
Demo: VSNsim - A Simulator for Control and Coordination
in Visual Sensor Networks

Melanie Schranz and Bernhard Rinner
Institute of Networked and Embedded Systems

Alpen-Adria Universität Klagenfurt, Austria
{firstname}.{lastname}@aau.at

ABSTRACT
The analysis and evaluation of concepts in the research fields
of visual sensor networks (VSNs) suffer from the low number
of simulation possibilities. In this paper we present a simula-
tor, the VSNsim, dedicated for evaluating control and coor-
dination strategies in VSNs. It is built with the game engine
Unity3D and has a very user friendly handling. The algo-
rithms locally running on the sensor nodes of the VSN can
be implemented in C#, JavaScript or Boo. Due to graphi-
cal user interface and the 3D implementation, our simulator
is a tool that can be intuitively applied and extended to a
researcher’s need.

Categories and Subject Descriptors
Computer systems organization [Embedded and cyber-
physical systems]: Sensor Networks; Computer systems
organization [Architectures]: Other architectures—Self-
organizing autonomic computing ; Software and its engineer-
ing [Software organization and properties]: Contextual
software domains—Virtual worlds software

Keywords
Visual sensor networks, Virtual worlds, Distributed systems

1. INTRODUCTION
Visual sensor networks (VSNs) are constituted of spa-

tially distributed smart cameras. The cameras work au-
tonomously, retrieve the observations from the environment
and process them locally. By exchanging the retrieved infor-
mation among the other cameras in the network or a specific
neighborhood, they are able to further process aggregated
observations for an optimized output.

In general, VSNs address different research fields includ-
ing image processing, networking as well as control and co-
ordination. For evaluating image processing techniques, re-
searchers usually revert to pre-recorded datasets from physi-
cal camera networks or virtual rendered video streams. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ICDSC ’14, November 04 - 07 2014, Venezia Mestre, Italy
Copyright 2014 ACM 978-1-4503-2925-5/14/11 ...$15.00.
http://dx.doi.org/10.1145/2659021.2669475

latter is provided by a simulation environment proposed by
Qureshi and Terzopoulos in [1] and following works in [2]
and [3]. They present a 3D synthetic environment to sim-
ulate real-life scenes involving pedestrian tracking with two
PTZ-cameras and one static camera.

For evaluating networking aspects, several well-known net-
work simulators like the OMNeT++1, ns-22 or GNS33 are
widely used. Their main focus is to simulate issues on a
very deep network protocol level (routing, TCP, IP, multi-
cast protocols) for wired or wireless communication.

For evaluating control and coordination aspects no conve-
nient simulation framework is available. Thus, researchers
mostly implement the control and coordination algorithms
in Matlab or other programming languages, as in Java by
Esterle et al. in [4].

We established a new simulator for the evaluation of con-
trol and coordination strategies. The VSNsim provides a
user friendly 3D environment for evaluations before imple-
menting the algorithms on a real camera network. First of
all, the reasons for developing the VSNsim was to create a
tool capable of analyzing control and coordination strategies
by abstracting the physical layer, networking protocols and
image processing tasks of the nodes in a VSN. The current
version of the simulator models multiple cameras with par-
allel execution behavior. Nevertheless, the simulator is easy
in installation, use and extension of the simulation environ-
ment. Moreover, it provides a pseudo-realistic environment
with multiple GUI elements. Such an evaluation environ-
ment motivates researchers to encourage their creativity in
designing various scenarios and thus, analyzing different be-
havior of their algorithms.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the implementation details of VSNsim. In
Section 3 we briefly sketch the application we evaluated
with VSNsim. Further, Section 4 explains the way in which
VSNsim is presented at the conference and finally, Section
5 concludes the paper and gives an outlook on further im-
provements on the presented simulator.

2. THE VSNSIM

A screenshot of the VSNsim is shown in Fig. 1, which
includes three selected camera views and some control but-
tons. The current simulation environment provides 26 smart
cameras placed in 14 emulated office rooms. The cameras
have overlapping field of views (FOVs) and the object identi-

1http://www.omnetpp.org/
2http://www.isi.edu/nsnam/ns/
3http://www.gns3.net/

fication as well as all other processing tasks concerning con-
trol and coordination run locally on the cameras. The corre-
sponding algorithms can be easily written in C#, JavaScript
or Boo. The cameras in the simulator retrieve the object’s
information all two seconds. The applied processing tasks
are executed with ease within this time.

Figure 1: A screenshot of the VSNsim.

The main VSNsim building blocks, e.g., for office rooms,
moving objects or smart cameras, are the so-called game
objects4. A game object refers to an entity and consists of
several components describing the object’s attributes and
behavior. These components are structuring elements rep-
resenting, e.g., an object’s tag, transform, collider, renderer
or behavior through scripts. These game objects are built
and operate independently from each other.

2.1 Environmental Structure
The office rooms in the simulator (Fig. 2a) are built up

with the previously described game objects as low-poly mod-
els. They define walls equipped with colliders for collision
detection. The colliders are built as box objects to achieve a
minimized polygon count. This avoids collisions of the mov-
ing objects with the walls. They do not have a significance
during run time. Passing of moving objects through walls
is enabled by deploying animated doors. The doors are also
triggered by additional colliders. The office equipment cor-
responds to typical interior decoration in office rooms with
desks, chairs, shelves, plants and toilets (Fig. 2b). This
furnishing also uses colliders to be visible to the moving ob-
jects. The textures used for the offices have a standard size
of 512x512 pixels. All shadows in the scene are pre-rendered
to save computation time.

2.2 Object Movement
Fig. 2c represents an object which is realized as a game

object with selected texture. The object’s movement is
based on two strategies. i) It follows pre-defined waypoints
as indicated with yellow circles in Fig. 2c. The object’s
trajectory together with its velocity are defined offline. ii)
The objects move randomly and are attracted by some ”ob-
ject’s needs” which help to guide them from room to room.
Their trajectory is determined during run time. Collisions

4http://docs.unity3d.com/ScriptReference/
GameObject.html

between moving objects are avoided with collision queries
and recalculations of the path. The only limitation for the
object movement is given with the defined navmesh in the
simulation environment—an abstract data structure gener-
ated offline through colliders to aid the moving objects in
path-finding while reducing computational effort.

2.3 Smart Cameras
A smart camera together with its view is shown in Fig.

2d. It is realized as a so-called prefab object. A prefab is
a clone and placed multiple times—in our case 26 times—
to the scene having the same attributes and behavior. It
is constituted of an game object combining the component
“camera” to it. This component is available via the Unity3D
game engine. Within the engine it is a device to capture
and display the world to the player. Each prefab is able to
perform computation locally and independent of the other
prefabs. Through a common interface—represented by a
component attached to the prefabs—they exchange their lo-
cally retrieved and processed data among themselves.

The object identification is realized by the raycast method
provided by Unity3D. The raycast method has a similar op-
eration as radar. If a camera has an object in its FOV, it
gets the object’s coordinates together with its ID transmit-
ted through an internal message.

Further processing tasks related to cooperative control,
etc. are added as further components directly to the smart
camera game object. As already mentioned, they can be
written in C#, JavaScript or Boo, whereby the game object
is able to handle scripts written in multiple programming
languages. Moreover, at each processing step, the smart
cameras are storing their camera ID, a time stamp and se-
lectable information into a file with spreadsheet format. Al-
ready during the simulation time it is possible to request the
stored data for further analyses.

2.4 Graphical User Interface
The simulator starts with a 2D GUI allowing the user to

initialize several variables of the simulator. In our applica-
tion each camera stores the coordinates and the ID of an
object, if it is in its FOV, together with time and a simu-
lated resource parameter. Thus, first of all we can select a
location for data storage locally on the PC. Another setting
can be done on the standard deviation of the objects ground
truth serving as input to the individual cameras. Further,
we can choose between two indoor and one outdoor scene.
After starting the simulator, a window as in Fig. 1 ap-
pears. We have three additional windows, where camera
views can be shown as necessary. These views provide fur-
ther understanding on the scene and are not considered as
any input. By selecting a camera in the simulator during
run time, its view will arrange itself into the list of given
windows. Further, there are several buttons visible to add
or delete objects, switch tracking of objects on/off and save
the observations.

3. SIMULATION EXAMPLE: RESOURCE-
AWARE STATE ESTIMATION

As example, we demonstrate the VSNsim functionality on
a resource-aware cluster-based protocol for smart cameras in
VSNs, as proposed in [5]. The dynamic clustering protocol
considers the available resources and a visibility parameter

(a) (b)

(c) (d)

Figure 2: The individual parts of the simulator: 2a) the setup of the office rooms, 2b) the equipment within the office rooms,
2c) the structure of a moving object together with the pre-defined waypoints and 2d) a smart camera together with its preview.

in order to distribute the state estimation process accord-
ingly. It is designed in a lightweight way leading to a mini-
mal number of messages to be exchanged and thus, spare a
node’s resources.

We used the simulator to compare it to the fully dis-
tributed approach of [6]. In our evaluation we consider a
single room of the VSNsim equipped with nine cameras. The
object is following pre-defined waypoints—called the ground
truth. Within this simulation each camera gets its individ-
ual observations from the object by a random modification
of the ground truth. In the evaluation we set the modifica-
tion value randomly to a standard deviation of three length
units. Thus, we showed in [5] that the state accuracy in
the cluster-based approach suffers due to the reduced num-
ber of exchanged information. Nevertheless, our approach
outperforms the distributed one in terms of a reduced com-
munication and storage consumption.

4. ICDSC DEMO
During the demonstration we will show the main possibil-

ities for the usage of the simulator. We implemented three
different scenarios: i) an indoor scene, where the objects
follow a specific need to move from office to office, ii) an in-
door scene, where the objects follow pre-defined waypoints
and iii) an outdoor scene also based on waypoint movement.
Further on, we will show how to extend the simulator us-
ing your own coordination and control algorithms. Finally,
we will demonstrate how to apply simple image processing
algorithms on the simulated camera views.

A short video of the current version of the simulator is
presented on www.youtube.com/watch?v=r7E1NRSccjg.

5. CONCLUSION AND FUTURE WORK
The presented demonstration shows the possibility of eval-

uating a smart camera network in a very efficient and user

friendly way. Within a 3D game engine we can generate
a simulation environment for coordination and cooperation
control algorithms in VSNs.

Open issues are additional user interface actions during
runtime like defining the number of active cameras, allowing
for application appropriate scenes, etc. Additional enhance-
ments are related to simulating PTZ and mobile cameras as
well as the applicability of vision-based algorithms.

6. REFERENCES
[1] F. Z. Qureshi and D. Terzopoulos, “Smart Camera

Networks in Virtual Reality,” in First ACM/IEEE
International Conference on Distributed Smart
Cameras (ICDSC), 2007, pp. 87–94.

[2] W. Starzyk, A. Domurad, and F. Z. Qureshi, “A
Virtual Vision Simulator for Camera Networks
Research,” in Ninth Conference on Computer and Robot
Vision (CRV), 2012, pp. 306–313.

[3] W. Starzyk and F. Z. Qureshi, “Software laboratory for
camera networks research,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 3,
no. 2, pp. 284–293, 2013.

[4] L. Esterle, P. Lewis, M. Bogdanski, B. Rinner, and
X. Yao, “A socio-economic approach to online vision
graph generation and handover in distributed smart
camera networks,” in Fifth ACM/IEEE International
Conference on Distributed Smart Cameras (ICDSC),
Aug. 2011, pp. 1 –6.

[5] M. Schranz and B. Rinner, “Resource-Aware State
Estimation in Visual Sensor Networks with Dynamic
Clustering,” 2014, under Review.

[6] B. Song, C. Ding, A. Kamal, J. Farrell, and
A. Roy-Chowdhury, “Distributed camera networks,”
IEEE Signal Processing Magazine, vol. 28, no. 3, pp. 20
–31, 2011.

