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ABSTRACT
In an Internet of Things (IoT) camera-based monitoring applica-
tion the transmission of images away from the video sensors for
processing poses security and privacy risks. Hence, there is a need
for an advanced trusted user-centric monitoring system that pushes
the application of security and privacy protection closer to the sen-
sor itself and which enables an enhanced control on data privacy.
To this end, this white paper proposes a new approach that involves
sensor edge computing to enable sensor-level security and privacy
protection and allows observed individuals to interact and control
their data without impacting on the quality of the data for further
processing. Overall, an IoT vision system is presented that em-
ploys a network of fixed embedded cameras in a highly trusted
manner, possessing both privacy-protecting and data security fea-
tures. As a potential application, we discuss an Ambient Assisted
Living (AAL) healthcare use case demanding privacy and security
for outpatients.
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1. INTRODUCTION
The use of Internet of Things (IoT) camera-based human moni-

toring systems is expected to become increasingly ubiquitous [26,
33] in a wide variety of applications [1, 7, 33, 34] considering the
rapid advancements in ICT. This inevitably leads to an enhanced
need of the incorporation of a notion of ‘trust’ (from a user’s point
of view) in such systems. In an IoT camera-based monitoring sce-
nario, user classes could primarily be of two types: (1) observed
individuals, which are people being monitored remotely in an envi-
ronment; (2) remote observers, which are the authorized personnel
enjoined to remotely monitor individuals’ activities. Other type of
user classes could be unauthorized remote observers and non users.
For the acceptance of IoT camera-based monitoring by users, trust
is of high importance. The term, trust, is here defined to possess
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two key features: security (i.e. ensuring the integrity and confi-
dentiality of the recorded image data); and privacy protection (i.e.
altering the recorded imagery to ensure that the observed individu-
als are not/less recognizable). Present-day camera-based monitor-
ing approaches [3, 21, 34] generally aim to achieve such trust by
providing security and privacy protection at a stage away from the
sensing platform. Indeed, such solutions could result in a height-
ened risk of leakage of recorded image data and hence a compro-
mise in the privacy of observed individuals. This risk also lim-
its such monitoring approaches from becoming entirely pervasive
by hindering their use in scenarios requiring high levels of privacy
[31]. Moreover, existing approaches are generally more remote-
observer-centric than observed-individual-centric: they tend to fo-
cus more on technological improvements to address mainly the
needs of remote observers than on the acceptability of technology
by addressing also the needs of the observed individuals.

Ambient Assistive Living (AAL) is a key application domain
where the notions of trust and user centricity are highly desirable.
A fundamental AAL task involves monitoring activities of outpa-
tients (the observed individuals) either autonomously by algorithms
or manually by the healthcare professionals (the remote observers).
Driven by European and international initiatives, there exists a large
body of research on human activity monitoring for AAL. In the ma-
jority of these works (e.g., [6, 9]), security and privacy protection
is—if at all—addressed from a technology perspective.

This paper proposes a new concept that attempts to make a radi-
cal impact in the form of a strongly user-centric, highly-trusted and
pervasive monitoring by (1) adopting a user-centric approach that
essentially balances the conflicting needs of both observed individ-
uals as well as remote observers by empowering the former with an
increased level of control over their recorded image data, (2) equip-
ping sensors with ‘edge computing’ by pushing the security and
privacy protection features closer to the sensor thus significantly
minimizing the aforementioned risk, (3) making the privacy pro-
tection approach adaptive to enable selection of varying protection
levels as deemed necessary in different scenarios. We also discuss
the use of the proposed concept in an AAL healthcare use case.

2. RELATED ADVANCEMENTS
This section reviews existing related advancements and approaches

(with a particular focus in the AAL domain) from the perspective
of users (Sec. 2.1) and technological innovations (Sec. 2.2).

2.1 Users’ perspective
While a substantial research has been carried out on sensor-based

monitoring in different domains [1, 8, 33, 34], healthcare has un-
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Figure 1: Pipeline for a user-centric trusted human monitoring system.

derstandably also drawn considerable attention with regards to Am-
bient Assisted Living (AAL). For example, the Activities of Daily
Living (ADLs) of patients (with varying health issues) are moni-
tored at their homes using multiple sensing modalities [34]. Prog-
nosis and diagnosis of dementia is performed by monitoring eye
movements of patients using cameras installed at their homes [2].
Wearable camera devices are used to monitor dementia patients
[20]. An important initiative was made with a focus on applications
in different domains including healthcare monitoring in purpose-
built smart homes [11]. Other works also exist [4] with applications
in patient monitoring with Alzheimer’s disease [10], Parkinson’s
disease [15], sleep problems [18] and mental issues [22].

Existing research focuses primarily on the development and ad-
vancement of technology to account for the (monitoring) needs of
the remote observers without placing enough focus on the accept-
ability of technology by the observed individuals by effectively ad-
dressing their privacy concerns too. There appears to be a need
to adopt an enhanced user-centric approach that could balance the
needs of both user types and empower observed individuals with a
greater control over the monitored data without limiting the mon-
itoring requirements of remote observers. Moreover, from the re-
mote observers’ point of view, the need also remains to provide
enabling conditions for an increased pervasive automated monitor-
ing.

2.2 Technological advancements
IoT-based monitoring solutions with different sensing modal-

ities: The use of IoT-based solutions is steadily increasing for dif-
ferent monitoring scenarios particularly in AAL where different
sensing modalities are employed such as wearable sensors [10, 15,
16, 20, 21, 34], ambient sensors [11, 18, 21, 34], 3D (Kinect) sen-
sors [30, 34], and cameras [6, 9, 21, 34].

Indeed the use of solely camera-based solutions within an IoT
framework is still at a nascent stage [34] and has advantages over
other sensing modalities in such applications [8]. An enhance-
ment of IoT-based solutions for healthcare monitoring using smart
cameras with advanced onboard protection and analytic capabilities
would therefore be desirable.

Privacy protection in videos: Over the last decade, various
methods have been developed to protect privacy in visual data.
Most techniques operate only on the visual data (i.e., images and
videos) to protect sensitive regions and rely on image processing al-
gorithms such as scrambling by JPEG-masking, in-painting, pixe-
lation, blanking, replacement with silhouettes, blurring, warping or

morphing (e.g., [25, 33]). The privacy protection capability of these
methods strongly depends on the detection performance of sensi-
tive regions and their level of modification. Several approaches
have been recently proposed to evaluate the protection techniques
and its effect on the utility of the visual data (e.g., [5, 13, 19, 24].
An embedded camera platform was developed [31] with cartoon-
ing [14] as an example for on-board privacy protection. It would
however still be preferable to push privacy protection closer to the
image sensor and initiate protection already in the sensory edge.

Security of image/video data: Security in video surveillance
has been discussed for several decades (e.g., [28, 29]). Integrat-
ing security functionality onboard ‘smart’ cameras has been pro-
posed to leverage the security across entire camera networks. More
recently, camera platforms with hardware-based security function-
ality based on trusted platform modules (TPM) [32] or physically
unclonable functions (PUF) [12] have been developed to provide a
stronger protection than pure software approaches. Moreover, cam-
era platforms have been developed, which provide hardware-based
security functionalities such as trusted boot, authenticity, confiden-
tiality and integrity of video data [27, 32]. It would still be desirable
to integrate hardware-based security capabilities in embedded and
resource-constrained camera platforms. Moreover, it would be in-
teresting to investigate resource availability for providing the actual
security functionality.

3. USER-CENTRIC TRUSTED SENSING EN-
VIRONMENT

An effective IoT solution employing vision sensors (cameras) is
not well explored [34] and could greatly aid remote human moni-
toring. A key challenge in an IoT camera-based monitoring system,
however, would be to guarantee and develop an acceptable level of
‘trust’ of users. Moreover, existing solutions [8, 33] focus mainly in
addressing the requirements of remote observers while not placing
as much emphasis on the needs of observed individuals. Indeed, an
effective consideration of conflicting needs of the two user classes
is important for a successful solution.

Fig. 1 presents the pipeline of the proposed concept for a user-
centric trusted sensing environment. The proposed concept is aimed
to overcome the limitations of current IoT-based monitoring sys-
tems by establishing a user-centric trusted sensing environment that
integrates the following three aspects: (1) a trusted camera platform
that pushes security and privacy protection to the sensory edge by
performing the two functionalities onboard of the camera sensors;



Figure 2: Key components of the proposed user-centric trusted
sensing environment.

(2) adaptive privacy protection methods on the trusted platform in
order to adjust the level of protection to current needs of users by
dynamically exploring the utility-protection tradeoff; (3) the trusted
sensing environment delivering trusted feedback to users about the
captured data and performed analysis and enables some control on
the deployed adaptive protection mechanism. Fig. 2 depicts the
proposed approach that comprises of three key components as de-
scribed next.

3.1 Trusted sensor platform
A fundamental hypothesis of this work is that user-centric trust

in a resource-limited sensing environment can be established by
making security and privacy protection inherent properties of the
sensor platform. The key idea is to protect access to the sensor
and encapsulate dedicated security and privacy functionality in a
secure sensing unit embedded on the camera platform. The secure
sensing unit has exclusive access to the image sensor’s raw data.
This approach enhances prior work [31] by integrating the camera
platform on a hybrid ARM/FPGA System-on-Chip (SoC) and by
exploiting dedicated hardware properties of the SOC-platform in
the form of physically unclonable functions (PUFs). The key ad-
vantage of this approach is to provide hardware-supported security
functionality without requiring a dedicated hardware component.

Fig. 3 depicts an overview of the sensor platform architecture.
The central component is the hybrid ARM/FPGA SoC (e.g., Xilinx
Zynq and UltraScale or Altera SoC) containing multiple general-
purpose ARM cores which can execute the camera computer vi-
sion applications, management tasks and network communication.
The image sensor interface, computer vision accelerators and PUFs
form a part of the FPGA fabric. External components include
volatile and non-volatile external storage as well as communica-
tion interfaces such as Ethernet, WiFi or UMTS. PUFs provide a
unique fingerprint of an integrated circuit and serve as basis for se-
curity functionality on our platform. Ring-oscillator PUFs are re-
alized on the FPGA fabric for secure key generation which serves
as a root for implementing security functionality on the ARM core
[17]. In particular the following functions are realized: (i) digi-
tal signing, (ii) encryption, (iii) time stamping and secure system
boot, and which are exploited to achieve a trusted sensor platform
by checking its hardware/software state and securing all data trans-
fer from the platform. Privacy protection functionality is realized
on the ARM core as well (cf. the following section).

3.2 Adaptive privacy protection techniques
The two key aspects to consider for evaluating a privacy protec-

tion technique are protection and utility [24, 33]. Protection refers

Figure 3: Architecture of the trusted sensor platform.

to a quantification of the extent of identity information (that would
make an object recognizable) hidden in the image data by a pri-
vacy protection method. Completely hiding identity information
may however not be desirable as there may be a need to preserve
structural information for performing some sort of behavioral anal-
ysis. Utility, at an elementary level, refers to a quantification of
the preservation of the structural information in the image data
by a privacy protection technique. However, a more application-
specific definition of utility may involve evaluating how well the
desired low-level and/or high-level tasks could be performed on
the protected data. An ideal privacy protection technique may aim
to maximize both protection and utility. However, in practice an
appropriate trade off between utility and protection is investigated
for a particular scenario. Depending upon the requirements from
users, different scenarios could need different levels of protection
and utility in an application. Such an approach is expected to enable
a more pervasive monitoring even in scenarios with higher protec-
tion needs.

3.3 User-centric approach
We propose to adopt a strong user-centric approach that aims to

effectively address and balance the needs of both remote observers
and observed individuals’ users. From the point of view of remote
observers, the approach enables them to remotely monitor individ-
uals by means of the provided privacy-protected image data when
needed. Additionally, remote observers could provide feedback to
the observed individuals via mobile devices. From the point of view
of observed individuals, the approach enables them to control sen-
sors in terms of choosing their desired level of protection (deemed
necessary for a particular scenario) from a set of allowed protection
levels while ensuring a ‘reasonable’ utility-protection trade off that
satisfies the minimum needs of remote observers. The observed
individuals can request a desired protection level by means of a
simple interface or mechanism. The request can then be served on
board using the protection functionality of sensor platform. It is ev-
ident that a fundamental aspect of the approach is to meet the needs
of different user types.

As depicted in Fig. 1, a complete system pipeline containing
the above three components of course includes also other stages
spanning the whole lifetime of data transmission. Moreover, as a
part of an effective monitoring, some video analytics could also be
performed ranging from low-level analysis (person detection and
tracking) to high-level analysis (activity recognition) in order to
aid remote observers with the identification of different activities
of interest. Taking into account the resource constraints, the ana-
lytics could be mostly performed on the ‘protected’ data off board
and a part of them could be performed on board thus ensuring an
enhanced level of trust from the point of view of patients that are
being observed.



Table 1: Summary of the video sequences. Key. NF: number of
frames; ADLs: activities of daily living.

Sequence Area type NF Frame size Activities
S1 Kitchen 1729 2160×3840 ADLs
S2 Kitchen 715 2160×3840 ADLs, person falling
S3 Hallway 579 2160×3840 ADLs
S4 Hallway 325 2160×3840 ADLs, person falling
S5 Sitting 1359 2160×3840 ADLs
S6 Sitting 1308 2160×3840 ADLs, person falling

4. HEALTHCARE USE CASE
The growing focus on AAL research is inevitable due to a fast-

ageing population in the world. It is also notable that the associ-
ated costs involved in the provision of the on-the-spot assistance
and monitoring of the Activities of Daily Living (ADLs) are con-
sidered to be unaffordable and unsustainable; hence a need for a
remote monitoring using an effective IoT-based solution employ-
ing a network of sensors (cameras). The proposed approach in Sec.
3 could therefore provide an effective solution for a AAL-based
healthcare use case. In such a case the two user types are as fol-
lows: observed individuals are outpatients requiring remote care,
whereas remote observers are healthcare professionals.

4.1 Privacy requirements
From the perspective of healthcare professionals, a remote sens-

ing solution is desired to allow highly pervasive visual monitoring
(that may be required for outpatients requiring a constant remote
care) to aid with the identification of different outpatients’ activ-
ities e.g. walking, sitting, sleeping, falling etc. However, such
pervasive monitoring may compromise the privacy requirements of
outpatients. Indeed, depending on the area in a residence, outpa-
tients could require a different level of protection strength: a much
higher level of privacy is expected to be desired in a bedroom than
in a kitchen or a living room. Hence, an effective remote monitor-
ing solution in such a use case should address the needs of both user
types as ensured in the proposed approach. It essentially boils down
to achieve an appropriate balance between protection and utility
levels for a scenario under consideration. This is further demon-
strated next in the form of a utility-protection analysis on video
recordings in real representative residential settings.

4.2 Utility-protection analysis in real residen-
tial settings

We used a set of video sequences recorded in different areas
(kitchen, hallway, sitting) of a real residential environment. Specif-
ically, there are are six sequences, two in each of the three areas,
with people performing normal activities of daily living (ADLs)
as well as some unusual ones that could require care/attention of
healthcare professionals (in this case such an activity is a fall of a
person). For such residential scenarios, it would be desirable that
technology employs low-cost affordable cameras. The recordings
used a GoPro HERO4 camera (wide-angled lens) with full res-
olution (2160× 3840) from a fixed viewoint. Table 1 provides
a summary of the video sequences. Below we present prelimi-
nary results of applying different privacy protection techniques and
in turn analyzing and evaluating the utility-protection trade off to
achieve a varying levels of privacy protection for different scenar-
ios. This could indeed pave a way towards enabling observed indi-
viduals (outpatients) with a control to choose their desired protec-
tion strength.

We study the effect of applying three privacy protection meth-
ods including cartooning, blurring and pixelating on all video se-

quences. Cartooning involves applying an initial blurring on an in-
put image data followed by mean-shift filtering and edge recovery
using the already generated gradient mask with sobel edge detector
[14]. The kernel size at the initial blurring stage (A) and the spa-
tial radius (sp) and color radius (sr) at the mean-shift filtering stage
are given as follows [14]: Ai = [i ·Aorig/50]; spi = [i · sporig/50];
sri = [i · srorig/50]; where i is the filter intensity: i ∈ [1,50] and the
parameters Aorig = 7, sporig = 20 and srorig = 40 [14]. Addition-
ally, as done in [14], for establishing some correspondence and a
fair comparison among different techniques the kernel size used in
the case of blurring and pixelating for a particular filter intensity, i,
is equal to spi as defined above for cartooning. We apply each pri-
vacy protection technique globally on full frames in every sequence
for a full variation of filter intensity, i. To account for on-board re-
source, computational and bandwidth limitations, image data could
desirably be processed in a downsampled form [23]. We there-
fore apply privacy protection techniques on the frames in a down-
sampled form (10% of the original resolution) to analyze different
techniques under an extreme resolution setting. As for a quanti-
tative comparison of privacy protection techniques, we employ a
recent method [24] that evaluates the aspects of protection and util-
ity to enable an analysis of utility-protection trade off. Given a se-
quence, at each frame a protection score is computed as an appear-
ance dissimilarity between original and privacy-protected frames.
Protection scores are then averaged across the sequence to provide
sequence-level protection score; the lower the score the lower the
protection. Likewise, a utility score is computed as a structural
similarity between original and privacy-protected frames. Utility
scores are then averaged across the sequence to provide sequence-
level utility score; the lower the score the lower the utility. Note
that for an initial analysis we use here a traditional way of com-
puting protection and utility that involves encapsulating fidelity of
appearance and structure. A more application-specific way could
involve evaluating algorithmic performance on the protected data
as a means of assessing protection and utility. Fig. 4 plots utility
(U) vs. protection (P) scores of the three privacy protection tech-
niques for a variation of i on all sequences. Fig. 5 shows some
sample qualitative results for the privacy protection techniques.

The utility-protection plots (Fig. 4) could help to fulfill the needs
of both the outpatients and healthcare professionals. From an out-
patient’s point of view, the protection axis (x-axis) of plots is of
more importance, which allows switching among varying levels of
protection and depending on the requirement of an outpatient an
appropriate protection strength could be selected. From a point
of view of healthcare professionals, the utility axis (y-axis) holds
more importance that enables choosing among varying levels of
utility. Indeed, depending on a scenario, the system could give pri-
ority to either the level of utility sought by healthcare professionsals
or the level of protection desired by outpatients. For example, in a
situation where an a constant care of an outpatient is necessary, a
higher utility (e.g. U = 0.85) might be desirable and cartooning
would therefore be a preferred option as it maximizes protection
from outpatient’s perspective (Fig. 4). Alternatively, in a situa-
tion that demands a high privacy requirement from outpatient (e.g.
P = 0.70) and a compromise in utility is permissible, pixelating
would be the desired option. Therefore, such control over the util-
ity and protection from both user types instills a strong notion of
user centricity into the proposed solution.

5. DISCUSSION AND FUTURE WORK
We put forth a concept for a highly trusted, user-centric and per-

vasive human monitoring approach that pushes the privacy protec-
tion and security closer to the sensing platform for an enhanced
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Figure 4: Utility score (U) plotted vs. protection score (P) obtained by different privacy protection techniques for a variation of filter
intensity on all sequences.

level of trust; accommodates monitoring requirements of remote
observers and privacy needs of observed individuals; instills user-
controlled adaptability at the sensor platform to allow varying lev-
els of privacy protection using the Utility-Protection trade off. As
a potential application of the proposed concept we discussed its
effectiveness in an AAL healthcare use case. We used video se-
quences in a real residential environment to perform an initial utility-
protection analysis that forms a basis towards incorporating a no-
tion of user centricity into the proposed concept. The sequences
cover activities of daily living (ADLs) as well as some unusual
activities (person falls) in key residential areas: kitchen, hallway,
sitting. We performed an analysis of varying levels of utility and
protection provided by different privacy protection techniques on
all sequences that could facilitate in balancing the conflicting needs
of two user types: outpatients and healthcare professionals.

We believe this white paper could lay a foundation for several
future directions in order to fully realize the proposed concept of a
user-centric trusted environment. Firstly, there is a room for con-
ducting a thorough study to investigate effective methods of apply-
ing privacy protection and security of image data towards on-board
camera processing. Secondly, the needs remains to effectively in-
stil user-controlled adaptability at the sensor platform that allows
varying levels of privacy protection using the ‘Utility-Protection
trade off’ analysis. Thirdly, it would be interesting to investigate
trade-off between on-board and off-board data analytics. Finally,
in order to ensure the acceptability and application of the proposed
concept, it would be important to investigate relevant societal, eth-
ical and legal aspects.

6. ACKNOWLEDGMENTS
This research has received funding from the European Union’s

Seventh Framework Programme for research, technological devel-
opment and demonstration under grant agreement no. 312784, and

from the Austrian Research Promotion Agency (FFG) under grant
number 842432.

7. REFERENCES
[1] Fastpass project. https://www.fastpass-project.eu/. Accessed

March 2016.
[2] Modem project.

http://gow.epsrc.ac.uk/ngboviewgrant.aspx?grantref=ep/m00
6255/1. Accessed March 2016.

[3] P5 project.
http://www.foi.se/en/customer–partners/projects/p5/p51/.
Accessed March 2016.

[4] G. Acampora, D. J. Cook, P. Rashidi, and A. V. Vasilkos. A
survey on ambient intelligence in healthcare. Proceedings of
the IEEE, 101(12), 2013.

[5] A. Badii, A. Al-Obaidi, M. Einig, and A. Ducournau. Holistic
privacy impact assessment framework for video privacy
filtering technologies. Sig. & Ima. Proc., 4(6):13–32, 2013.

[6] N. B. Bo, F. Deboeverie, M. Eldib, J. Guan, X. Xie, J. Nino,
D. V. Haerenborgh, M. Slembrouck, S. V. de Velde,
H. Steendam, P. Veelaert, R. Kleihorst, H. Aghajan, and
W. Philips. Human Mobility Monitoring in Very Low
Resolution Visual Sensor Network. Sensors, 14:20800–20824,
2015.

[7] A. Cavoukian. Surveillance, then and now: Securing privacy
in public spaces. Technical report, 2013.

[8] A. A. Chaaraoui, P. Climent-Perez, and F. Florez-Revuelta. A
review on vision techniques applied to human behaviour
analysis for ambient assisted living. Exp. Sys. Appl.,
39(12):10873–10888, 2012.

[9] A. A. Chaaraoui, J. R. Padilla-Lopez, F. J. Ferrandez-Pastor,
M. Nieto-Hidalgo, and F. Florez-Revuelta. A vision-based



Blurring Pixelating Cartooning

(a) S1 [Filter intensity: i = 9]

(b) S2 [Filter intensity: i = 17]

(c) S3 [Filter intensity: i = 25]

(d) S4 [Filter intensity: i = 33]

(e) S5 [Filter intensity: i = 41]

(f) S6 [Filter intensity: i = 50]

Figure 5: Sample qualitative results for different privacy pro-
tection techniques on all sequences with an increasing filter in-
tensity (i = 9,17,25,33,41,50). Column 1: blurring; column 2:
pixelating; column 3: cartooning.

system for intelligent monitoring: Human behaviour analysis
and privacy by context. Sensors, 14:8895–8925, 2015.

[10] Y. Charlon, N. Fourty, W. Bourennane, and E. Campo.
Design and evaluation of a device worn for fall detection and
localization: Application for the continuous monitoring of
risks incurred by dependents in an alzheimer’s care unit. Exp.
Sys. Appl., 40(18):7316–7330, 2013.

[11] D. Cook and M. Schmitter-Edgecombe. Assessing the
quality of activities in a smart environment. MIM,
48(5):480–485, 2009.

[12] J. Delvaux, R. Peeters, D. Gu, and I. Verbauwhede. A survey
on lightweight entity authentication with strong pufs. ACM
Comp. Surv., 48(2), 2015.

[13] F. Dufaux and T. Ebrahimi. A framework for the validation
of privacy protection solutions in video surveillance. In Proc.
of ICME, 2010.

[14] A. Erdelyi, T. Barat, P. Valet, T. Winkler, and B. Rinner.
Adaptive cartooning for privacy protection in camera
networks. In Proc. of AVSS, Seoul, August 2014.

[15] D. Giansanti, V. Macellari, and G. Maccioni. Telemonitoring
and telerehabilitation of patients with parkinson’s disease:
health technology assessment of a novel wearable step

counter. Telemed. e-health, 14(1):76–83, 2008.
[16] P. Gupta and T. Dallas. Feature selection and activity

recognition system using a single triaxial accelerometer. IEEE
TBME, 61(6):1780–1786, 2014.

[17] M. Hoeberl, I. Haider, and B. Rinner. Towards a secure key
generation and storage framework on resource-constrained
sensor nodes. In Proc. of EWSN Work., Graz, 2016.

[18] A. Kealy, K. McDaid, J. Loane, L. Walsh, and J. Doyle.
Derivation of night time behaviour metrics using ambient
sensors. In Proc. of PervasiveHealth, Venice, 2013.

[19] P. Korshunov, C. Araimo, F. D. Simone, C. Velardo, J.-L.
Dugelay, and T. Ebrahimi. Subjective study of privacy filters
in video surveillance. In Proc. of IEEE Work. MMSP, 2012.

[20] R. Megret, V. Dovgalecs, H. Wannous, S. Karaman,
J. Benois-Pineau, E. E. Khoury, J. Pinquier, P. Joly,
R. Andre-Obrecht, Y. Gaestel, and J.-F. Dartigues. The immed
project: wearable video monitoring of people with age
dementia. In Proc. of ACM MM, Firenze, 2010.

[21] M. Mubashir, L. Shao, and L. Seed. A survey on fall
detection: Principles and approaches. Neurocomp.,
100(2013):144–152, 2013.

[22] M. Nambu, K. Nakajima, M. Noshiro, and T. Tamura. An
algorithm for the automatic detection of health conditions.
IEEE EMBM, 24(4):38–42, 2005.

[23] T. Nawaz and A. Cavallaro. A protocol for evaluating video
trackers under real-world conditions. IEEE TIP,
22(4):1354–1361, 2013.

[24] T. Nawaz and J. Ferryman. An annotation-free method for
evaluating privacy protection techniques in videos. In Proc. of
AVSS, Karlsruhe, 2015.

[25] J. R. Padilla-Lopez, A. A. Chaaraoui, and F. Florez-Revuelta.
Visual privacy protection methods: A survey. Exp. Sys. Appl.,
42(9):4177–4195, 2015.

[26] F. Pittaluga and S. J. Koppal. Privacy preserving optics for
miniature vision sensors. In Proc. of CVPR, Boston, MA, June
2015.

[27] B. Rinner and T. Winkler. Privacy-protecting smart cameras.
In Proc. of ICDSC, Venice, Italy, 2014.

[28] A. Senior, S. Pankanti, A. Hampapur, L. Brown, Y.-L. Tian,
A. Ekin, J. Connell, C. F. Shu, and M. Lu. Enabling video
privacy through computer vision. IEEE Sec. Priv., 3(3):50–57,
2005.

[29] D. N. Serpanos and A. Papalambrou. Security and privacy in
distributed smart cameras. Proceedings of the IEEE,
96(10):1678–1687, 2008.

[30] R. Wang, G. Medioni, C. J. Winstein, and C. Blanco. Home
monitoring musculo-skeletal disorders with a single 3d sensor.
In Proc. of CVPR Work., 2013.

[31] T. Winkler, A. Erdelyi, and B. Rinner. Trusteye.m4:
Protecting the sensor - not the camera. In Proc. of AVSS,
Seoul, August 2014.

[32] T. Winkler and B. Rinner. Securing embedded smart cameras
with trusted computing. In EURASIP JWCN, 2011.

[33] T. Winkler and B. Rinner. Security and privacy protection in
visual sensor networks: A survey. ACM Comp. Surv., 47(1),
2014.

[34] N. Zhu, T. Diethe, M. Camplani, L. Tao, A. Burrows,
N. Twomey, D. Kaleshi, M. Mirmehdi, P. Flach, and
I. Craddock. Bridging e-health and the internet of things: The
sphere project. IEEE Intel. Sys., 30(4):39–46, 2015.


