
a set of object annotations about the detected objects, namely their bounding
boxes and descriptions. Jd is the number of objects detected by the detector
and Jnṽi is the number of objects actually appearing in frame nṽi based on the
ground-truth nOi

gt.
3. Fused frames

Frames constructed by combining multiple independent frames can also be
used to enhance the detector. Before performing the evaluation, the detector is
further trained as in case of aggregated frames. However, fused frames are used
instead of multiple independent frames. The preliminary detector training can
be performed by the following algorithm.

FI := { set of fused images }
for ∀ṽFI ∈ FI do
OdetFI

:= detect (ṽFI);
for ∀odetjd |jd:=1...Jd

∈ OdetFI
do

if ∃ogtj where bgtj ≈ bdetjd and dgtj = ddetjd then
update (detector);

end if
end for

end for

Jd is the number of objects detected by the detector in the current fused frame
ṽFI and the update() function is responsible for updating the detector’s model.
After the detector has been adapted to the input data, the measurement can
be done as described below.

fdetfused

(
Ṽ,GT

)
=

1

N · Ln

N∑
n=1

Ln∑
i=1

hnṽi (22)

hnṽi is calculated by the same algorithm as for Equation 21.

Utility Evaluation by Object Tracking

Another way of utility evaluation is to apply tracking algorithms to the pri-
vacy protected input data. For instance in retail surveillance, the customers’ traces
in the shop is a very useful information. However, tracking should only be per-
formed on the protected visual data in order not to reveal the customers’ identities.
We only consider aggregated frames in terms of tracking. Aggregated frames can
originate either from a single camera or from multiple cameras. The task of a
tracking algorithm is basically to detect and ”‘follow” selected objects across var-
ious frames over time in a video sequence or over different videos from multiple
cameras. Trackers usually rely on a model that stores all knowledge about objects
that are initially handed over to the tracker. This model is continuously updated
after each processed frame and used to estimate the objects’ positions in the next
frame. Measuring the accuracy of a tracking algorithm can be performed by com-
paring the trackers output with the ground-truth [48]. Tracking is considered to be
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successful if an object’s location and description provided by the tracker matches
the ground-truth data. The function ftrack can be defined as follows:

ftrack

(
Ṽ,GT ,M

)
=

1

N · nL

N∑
n=1

nL∑
i=1

hnṽi (23)

where M is the model of the tracker. hnṽi stands for the hit-rate of the tracker
and is calculated with the algorithm below.

h := 0;
nOi

track := track
(
nṽi
)
;

for ∀noitrackjt
|jt:=1...Jt

∈ nOi
track do

if ∃noigtj where nbigtj ≈
nbitrackjt

and ndigtj = nditrackjt
then

h++;
end if

end for
if Jnṽi = 0 then
hnṽi := 1;

else
hnṽi := h

Jnṽi
;

end if
update (M);

The function track() performs object detection in the current frame based on
object information inM and the previous frame, and returns a set of annotations
about the tracked objects. The track() function is not bound to any specific track-
ing algorithm. Any suitable algorithm that fits the requirements of the evaluation
scenario can be used for the concrete framework implementation (e.g., [34]). Jt is
the number of objects tracked by the tracker and Jnṽi is the number of objects
actually appearing in the protected frame nṽi according to the ground-truth nOi

gt

while the update() function is responsible for updating the tracker’s model M.

Utility Evaluation by Image Similarity

Another utility measurement is to visually compare the privacy protected video
to the unprotected video by using image similarity metrics. The similarity corre-
sponds to the deviation of the unprotected from the protected data. Such deviation
can be measured by the differences in pixel intensities or the mean and variance
values of intensity values in specific image regions. The output of the function
fsim is basically the average of the similarities between each unprotected nvi and
protected nṽi frame in each video nV and nṼ from V and Ṽ respectively. These
metrics work solely on a frame-by-frame basis, and therefore aggregated and fused
frames are not discussed here.

fsim
(
V, Ṽ

)
=

1

N · nL

N∑
n=1

nL∑
i=1

similarity
(
nvi, nṽi

)
(24)

For the function similarity(), a specific similarity metric which returns the extent
of similarity between two given image frames must be chosen (e.g., the structural
similarity index SSIM [56]).
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Utility Evaluation by Processing Speed
Some privacy protection filters are computationally expensive and cannot be

applied in real time. In terms of utility this can be an important issue because
online protection of visual data is often required or the protection should be per-
formed onboard of the cameras.. We measure the processing speed of privacy
protection filters in order to make our evaluation framework as comprehensive as
possible. This speed does not only depend on the computational complexity of the
filter’s algorithm, but also on the image resolution and the computing power of
the underlying hardware. Depending on the requirements of the surveillance sce-
nario a target speed (τ) can be chosen arbitrarily. The processing speed of privacy
protection filters can be measured for example in frames per second (FPS). The
function fspeed can therefore be calculated as follows:

fspeed

(
Ṽ
)

=
1

N · nL

N∑
n=1

nL∑
i=1

max

(
1

τ · (t (nṽi)− t (nṽi−1))
, 1

)
(25)

where τ is the arbitrary target speed of the filter. The function t() returns the
time when the processing of a given image frame was finished.

5 Implementation and Test of the Framework Prototype

We have developed one possible implementation of the previously defined evalu-
ation framework using standard algorithms for object recognition, detection and
tracking from OpenCV [25]. With this prototype implementation we demonstrate
the capabilities of our approach and compare objective and subjective evaluation
techniques. In the following subsections we describe implementation details of our
prototype and present measurement results.

5.1 Framework Implementation

The goal of our implementation is to present objective measurement results based
on various state-of-the-art privacy protection algorithms. Therefore, we have im-
plemented the following functions (as described in Sections 3 and 4):

– fidind
, fidaggr

, and fidfused
by using the PCA [54], LDA [10] and LBP [3] based

face recognisers,
– fdetind

, fdetaggr
, and fdetfused

by using the cascade classifier based face de-
tection module and the histogram of oriented gradients (HOG) based person
detector,

– ftrack by using the MIL, Boosting, MedianFlow and TLD object trackers, and
– fsim by calculating MSE (mean squared error) and SSIM (structural similarity)

index.

5.2 Test Data

We used our evaluator prototype to objectively evaluate eight privacy protection
filters proposed at the MediaEval 2014 Workshop [9]. Figure 2 demonstrates the
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visual effects of the eight different protection filters. The key objective of these
protection filters was to protect the privacy of the persons but still keep the “in-
telligibility” and “visual appearance” high. In order to evaluate the performance
among these categories the Visual Privacy Task organisers of the MediaEval 2014
Workshop carried out a user study. In this paper we compare our objective and
their subjective evaluation results in order to demonstrate the pertinence of our
proposed framework.

The subjective evaluation was based on a subset of the PEViD dataset [30]
which originally contains 65 full HD (1920×1080, 25 fps, 16 seconds each) video se-
quences covering a broad range of surveillance scenarios. The video clips are anno-
tated by the ViPER GT tool [1] which produces XML files containing the ground-
truth and general information about the surveillance scenario (walking, fighting,
etc.). The Visual Privacy Task organisers selected six particular video clips from
the PEViD dataset [30] for their subjective evaluation including day/night, in-
door/outdoor and close-up/wide area scenarios. The dataset further included the
ground-truth for every image frame, i.e., bounding boxes around faces, hair re-
gions, skin regions, body regions and accessories.

The user study was conducted on the submitted privacy protected videos of
eight research teams evaluating and investigated aspects such as privacy, intel-
ligibility and pleasantness by means of questionnaires [9]. The protected videos
were evaluated by three different user groups: (i) an online, crowd-sourced evalu-
ation by the general public, (ii) an evaluation by security system manufacturers
and video-analysis technology and privacy protection solutions developers, and
(iii) an on-line evaluation by a target group comprising trained CCTV monitoring
professionals and law enforcement personnel.

Our objective evaluation is based on the following setting.

Input:

– The same six selected video clips from the PEViD dataset [30] served as un-
protected input videos. Each clip is in full HD resolution (1920×1080) and
contains 400 image frames.
V =

{
1V, 2V, 3V, 4V, 5V, 6V

}
where iL = 400|i=1,...,6

– Ground-truth data was also used in the evaluation process. It is provided by
the PEViD dataset [30] for each video clip in ViPER XML [1] format.
GT =

{
1Ogt,

2Ogt,
3Ogt,

4Ogt,
5Ogt,

6Ogt

}
– Furthermore, we used the privacy protected version of each video clip filtered

by the privacy-preserving methods [32, 22, 7, 41, 21, 36, 50, 42] proposed at
the MediaEval 2014 Workshop [9].

Output:

– A set of real numbers between [0, 1] provided by the evaluator functions, where
zero represents the worst and one the best result.
E = {eidind

, eidaggr
, eidfused

, edetind
, edetaggr

, edetfused
, etrack, esim, espeed} where

∀e ∈ R and 0 ≤ e ≤ 1.

In the following subsections we describe the details of each implemented func-
tion and discuss the produced results.
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(a) Image sam-

ple from Ṽ[32].
Replacement by
graphics for high
and warping for
low sensitivity
regions.

(b) Image sam-

ple from Ṽ[22].
Colour patches by
colour-based seg-
mentation within
k-means clusters
in RoI.

(c) Image sample

from Ṽ[7]. Blur-
ring, colour quan-
tisation, and circle
texturing on faces.
See [7] for details.

(d) Image sample

from Ṽ[41]. Com-
bination of blur-
ring and pixela-
tion with context-
aware kernel sizes.

(e) Image sam-

ple from Ṽ[21].
Global and lo-
cal multi-level
cartooning with
extra pixelation
on faces.

(f) Image sample

from Ṽ[36]. Blur-
ring and colour
remapping with
silhouettes and
special colours for
various events.

(g) Image sam-

ple from Ṽ[50].
Pseudo-randomly
scrambled pixels
within foreground
masks.

(h) Image sample

from Ṽ[42]. In-
painting of faces
with background
estimated by
median filtering.

Fig. 2: Image samples of each privacy filter proposed at the MediaEval 2014 Work-
shop [9].

5.3 Evaluation of Privacy

In Section 4 we have defined our evaluation framework by using general object
recognisers. The most critical objects are however faces in terms of privacy. There-
fore, in our current prototype we focused on faces when evaluating visual privacy
and used the PCA [54], LDA [10], and LBP [3] based face recogniser functions
from OpenCV.

In our current prototype we have implemented de-identification evaluator func-
tions for independent (fidind

), aggregated (fidaggr
), and fused (fidfused

) frames by
using the above mentioned face recogniser tools. We have used all valid faces from
the six unprotected input videos (1V, . . . , 6V ) as a training set for the face recog-
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nisers. By valid faces we mean those 766 faces from the 2400 video frames where
both eyes are visible. We need both eyes in order to correctly align and resize
faces because OpenCV’s face recognisers require aligned faces and equal input im-
age sizes. The position of faces and eyes were taken from the ground-truth data
and the output of the face recognisers were also compared with the ground-truth
during the evaluation process.

V Ṽ[32] Ṽ[22] Ṽ[7] Ṽ[41] Ṽ[21] Ṽ[36] Ṽ[50] Ṽ[42]
0

0.8

Input videos

e i
d

eidind
eidaggr eidfused

Fig. 3: Privacy evaluation results for independent, aggregated, and fused frames.
No privacy protection can be observed for the unprotected videos V and only Ṽ[50]
provides some protection when using aggregated frames while protection levels
remain zero for all the other videos. Results for fused frames are also significantly
lower than for independent frames.

After training the three face recognisers we tested them on the same 766 valid
face regions of the privacy filtered videos from Ṽ[32, 22, 7, 41, 21, 36, 50, 42]. At each
frame we chose the best-performing recogniser. This measurement provided the
results for independent frames. In case of aggregated frames we performed further
calculations according to the rules defined by Equation 17 in Section 4.1. Namely,
we considered all the occurrences of a certain face as recognised when it was suc-
cessfully recognised at least once during the evaluation. When following the fused
frames approach, again, we carried out our calculations based on the algorithm
defined under Equation 18 in Section 4.1. The set of fused frames were created as
follows. We grouped the 766 valid face images per person based on the structural
similarity (SSIM) index. Those face images got placed in one group which were at
least 70% similar to each other (i.e., SSIM ≥ 0.7). Within each group we created
image pairs in every possible combination and fused them pair-wise based on two-
level discrete stationary wavelet transform [43]. These fused images constituted the
set of fused frames (FI). Figure 3 shows the calculated privacy evaluation results
for independent, aggregated, and fused frames. When evaluating the unprotected
videos the results are eidind

= 0, eidaggr
= 0, and eidfused

= 0, which refers to no
privacy protection. That is expected since we used the faces from these unprotected
videos to train the face recognisers and thereby those faces can be recognised with
100% accuracy. The privacy filter from Paralic et al. [42] inpaints all faces with
the background, therefore it is somewhat surprising that eidind

= 0.52, eidaggr
= 0,
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and eidfused
= 0.14 only while these values are expected to be close to 1 as there

are no faces to recognise at all. A possible explanation is that the face recognisers
we used always provide an output and with a certain probability they may still
guess the right face identity. Furthermore, the inpainted background may also con-
tain face-like structures that are similar to the face to be recognised from the face
recognisers’ point of view. Another interesting observation about the evaluation
results is that Ṽ[50] is the only one providing some low-level privacy protection in
case of aggregated frames while all the others provide no protection. Furthermore,
results in terms of fused frames are significantly lower than in case of individual
frames and they are very close or equal to zero several times.

A subjective evaluation described in Sections 3.1 and 3.2 of [9] has been car-
ried out as part of the MediaEval 2014 Workshop. The privacy-preserving methods
from [32, 22, 7, 41, 21, 36, 50, 42] have been evaluated in three distinct user studies.
The first study followed a crowd-sourcing approach targeting näıve subjects from
online communities. The second study targeted the trained video surveillance staff
of Thales, France. A focus group comprising video-analytics technology and pri-
vacy protection solution developers was the target of the third study. Hereinafter,
we refer to the privacy protection level results of these three studies as pcrowd,
pthales, and pfocus, respectively, while icrowd, ithales, and ifocus refer to the in-
telligibility levels. In the following we compare our measurement results with the
outcome of the MediaEval study to see if our objective method complies with their
subjective approach.

Ṽ[32] Ṽ[22] Ṽ[7] Ṽ[41] Ṽ[21] Ṽ[36] Ṽ[50] Ṽ[42]
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Fig. 4: Comparison of objective and subjective privacy evaluation
results where pAVG = AVERAGE(pcrowd, pthales, pfocus) and eidAVG

=
AVERAGE(eidind

, eidaggr
, eidfused

).

In order to compare our objective (eidind
, eidaggr

, eidfused
) and the subjective

privacy evaluation results (pcrowd, pthales, pfocus) from [9], we plotted the average
values together in a single chart which can be seen in Figure 4. It is clearly visible
that objective and subjective results follow the same trend except one deviation
at Ṽ[36]. The privacy filter from [36] replaces the whole body of each person with
a blurry colour blob which obscures original shapes as well. While our objective
method considered only faces, human viewers usually watch the entire body. They
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may find privacy protection better in this case because there is not even any sec-
ondary information (e.g., body shape or clothes) available to identify people. Our

result for Ṽ[36] is lower because the face recognisers achieved a higher recognition
rate. This is due to the already mentioned fact that the recognisers always pro-
vide an output and with a certain probability they can still guess the identities
properly, especially in case of such a small population (10 people in the dataset).
Although the plots are following the same trend, a certain offset between objec-
tive and subjective results can be observed. This is due to the differences in the
nature of measurements and in the scaling of the extracted data. The Pearson
product-moment correlation coefficient [51]3 for the subjective and objective pri-
vacy evaluation results results in a value of 0.563 which indicates a rather strong
positive correlation. If we exclude the above described outlier case of Ṽ[36], the
coefficient value increase to 0.95 which indicates a very strong positive correlation.

Table 2 compares the ranking of the subjective evaluation conducted by [9]
and the ranking achieved by our objective evaluation framework. The rankings are
based on the average privacy metrics pAVG and eidAVG

, respectively (cp. Figure 4). As
can be clearly seen, the subjective and our objective evaluation methods achieve
highly correlated results for the used MediaEval 2014 test data. The strong positive
correlation of both rankings are also indicated by the Spearman and the Kendall
rank correlation coefficients [51] which are given as ρ = 0.850 and τ = 0.764,
respectively.

Protection Filter Ṽ[22] Ṽ[41] Ṽ[7] Ṽ[21] Ṽ[42] Ṽ[32] Ṽ[50] Ṽ[36]
Subjective Ranking 1. 2. 3. 4. 5. 6. 7. 8.

Protection Filter Ṽ[22] Ṽ[41] Ṽ[7] Ṽ[21] Ṽ[36] Ṽ[32] Ṽ[42] Ṽ[50]
Objective Ranking 1. 2. 3. 4. 8. 6. 5. 7.

Spearman coefficient ρ 0.850

Kendall coefficient τ 0.764

Table 2: Ranking of protection methods based on the subjective privacy evalu-
ation results presented in [9] and our objective evaluation results produced by
our prototype together with their Spearman’s and Kendall’s [51] rank correlation
coefficient.

5.4 Evaluation of Utility

Implementation details and measurement results are discussed in the following
subsections. Similarly to the above described privacy evaluation, instead of using
objects in general we specified certain object types for each evaluation function to
keep our first prototype simple.

3 The Pearson product-moment correlation coefficient is a measure of the linear dependence
between two variables in the range of [−1 . . .+ 1], where +1 represents a total positive linear
correlation, 0 no linear correlation, and −1 a total negative linear correlation.
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5.4.1 Detection

For utility evaluation by object detection we chose faces and bodies as target
objects. We used the face detection functionality of OpenCV [25] which is based on
Haar-cascades. For person detection, we used the histogram of oriented gradients
(HOG) based detector from OpenCV [25]. We used all six videos protected by the
eight privacy-preserving methods [32, 22, 7, 41, 21, 36, 50, 42] along with their
unprotected version as an input for the above mentioned detectors. Similarly to
privacy evaluation, here we also compared the output of the detectors with the
ground-truth data. If a bounding box of a detected face or person was sufficiently
overlapping with the annotated bounding box from the ground-truth data, we
counted that detection as a hit. We call two bounding boxes sufficiently overlapping
if their Sørensen-Dice coefficient is greater than 0.5. This criteria can be formulated
as follows:

2 ·Abdet∩bgt
Abdet +Abgt

> 0.5 (26)

where A refers to the area of a bounding box while bdet and bgt represent detected
and annotated bounding boxes, respectively. Then, we calculated the evaluation
results for independent (edetFind

), aggregated (edetFaggr
), and fused (edetFfused

)
frames in terms of face detection which are depicted in Figure 5. Figure 6 shows
evaluation results for independent frames (edetPind

) based on the HOG person
detector. Here we only considered independent frames because OpenCV [25] does
not have an option for updating or retraining the HOG detector’s model.

V Ṽ[32] Ṽ[22] Ṽ[7] Ṽ[41] Ṽ[21] Ṽ[36] Ṽ[50] Ṽ[42]
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edetFaggr edetFfused

Fig. 5: Results of utility evaluation by face detection for independent, aggregated,
and fused frames. The dashed line marks the highest utility level of the unprotected
videos.

The overall best utility in terms of face detection is obviously provided by
the unprotected videos (V). The privacy filters from [32], [36], [50], and [42] to-
tally replace faces, thereby providing the worst utility levels in terms of indepen-
dent frames. In case of Ṽ[22], Ṽ[7], Ṽ[41], and Ṽ[21] a certain utility level can still
be achieved along privacy protection. Furthermore, face detection performance
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and hence the utility level is always higher when considering aggregated frames
and even higher for fused frames. This is expected because in case of aggregated
and fused frames the face detector’s model is extended by using specific train-
ing samples from the relevant protected video clips. An outstanding result can be
observed at Ṽ[32] where edetFfused

is significantly higher than the results for the
unprotected videos (V). This suggests that despite the information loss caused by
the application of privacy protection methods, the utility level can even be in-
creased. Both for aggregated and fused frames we followed the algorithms defined
in Section 4.2.1 and the set of fused frames were created exactly the same way
as described above for privacy evaluation. The detector’s model was updated by
using the opencv traincascade utility from OpenCV [25].

V Ṽ[32] Ṽ[22] Ṽ[7] Ṽ[41] Ṽ[21] Ṽ[36] Ṽ[50] Ṽ[42]
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Fig. 6: Results of utility evaluation by person detection for independent frames.
The dashed line marks the utility level of the unprotected videos.

As for person detection, the results are higher for Ṽ[7] and Ṽ[21] than for the
unprotected video (V). This means that the utility level in visual data can not
only be maintained but can even be further increased while protecting privacy.
We find this a quite important message for privacy protection filter developers.
The lowest result is provided by Ṽ[36] which is not surprising at all considering
the large amount of changes in terms of both colour and visual structure (see
Figure 2f).

5.4.2 Tracking

When evaluating utility by object tracking we used the whole bodies of peo-
ple as target objects. We used the following 4 trackers that are implemented in
OpenCV [25]: MIL [6], Boosting [23], MedianFlow [26], and TLD [27]. We fused
the results of these trackers by always choosing the best performing tracker per
frame similarly to our approach regarding face recognisers. Tracking is considered
to be successful in a frame if the output of a tracker is sufficiently overlapping with
the annotated bounding box from the ground-truth data. Again, we consider an
overlapping sufficient if the Sørensen-Dice coefficient is greater than 0.5. Figure 7
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shows our results for utility evaluation through object tracking (etrack). Several
privacy protected videos achieved slightly better utility results than the unpro-
tected videos which further supports the fact that utility can be improved even
when obfuscating the unprotected visual data for the sake of privacy protection.
However, differences are not too significant between the protection techniques and
there is no outstanding result. Tracking performance is almost equal in each case.
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Fig. 7: Results of utility evaluation by object tracking. The level of the unprotected
videos is marked with the dashed line.

5.4.3 Similarity

As part of utility evaluation we measured visual similarity by calculating the mean
squared error (MSE) and the structural similarity (SSIM) index for the protected

videos (Ṽ[32, 22, 7, 41, 21, 36, 50, 42]) compared to the unprotected videos (V). Dif-
ferences between the privacy protected videos in terms of mean squared error are
very small. All similarity results are within the [0.99, 1] interval. Therefore, all
types of protected videos are considered to be very similar to the unprotected
videos based on this metric. This fact suggests that MSE is not a suitable metric
when comparing privacy protection filters.

Our measurement results regarding structural similarity are depicted in Fig-
ure 8. Ṽ[21] shows the most substantial difference from the unprotected videos
(V). The global modifications carried out by the privacy filter cause notably large
changes in the image structure which explains the extent of dissimilarity.

Our definition of utility and the way Badii et al. [9] define intelligibility is rather
different. We measure quite different things by using computer vision methods than
they do with their questionnaires. Thus, while comparing objective and subjective
evaluation results for utility in Figure 9, it is not surprising that no correlation can
be observed between objective and subjective results. Figure 9 depicts the average
of the intelligibility results icrowd, ithales, and ifocus together with our objective
evaluation results regarding utility (edetF , edetP , etrack, esimSSIM).
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Fig. 8: Results of utility evaluation by measuring visual similarity to the unpro-
tected video V when using the structural similarity index (esimSSIM).
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Fig. 9: Comparison of objective and subjective utility evaluation
results where iAVG = AVERAGE(icrowd, ithales, ifocus) and edetF =
AVERAGE(edetFind

, edetFaggr
, edetFfused

).

6 Conclusions and Future Work

We have proposed an objective visual privacy evaluation framework that considers
a rather wide variety of aspects including the use of aggregated and fused frames
as opposed to traditional frame-by-frame assessment methods. A formal definition
has been provided by which reproducible results can be measured. This framework
is based on a general definition of privacy protection and utility, and can be used
to benchmark various protection techniques. Thus, our framework may serve as
a useful tool for developers of visual privacy-preserving techniques. We have ap-
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plied this framework to state-of-the-art privacy protection methods and compared
our results to a recently conducted subjective evaluation. For privacy protection,
subjective and objective evaluation results show a high correlation.

A possibility for future work is to conduct a survey with an even larger number
of participants and compare these subjective results with the output of the pro-
posed objective framework. Then the definitions of the measured aspects within
the framework could also be fine-tuned in order to better approximate subjective
results. Another possible task for the future is to create a more comprehensive
implementation of our objective evaluation framework in form of an on-line API
which would make our work useful to the research community.
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21. Erdélyi, Á., Winkler, T., Rinner, B.: Multi-Level Cartooning for Context-
Aware Privacy Protection in Visual Sensor Networks. In: Working Notes Pro-
ceedings of the MediaEval Workshop (2014)

22. Fradi, H., Yan, Y., Dugelay, J.L.: Privacy Protection Filter Using Shape and
Color Cues. In: Working Notes Proceedings of the MediaEval Workshop (2014)

23. Grabner, H., Grabner, M., Bischof, H.: Real-Time Tracking via On-line Boost-
ing. In: Proceedings of the British Machine Vision Conference, vol. I, pp. 47–56
(2006)

24. Han, B.J., Jeong, H., Won, Y.J.: The privacy protection framework for bio-
metric information in network based CCTV environment. In: Proceedings of
the Conference on Open Systems, pp. 86–90 (2011)

25. itseez: OpenCV – Open Source Computer Vision. http://opencv.org (2014).
Last accessed: November 2016

26. Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic
detection of tracking failures. In: Proceedings of the International Conference
on Pattern Recognition, pp. 2756–2759 (2010)

27. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence 34(7), 1409–1422
(2012)

28. Korff, D., Brown, I., Blume, P., Greenleaf, G., Hoofnagle, C., Mitrou,
L., Pospisil, F., Svatosova, H., Tichy, M., Anderson, R., Bowden, C.,

http://www.privacybydesign.ca/content/uploads/2009/08/7foundationalprinciples.pdf
http://www.privacybydesign.ca/content/uploads/2009/08/7foundationalprinciples.pdf
http://www.ipc.on.ca/images/Resources/pbd-surveillance.pdf
http://opencv.org
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