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Abstract

Images captured in camera networks are potentially pri-
vacy sensitive and therefore need protection. A critical as-
pect is where protection is applied — after transmission at
the data center or preferably already on the camera. In this
work we take on-camera protection a step further and pro-
pose to make privacy protection and security inherent fea-
tures of the image sensing unit. Already within the camera
we realize strong separation between components that have
access to raw image data and those that do not need raw
data access. Our approach is based on the custom-designed
TrustEYE.M4 prototype of a secure sensing unit. We demon-
strate the feasibility of sensor-level privacy protection with
a cartoon-like effect based on mean shift filtering.

1. Motivation and Approach

In home monitoring and assisted living applications
cameras are deployed in private environments where cap-
tured data is highly privacy sensitive. This is addressed by
integrating privacy protection techniques [2} [8]], combined
with IT-security features [19], directly into cameras.

With our TrustEYE.M4 prototype [18] we contribute to
the state of the art by moving privacy protection and security
into the image sensing unit. We demonstrate the feasibility
of this approach by applying real-time privacy protection
via a cartoon-like effect at the sensor level. Furthermore,
we advance the state of the art by addressing the following
two major limitations of existing secure camera solutions:

Implicitly trusted software components. Large software
components of a camera such as the operating system,
the network stack and system libraries are part of the
implicitly trusted software base. Even with, e.g., se-
cure boot which ensures that only genuine software is
executed, it is impossible to guarantee the absence of,

yet undisclosed, security flaws which can be exploited
by attackers. It is therefore a ’best practice’ to reduce
the amount trusted components as much as possible.

Lack of separation. On-camera privacy protection and se-
curity measures are performed typically at the applica-
tion level as part of the computer vision tasks. Conse-
quentially, security and privacy protection are tightly
interwoven with the application logic and they are left
in the responsibility of application developers.
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Figure 1. The camera is divided into a secure sensing unit with ex-
clusive access to raw images and an untrusted camera host system
which runs user applications, middleware and networking tasks.

Figure [I] presents an overview of our secure sensing
unit approach which overcomes these two major limita-
tions. The camera device is divided internally into a se-
cure sensing unit and a camera host system. The secure
sensing unit has exclusive access to raw image data and it
applies data security techniques and image pre-filtering for
privacy protection. Data security typically provides non-
repudiation guarantees (i.e., authenticity, integrity
and freshness/timestamping) for captured images. This can
be achieved via cryptographic techniques [19] or via image
watermarking [11]] and steganography. Privacy protection



is implemented by filtering captured images before they are
forwarded to the camera host system. Filtering can be per-
formed for regions of interest (object-based) or for the en-
tire image (global). Object-based filtering [[14] could target
human bodies or face [10]. In this case the achieved pri-
vacy protection depends on the reliability of the underlying
object detection. Global techniques [6, [15] do not depend
on detection performance and therefore provide higher pri-
vacy guarantees. Adaptive global protection combines both
approaches by incorporating the results of unreliable detec-
tors [15] to determine the strength of global protection.

For a secure sensing unit several approaches exists. High
security against manipulation is achieved by fabricating the
secure sensing unit as an ASIC. This promises also high
performance but is rather inflexible in case of changing sys-
tem requirements. In contrast to that are software solutions
which use virtualization to realize two separated system do-
mains. This achieves high flexibility but might not be on
par with the security of an ASIC. In-between these two ap-
proaches we see SoC-based solutions. Critical security fea-
tures are provided by hardware while controlled flexibility
is achieved via the firmware running on the SoC.

Regardless of the chosen approach, there are major chal-
lenges which have to be considered during design:

Privacy protection vs. utility. A central aspect of camera
networks is to be able to observe behavior of moni-
tored individuals. Privacy protection inside the secure
sensing unit and the need for behavior monitoring must
be balanced such that the utility of the camera system
does not degrade severely. Due to application require-
ments, different regional laws and different cultural at-
titudes there is no single solution but a continuum.

Flexibility and adaptation. To be able to choose a
scenario-specific privacy vs. utility tradeoff, also the
underlying platform must be flexible and support the
adaptation of the implemented privacy protection so-
lutions. It is critical that access to this adaptation func-
tionality is limited strictly to eligible parties.

Resource limitations. The secure sensing unit is closely
integrated with the image sensor. Due to cost, space
and resource constraints the protection features in the
secure sensing unit have to be relatively light-weight.

The remainder of this paper is organized as follows. Sec-
tion [2] presents related work in the field of sensor-level se-
curity. Thereafter, Section E] describes the hard- and soft-
ware architecture of TrusteEYE.M4 — our custom-designed
SoC-based secure sensing solution. Section 4] demonstrates
the feasibility of the approach with a cartoon-like privacy
filter applied in the secure sensing unit before images are
forwarded to the camera host system. Finally, Section [3]
concludes the paper and gives an outlook to future work.

2. Related Work

Several related approaches for camera and sensor secu-
rity are presented in this section.

PrivacyCam [3]] is a camera system based on a Blackfin
DSP clocked at 400 MHz, 32 MB of SDRAM and an Om-
nivision OV7660 color CMOS sensor. Regions of interest
are identified based on background subtraction and result-
ing regions are encrypted using AES.

TrustCAM [19] exploits the capabilities of a Trusted
Platform Module (TPM) to implement a secure camera. The
TPM is used to monitor and record the software state of the
camera, to implement authenticity and integrity guarantees
via digital signatures and to provide secure timestamping.
The camera ensures confidentiality of all captured data.

Most work on securing image data at the sensor level has
focused so far on providing integrity protection and authen-
ticity guarantees. The most common implementation form
is by embedding watermarks into the captured data [9].

Mohanty and Adamo [12| [1]] describe a secure digital
camera system that provides integrity, authenticity and own-
ership guarantees for digital video via a combination of wa-
termarking and encryption. A binary watermark image is
encrypted with a user-supplied key before it is embedded
into the image. An FPGA-based prototype demonstrates the
approach under real-time conditions. Karthigaikumar and
Baskaran [[7] focus on real-time performance and as well as
low power consumption with their ASIC implementation of
a custom watermarking algorithm.

De Strycker et al. [3] use a digital signal processor to
embed an invisible, digital watermark into video frames in
real-time. The watermark consists of a pseudo-noise pattern
that depends on a secret key. The system is evaluated in the
context of a video broadcasting application where it pro-
vides authenticity guarantees for delivered video streams.

Nelson et al. [13] propose an image sensor with built-
in watermarking. In their concept, every image sensor is
equipped with a unique, secret key used to generate pseudo-
random noise serving as watermark. To verify image au-
thenticity, a recipient has to know the sensor’s secret key.

Stifter et al. [17] suggest to integrate a secure storage for
a symmetric, cryptographic key into the image sensor. This
key is used as part of message authentication code (MAC)
computations. The system provides integrity and authentic-
ity guarantees for delivered data. Furthermore, image fresh-
ness is guaranteed via a “non-repeating’ sequence number.

3. TrustEYE.M4 System Architecture

TrustEYE.M4 is entirely custom-designed at our lab in-
cluding both hard- as well as software. The main design
goal is its application as a secure sensing unit together with
an off-the-shelf camera host system. For that application,
hardware components have been selected which provide
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Figure 2. The 5050 mm TrustEYE.M4 CPU board with an Om-
niVision OV5642 image sensor module.

a dedicated high-performance image sensor interface and
hardware security features for firmware protection.

The TrustEYE.M4 CPU board shown in Figure 2] is
based on a two layer 50x50 mm printed circuit board and
is using an STM32F417 ARM Cortex M4 microcontroller.
The CPU provides 192kB on-chip SRAM and 1 MB on-
chip program Flash memory. Since the on-chip SRAM is
insufficient to hold multiple images for processing and since
typical computer vision algorithms require additional stor-
age for intermediate results, an additional 2 x2 MB of exter-
nal SRAM are included on the circuit board. Data transfers
from the image sensor module to SRAM and from SRAM
to the camera host system are implemented via the micro-
controller’s DMA engines such that the CPU itself is avail-
able for image processing. The system is powered either
via a Micro-USB connector, a single-cell lithium polymer
battery or directly via the camera host system.

Currently two image sensor modules are supported — one
with an OmniVision OV7725 (640x480) and one with an
OmniVision OV5642 sensor (5 megapixels). The sensors
are configured via the 12C bus, deliver their data via a par-
allel 8-bit interface and can be configured for various data
formats including YUV422, YUV420 or RGB.

Programming and debugging support is provided via the
Serial Wire Debug (SWD) interface or the controller’s serial
bootloader. An dedicated connector (cp. Figure[5) attaches
TrustEYE.M4 via SPI to a RaspberryP]ﬂ single-board com-
puter running Linux which serves as camera host system.

The TrustEYE.M4 CPU provides hardware accelerators
for cryptographic algorithms including AES256, SHAI,
SHA256 and HMAC. Furthermore the SoC provides a true
random number generator and a 96-bit unique ID. The

IRaspberryPI SBC: http://www.raspberrypi.org (visited: 03/2014)
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Figure 3. TrustEYE.M4’s software stack includes standard li-
braries and FreeRTOS (gray), custom drivers and an application
framework (blue). On top are actual application tasks (green).

chip’s program Flash memory can be both permanently
read- and write protected. The on-board ST33TPM12SPI
TPM chip provides RSA key generation (2048 bits), RSA
signature creation and encryption, secure monotonic coun-
ters, remote attestation capabilities and comes with an en-
dorsement key certificate. The TPM is the basis for pro-
viding non-repudiation guarantees (integrity, authenticity
and timestamping) for captured images based on TPM-
protected, non-migratable 2048 bit RSA keys.

Figure [3] presents an overview of the software architec-
ture of TrustEYE.M4. The lowest layer consist of three
components: (1) The CMSIS (Cortex Microcontroller Soft-
ware Interface Standardﬂ library, (2) the STM32 Standard
Peripheral Libraryﬂ which provides an access layer for on-
chip peripherals and (3) the FreeRTOﬂ real-time operat-
ing system. The second layer contains custom hardware
drivers for, e.g., the image sensors and the TPM. The Trust-
EYE.M4 hardware abstraction provides a flexible mecha-
nism for the configuration of hardware functions and pin
mappings. The TrustEYE.M4 application framework sup-
ports the de-composition of applications into tasks which
are scheduled by FreeRTOS. As a single-core processor
system, TrustEYE.M4 does not support parallel execution.
However, the DMA engines of the CPU allow to implement
bulk data transfers without blocking the CPU. To ensure that
tasks waiting for DMA completion do not block other tasks,
a synchronized, double-buffering mechanism is included in
the software framework for efficient data handover.

4. Secure Sensing Unit Demonstrator

Figure [] shows a setup where the TrustEYE.M4 CPU
board is connected to a RaspberryPI Embedded Linux sys-
tem. TrustEYE.M4 acts as the image sensing unit which
pre-processes captured images before forwarding them to
the RaspberryPI camera host system. To demonstrate the
proposed concept of a secure sensing unit we implement the
application outlined in Figure [5] It shows clearly the strict
separation of the sensing unit from the camera host system

2CMSIS Library: http://www.arm.com/cmsis/ (visited: 03/2014)
3STM Standard Periph. Library: http://www.st.com (visited: 03/2014)
4FreeRTOS website: http://www.freertos.org (visited: 03/2014)
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Figure 4. TrustEYE.M4 used as a secure sensing unit on top of a
RaspberryPI Linux system serving as camera host system.

where the Linux operating system, the streaming applica-
tion and potential user applications are executed. Security
flaws in, e.g., the network stack of the Linux operating sys-
tem may result in a security breach of the camera host sys-
tem. The isolated sensing unit, which is the only entity that
has access to the raw image data, is not affected. On Trust-
EYE.M4, YUV422 images are read from the sensor which
are then filtered by the privacy task with a global cartoon-
like effect as described subsequently in section .1} The
resulting, pre-filtered image data is then forwarded to the
camera host system for further processing.

4.1. Cartoon-like Privacy Filter

We designed and implemented a cartoon-like filtering ef-
fect for TrustEYE.M4 which is applied globally to the cap-
tured frames. This makes privacy protection independent of
unreliable region of interest detection. Cartooning effects,
as proposed in [6], achieve good privacy protection while
maintaining high levels of intelligibility. A central compo-
nent of cartooning is color-based segmentation where the
mean shift algorithm was shown to deliver good results.
Established mean shift filtering implementations as, e.g.,
pyrMeanShiftFilter() from OpenCV, are too complex to be
ported to the resource-constraint TrustEYE.M4. Therefore,
we implemented a customized filter inspired by mean shift
which operates on YUV422 images delivered by the sensor.

In mean shift filtering, for every pixel location (X,Y)
of an input image I a surrounding spatial region (Eq. [I)
defined by radius r is examined.

R={(z,y)el|(X—r<az<X+r)A
Y -r<y<Y+n} (1)

For every location (z,y) the color distance between to re-
gion’s center (X,Y’) is computed (Eq. [2). Note that the

concept of mean shift is independent of a particular color
model. If color Dist is smaller than a defined color radius ¢
then color(z,y) contributes to the mean color of the region
Colorg,,,.., and (z,y) contributes to the spatial mean of
the region (Xp Yr

mean mean ) N

colorDist = dist(color((X,Y)), color(z,y)). (2)

The mean shift procedure is then repeated with
(XRpouns YR,,..,) @ the new region center. This proce-
dure is continued until a termination criterion (e.g., number
of iterations or minimal step size) is met. Finally, the pixel
value at I(X,Y) is set to Colorg of the last iteration.

mean

4.1.1 Cartoon Effect for Low-Resource Devices

For a mean shift filtering variant that is computationally
feasible on TrustEYE.M4 we limit the number of itera-
tions to one. Furthermore, the processing effort for ex-
amining the individual regions R around each pixel posi-
tion (X,Y) is very high, especially for larger spatial radii
which achieve good visual results. To overcome this lim-
itation we have re-designed the mean shift procedure and
introduced a processing step where N integral images [4]]
are computed per frame. Each integral image IntImg[n] is
computed for the original input image [ but only for the
n'" sub-range of the color space (color Range[n]). The
update() function in the compIntImg() function shown
in Listing [I| only incorporates the current value I(X,Y)
into the IntImg[n] if it is within within color Range[n].
Once complete, each integral image holds at every position
the integrals of the color values belonging to the respective
color Range[n]. Additionally, the update() function stores
at each position the count integral of how many elements
fall into color Range[n]. It must be noted that depending
on the underlying color model, the individual channels can
not be treated separately when computing IntImg[l...N].
In our case of YUV we treat the Y channel independently
whereas the U and V channel are considered jointly.

Listing 1. Integral image computation.

1 func complntlmg(I, n)

2 var Intlmg

3 for each (X, Y):

4 if (I(X,Y) in colorRange[n]):
5 update (IntImg (X, Y), I(X, Y))
6 else

7 update (IntImg (X, Y), null)

8 return Intlmg

9
10 for (n =1 to N):
11 IntImg [n]=compIntImg (I, colorRange[n])

The actual cartooning procedure now iterates over all
image points I(X,Y’), computes the corresponding color
range n and extracts the four corner points (A, B, C, D)ﬂof

5 A = top left; D = bottom right point of R
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Figure 5. In this example TrustEYE.M4 is attached to a RaspberryPI camera host system (cp. Figure ). TrustEYE.M4 has exclusive
access to the image sensor and applies globally a cartoon-like filter to raw images before forwarding them to the camera host system. On
the camera host system standard operating systems, software libraries and user-defined applications (e.g., video streaming) are executed.

the spatial region R around (X, Y") from IntImg[n]. Each
corner point consists of the color integral and the count inte-
gral, e.g., A = (Colorynr_a, Countynr_a). The region’s
color and count integrals are computed as

(Colorynt,Count;nt) =D —B—-C+ A.  (3)
and subsequently, the mean color can be computed and set:

I(X,Y) = COZOTINT/COUTLt[NT. (4)

4.1.2 Performance Considerations

A rough runtime comparison of our mean shift variant with
the standard approach reveals a substantial difference. For
the standard mean shift an » X r region is examined for
every location (X, Y") of an image with a spatial resolution
of h Res x v Res resulting in the following runtime estimate:

tmshift = O(hRes x vRes x 12). )

For the mean shift variant implemented on TrustEYE.M4
we first computed the N integral images where NV times the
hRes x vRes image is traversed followed by an additional
traversal for the computation of the final output values:

tmshift.ma = O((hRes x vRes) x (N +1)).  (6)

The runtime estimates show that our mean shift variant is
independent of the spatial radius r and depends instead on
the number of color regions N. N is typically smaller than
r and affects runtime not in squared form as r does. Since
the spatial radius does not affect the runtime and region R is
solely defined by the corner points (A, B, C, D) it involves
no extra computational effort to shrink or enlarge the region.

Memory requirements of our mean shift variant are sub-
stantially higher than those of standard versions because N

ext. SRAM int. SRAM
Mean Shift 89 ms 62 ms
Roberts Cross 11ms n/a

Table 1. Execution times on TrustEYE.M4.

integral images have to be stored. Furthermore, the ele-
ments of the integral images require typically 32 bits to ac-
commodate the integral values. To reduce the memory re-
quirements we have introduced an iterative computation of
the integral images where a window of hRes x r is moved
from top to bottom and NV integral images of hRes X r in-
stead of hRes * vRes are kept in memory.

In terms of delivered results our modified mean shift ver-
sion is not on par with standard implementations. This is
due to the fact that we do not support a color radius cen-
tered around a pixels value I(X,Y") but colors are sorted
into n color regions. Color separation in the output is less
pronounced and accurate than in standard mean shift.

4.2. Evaluation

Figure [6] shows an example of a cartooned image from
TrustEYE.M4. Sample videos are available on the Trust-
EYE website [18]]. The spatial radius r is 32 and the number
of regions IV for the Y channel and the interdependent U/V
channels are set to 4. To enhance the cartoon-like effect we
additionally apply Roberts cross filtering for edge enhance-
ment. For an image resolution of 320x240 we achieve
11 fps including transmission of uncompressed images to
the RaspberryPI and subsequent streaming via Ethernet.
Table|[T] presents the runtimes for the customized mean shift
function and the Roberts cross edge detection. With the it-
erative computation approach, the integral images fit into
internal SRAM which notably speeds up data access. This
results in a mean shift runtime of 62ms per frame. In-
cluding edge-enhancement, a runtime of 73 ms per frame
is achieved resulting in a theoretical frame rate of 13.7 fps.
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Figure 6. Cartoon image from the TrustEYE.M4 sensing unit.

Due to SPI bus limitations and network overheads this is
reduced in practice to the already mentioned 11 fps.

5. Conclusion and Outlook

In this work we presented TrustEYE.M4 — a novel ap-
proach towards moving security and privacy protection as
close to the sensor as possible and thereby reducing the
number of implicitly trusted components of a smart cam-
era. With a customized version of mean shift filtering we
demonstrated that even on severely resource-limited devices
global cartooning effects for privacy protection are feasible.
Ongoing work includes the thorough evaluation of the util-
ity vs. privacy tradeoff achieved with global filtering such
as cartooning, the exploration of approaches that allow to
recover identities under controlled conditions and the inte-
gration of underlying hardware-based security features to
guarantee strong protection of TrustEYE.M4’s firmware.
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