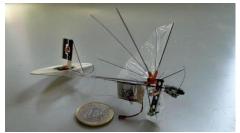


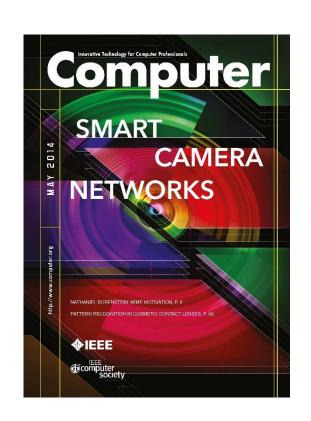
FAKULTÄT FÜR TECHNISCHE WISSENSCHAFTEN

Institut für Vernetzte und Eingebettete Systeme


Bernhard Rinner
http://bernhardrinner.com

Ubiquitous Cameras

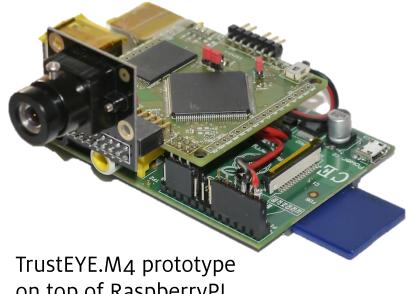
- We are surrounded by billions of cameras in public, private and business spaces
- Various well-known domains
 - Transportation
 - Security
 - Entertainment
 - Mobile
- Cameras serve a purpose and provide some utility
 - Providing documentation/archiving
 - Increasing security
 - Enabling automation
 - Fostering social interaction



© spiegel.de, givenimaging.com, TU Delft

Paradigma Shifts in Video Processing

- Towards online/onboard processing
- Towards distributed, in-network analysis
- Towards ad-hoc deployment and mobile and open platforms
- Towards user-centric applications


Emergence of Smart Camera Networks!

Smart Cameras as Enabling Technology

- Smart cameras combine
 - sensing,
 - processing and
 - communication

in a single embedded device

on top of RaspberryPI

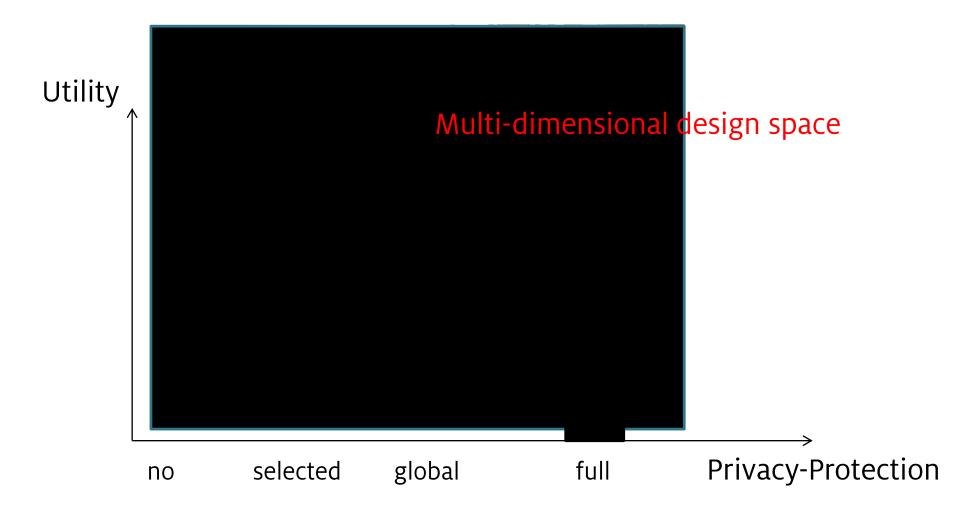
- perform image and video analysis in real-time closely located at the sensor and transfer only the results
- collaborate with other cameras in the network

[Rinner, Wolf. A Bright Future for Distributed Smart Cameras. Proc. IEEE, 2008]

Agenda

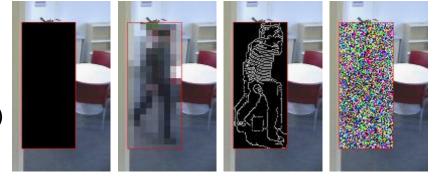
- 1. Onboard privacy protection in (single) camera
 - Explore tradeoff among utility/protection/resources
 - Embed protection mechanisms close to sensor
- 2. Autonomous in-network analysis
 - Self-organize tracking in camera networks
 - Learn advantageous strategies of cameras

Onboard Privacy Protection


Privacy Protection in Images

B. Rinner Source: Wikipedia

Utility and Privacy-Protection Tradeoff



Observations and Key Challenges

 Most techniques focus on protecting sensitive regions from unauthorized access

Global filters protect entire frame

 Object-based filters protect ROIs (depend on detection performance)

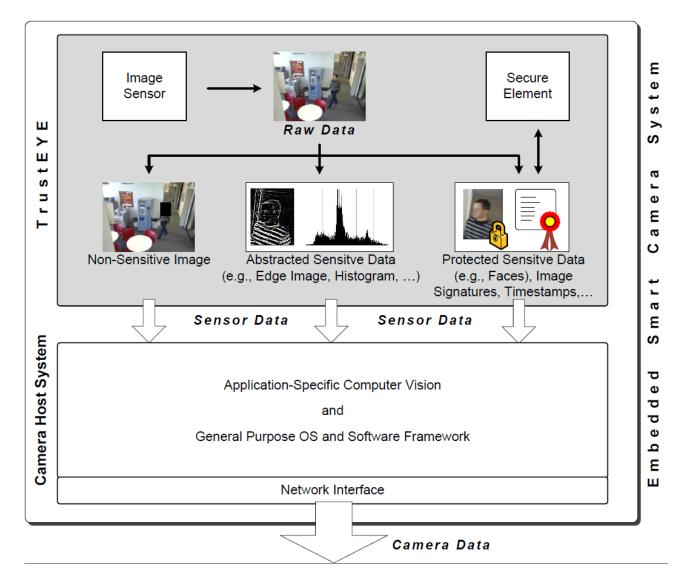
- No single best privacy protection method, but a large design space along protection/utility/resource dimensions
- Privacy protection goes hand-in-hand with security to provide
 - Non-repudiation
 - Confidentiality

[Winkler, Rinner. <u>Security and Privacy Protection in Visual Sensor Networks: A Survey</u>. ACM Computing Surveys, in print]

Approach: Trustworthy Sensing (TrustEYE)

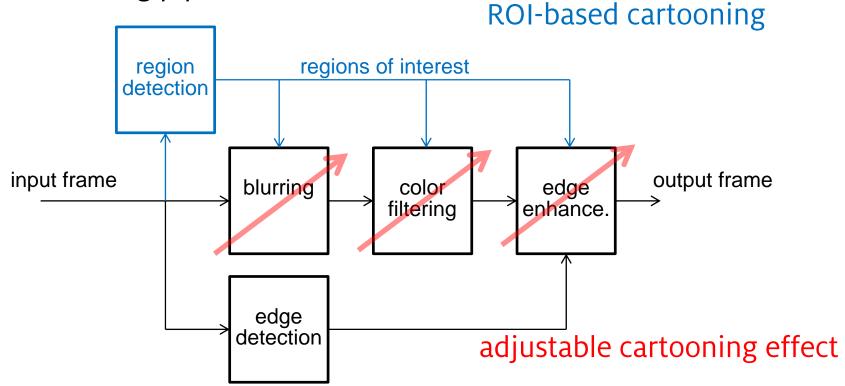
Objective:

- Protect access to sensor via a trusted component "TrustEYE"
- Make security and privacy protection an inherent feature of the image sensor
- Provide resource-efficient and adaptable privacy protection filters


Benefits:

- Sensor delivers protected and pre-filtered data
- Strong separation btw. trusted and untrusted domains
- Camera software does no longer have to be trustworthy
- Security can not be bypassed by application developers
- TrustEYE is anchor for secure inter-camera collaboration

[Winkler, Rinner. <u>Sensor-level Security and Privacy Protection by embedding Video Content Analysis</u>. In Proc. DSP 2013] http://trusteye.aau.at/


TrustEYE Overview

Privacy Protection by Cartooning

- Abstract parts or entire image by blurring and color filtering
- Cartooning pipeline

Embed cartooning as privacy feature into smart cameras

ROI-based Cartooning

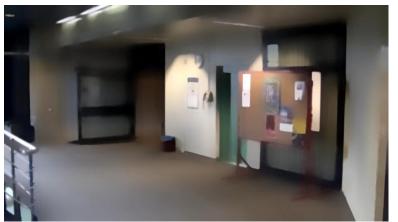
(c) MediaEval Dataset

Cartooning of detected faces

- Privacy protection depends on performance of region detectors (faces, persons etc.)
- Adapting the filter characteristic beneficial

[Erdelyi et al. Serious Fun: Cartooning for Privacy Protection. In Proc. MediaEval 2013.]

Adjustable Global Cartooning



original

cartooning (std)

cartooning (strong)

Evaluating Privacy/Utility Tradeoff

 Establish an objective evaluation framework among key dimensions, i.e.,

Privacy protection
 Identification of objects of interest

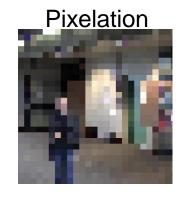
Utility
 Detection/tracking of objects

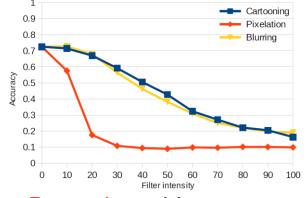
Appearance Structural similarity with unprotected frame

Resource consumption
 Achievable frame rate

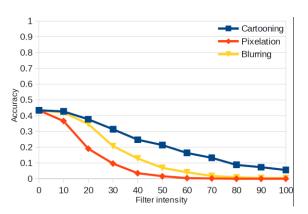
- Measure the performance using standard CV algorithms with protected videos (and use labeled test data as ground truth)
 - Independently for each frame
 - Measure protection among object's traces

[Erdelyi et al. <u>Adaptive Cartooning for Privacy Protection in Camera Networks</u>. In Proc. IEEE AVSS, 2014]

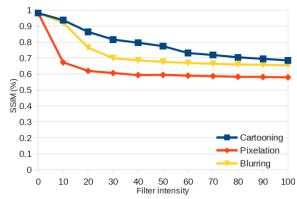



Comparison of Global Filter Approaches

 Performance of standard CV algorithms compared to unprotected video or other protection filters

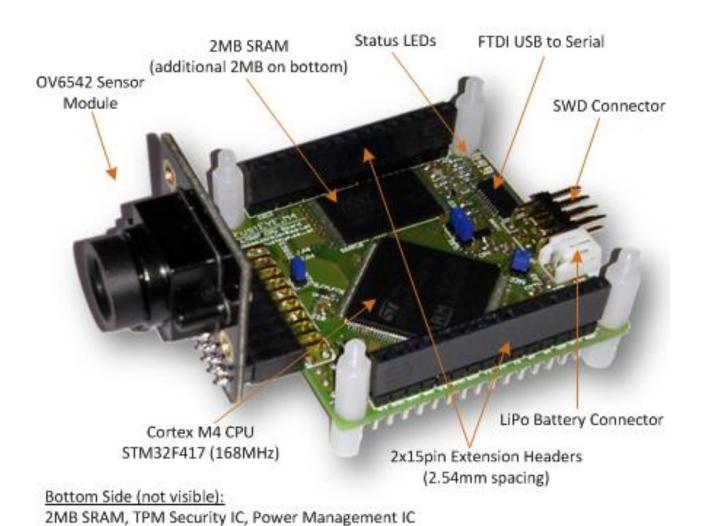

Cartooning

Blurring



Protection: object reidentification performance

Utility: object detection performance



Appearance: structural similarity index

TrustEYE.M4 Architecture


(LiPo Charger), Micro USB Connector, Reset Button

TrustEYE.M4 Prototypes

- Processing board (50x50 mm)
 - ARM Cortex M4 @ 168MHz
 - 4 MB SRAM
 - TPM IC: ST33TPM12SPI via SPI
 - Keil RTX RTOS

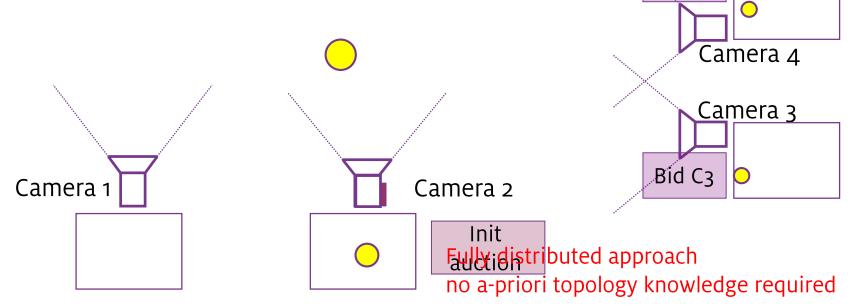
- Redpine Signals RS9110-N-11-02
- 802.11 b/g/n
- Encryption: WPA2-PSK, WEP
- Interconnect: SPI bus on 15pin ext. header

- Interconnect: SPI bus via dedicated RPI
- Daterate: 32 Mbit/s

TrustEYE in Action

Autonomous In-Networking Analysis

Self-organizing Camera Network

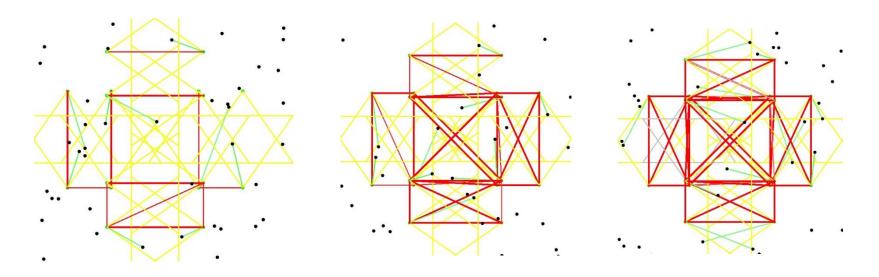

- Perform autonomous, decentralized and resource-aware network-wide analysis
- Demonstrate autonomous multi-object tracking in camera network
 - Exploit single camera object detector & tracker
 - Perform camera handover
 - Learn camera topology
- Key decisions for each camera
 - When to track an object within its FOV
 - When to initiate a handover
 - Whom to handover

Bid C4

Virtual Market-based Handover

- Initialize auctions for exchanging tracking responsibilities
 - Cameras act as self-interested agents, i.e., maximize their own utility
 - Selling camera (where object is leaving FOV) opens the auction
 - Other cameras return bids with price corresponding to "tracking" confidence
 - Camera with highest bid continues tracking; trading based on Vickrey auction

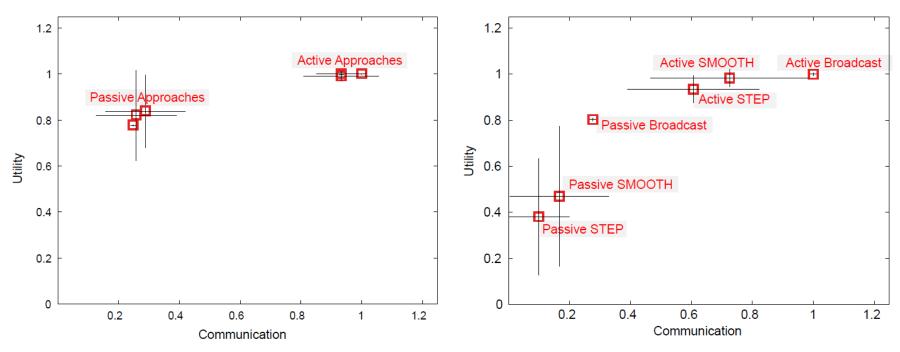
Camera Control


- Each camera acts as agent maximizing its utility function
- $U_i(O_i) = \sum_{j \in O_i} [c_j \cdot v_j \cdot \Phi_i(j)] p + r$

- Local decisions
 - When to initiate an auction (at regular intervals or specific events)
 - Whom to invite (all vs. neighboring cameras)
 - When to trade (depends on valuation of objects in FOV)
- Learn neighborhood relations with trading behavior ("pheromones")
 - Strengthen links to buying cameras
 - Weaken links over time

Learn Neighborhood Relationships

- Gaining knowledge about the network topology (vision graph) by exploiting the trading activities
- Temporal evolution of the vision graph

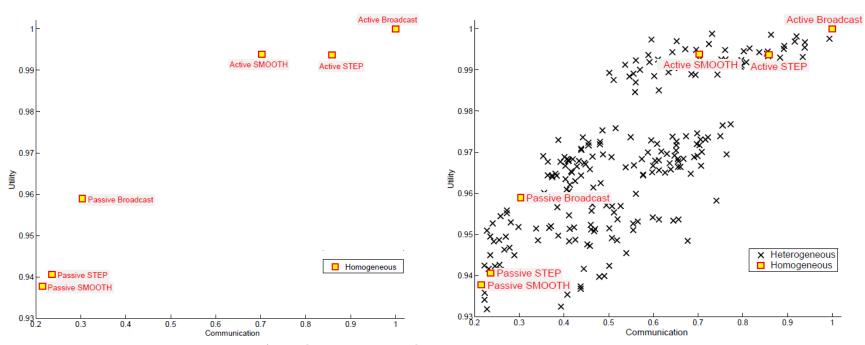

Six Camera Strategies

- Auction initiation
 - "Active": at regular intervals (at each frame)
 - "Passive": only when object is about to leave the FOV
- Auction invitation
 - "Broadcast": to all cameras
 - "Smooth": probabilistic proportional to link strength
 - "Step": to cameras with link strengths above threshold (and rest with low probability)
- Selected strategy influences network performance (utility) and communication effort

Tracking Performance

Tradeoff between utility and communication effort

Scenario 1 (5 cameras, few objects) Scenario 2 (15 cameras, many objects)

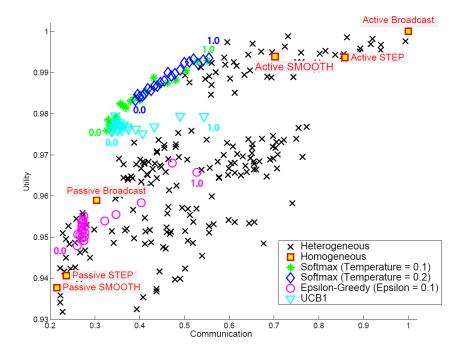

Emerging Pareto front

[Esterle et al. <u>Socio-Economic Vision Graph Generation and Handover in Distributed Smart Camera Networks</u>. ACM Trans. Sensor Networks. 10(2), 2014]

Assigning Strategies to Cameras

Identical strategy for all cameras may not achieve best result

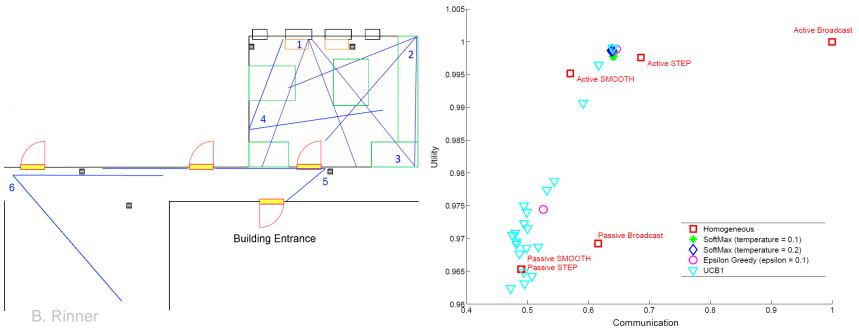
Homogeneous strategies (3 cameras)


Heterogeneous strategies (3 cameras)

- Strategy depends on various parameters (FOV, neighbors, scene ...)
 - Let cameras learn their best strategy

Decentralized Multi-Agent Learning

- Exploit bandit solver framework to maximize global performance
 - Co-dependency among agents' performance
 - Complex relationship between local reward global performance



[Lewis et al. <u>Static, Dynamic and Adaptive Heterogeneity in Socio-Economic Distributed Smart Camera Networks</u>. ACM Trans. Autonom. Adapt. Syst. 2014 (accepted)]

Multi-camera Experiment

- Indoor demonstrator with 6 cameras tracking 6 persons
- Each camera performs
 - Color-based tracking
 - Fixed or adaptive handover strategies (bandit solvers)
 - Exchange of color histograms for person re-identification

Conclusion

- Smart cameras process video data onboard and collaborate autonomously within the network
- Our cartooning approach protects image data "at the sensor" but stills provides reasonable utility with low resource usage
- We apply socio-economic techniques to learn control strategies for autonomous multi-camera tracking
 - Global configurations emerge from local decision using local metrics
 - Adaptive strategies extend Pareto front of best static configurations

 Techniques applicable to various decentralized networked systems (e.g., Internet of Things)

Acknowledgements & Further Information

Pervasive Computing group

Institute of Networked and Embedded Systems

http://nes.aau.at

http://bernhardrinner.com

Funding support

- KWF/FWF "Trustworthy Sensing and Cooperation in Visual Sensor Networks"
- FP7 FET "Engineering Proprioception in Computing Systems"