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Online Learning of Timeout Policies for Dynamic Power Management
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Dynamic Power Management (DPM) refers to strategies which selectively change the operational states
of a device during runtime to reduce the power consumption based on the past usage pattern, the current
workload and the given performance constraint. The power management problem becomes more challenging
when the workload exhibits non-stationary behavior which may degrade the performance of any single or
static DPM policy.
This paper presents a Reinforcement Learning (RL) based DPM technique for optimal selection of timeout
values in the different device states. Each timeout period determines how long the device will remain in
a particular state before the transition decision is taken. The timeout selection is based on workload es-
timates derived from a Multi-Layer Artificial Neural Network (ML-ANN) and an objective function given
by weighted performance and power parameters. Our DPM approach is further able to adapt the power-
performance weights in online to meet user-specified power and performance constraints, respectively. We
have completely implemented our DPM algorithm on our embedded traffic surveillance platform and per-
formed long-term experiments using real traffic data to demonstrate the effectiveness of the DPM. Our
results show that the proposed learning algorithm not only adequately explores the power-performance
tradeoff with non-stationary workload, but can also successfully perform online adjustment of the tradeoff
parameter in order to meet the user-specified constraint.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of Systems—
Design studies; Performance attributes; C.5.3 [Computer System Implementation]: Microcomputers—
Portable devices; I.2.6 [Artificial Intelligence]: Learning—Knowledge acquisition

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Dynamic Power Management, Reinforcement Learning, Traffic Moni-
toring, Online Learning, Timeout Policies

1. INTRODUCTION
Effective power management has become a major concern especially for mobile de-
vices. Power management techniques both at the hardware and software level have
recently arisen to achieve an optimal tradeoff between power consumption and per-
formance. The power managed devices offer a set of operational states which provide
different performance at different power consumption. This set includes active (e.g.,
processing and idle) and inactive states (e.g., sleep, hibernate and power down). Dy-
namic Power Management (DPM) refers to strategies which selectively change the
operational states of a device during runtime to reduce the power consumption based
on the past usage pattern, the current workload and the given performance constraint.
The dynamic power manager decides on how much time should be spent in a specific
operational state and when to make a transition to a different state satisfying certain
objectives including processing requirements, tasks’ deadlines, and real-time response.
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The individual decisions follow a DPM policy which trades performance for power con-
sumption. However, the identification of a policy that minimizes power under perfor-
mance constraints (or maximizes performance under power constraint) represents a
constrained policy optimization problem which is very important for all portable sys-
tems [Simunic et al. 2000][Ren et al. 2005].
The motivation of this research is based on our previous work on traffic monitoring
[Pletzer et al. 2012][Bischof et al. 2010] and the development of a mobile, multi-camera
traffic surveillance system [Khan et al. 2011]. In contrast to most of the existing traffic
surveillance systems which are mostly based on fixed installations and large sensors,
our portable platform can be easily deployed and used for various monitoring tasks
including law enforcement and construction site monitoring. Our embedded platform
is comprised of multiple, heterogeneous image sensors and executes high-level (stereo)
image processing algorithms to perform a number of traffic analysis tasks including li-
cense plate detection, vehicle detection and classification [Khan et al. 2012]. Since our
system runs on batteries and is intended to autonomously operate for longer periods,
DPM techniques must be integrated. The non-stationary workload caused by the road
traffic represents a dedicated challenge for the DPM implementation.
Since our system senses and analyzes predominantly non-stationary processes, a tra-
ditional requirement of such system is time dependent models for modeling and un-
derstanding their behavior [Bogdan and Marculescu 2011c] which have also been
extensively studied in the context of Cyber Physical Systems (CPS). CPS are intel-
ligent systems with sensing, embedded computation and physical processes tightly
coupled [Wang et al. 2011a][Bogdan and Marculescu 2011c]. Modeling the workloads
for studying the non-stationary and self-similarity nature of physical processes and
their implication in CPS is a very hot topic and actively researched [Bogdan and Mar-
culescu 2011c][Bogdan and Marculescu 2011b][Barrero et al. 2010]. These modeling
approaches analyze the temporal characteristic of the non-stationary CPS workloads
and construct a model for optimization and control. Although, accurate workload mod-
eling has profound implications for power and performance optimization in CPS, it
requires rigorous analysis, mathematical formulation and validation. Moreover, the
model constructed for a specific workload (e.g., road traffic workload) cannot be used
in a general and broader perspective.
Some approaches [Paul 2013][Bhatti et al. 2010] do not consider modeling the non-
stationary workloads, but rather learn the environment to choose the best DPM policy
with respect to the workload from a given set of policies. However, these techniques
are limited to and strongly dependent on the chosen DPM policies.
Although the CPS workloads are non-stationary at granular level, they exhibit sim-
ilarity over a long period of time [Bogdan and Marculescu 2011a] and hence can be
predicted with a certain degree of confidence. In this paper, we propose an online, ma-
chine learning based DPM approach for power/performance optimization and control
of a system which is intended to operate in a dynamic environment and required to
meet the same challenges as faced by a CPS. The proposed DPM approach is a com-
bination of model-predictive and reinforcement learning techniques for predicting the
non-stationary workloads, learning the dynamic environment and adjusting the DPM
decisions accordingly. With this integrated approach, the non-stationary CPS work-
loads can be successfully dealt with, eliminating the need of any workload modeling.
The scientific contribution in this paper can be summarized as follows.

— We introduce a Reinforcement Learning (RL) based DPM approach for optimal selec-
tion of timeout values in the different operational states of a computing system. In
contrast to the existing timeout policies that target only the operational (idle) state
of a system, our algorithm also works for the non-operational (sleep) states.
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— We estimate the workload by a Multi-Layer Artificial Neural Network (ML-ANN) and
incorporate this information to improve the timeout selection of the RL-based DPM.
Our approach relies neither on any offline workload data analysis nor on a priori
system model; it is able to online explore and (after some learning time) exploit the
power-performance tradeoff.

— Our learning algorithm is further able to adapt to the given power/performance con-
straints online.

— We have completely implemented our DPM algorithm on our embedded traffic
surveillance platform and performed long-term experiments using real traffic data
to demonstrate the effectiveness of the DPM.

The rest of this paper is structured as follows. In Section 2, we provide an extensive
survey and critical analysis of the existing DPM approaches and argue how a machine
learning based DPM can outperform other DPM approaches. This sections also com-
pares and distinguishes our work with the existing reinforcement learning based ap-
proaches for power management. Section 3 describes an overview of our system model.
Section 4 provides a detailed problem formulation and Section 5 describes the work-
load estimation using a ML-ANN. In Section 6, we show how our RL based algorithm
can successfully explore the power-performance tradeoff. Section 7 discusses the on-
line adjustment of the power-performance tradeoff parameter to meet a specific power
or performance constraint. Section 8 concludes the paper.

2. RELATED WORK
The related work on DPM can be classified into timeout, predictive, stochastic, ma-
chine learning, and control-theoretic approaches. The next sections describe the exist-
ing DPM policies including a critical analysis.

2.1. Timeout Policies
The timeout policy switches a device to low-power state after it has been idle for a cer-
tain time period. Timeout policies can be either static or adaptive [Lu and De Micheli
2001]. A static timeout policy uses a fixed timeout period whereas an adaptive timeout
scheme adjusts the timeout period according to the idle periods’ history.
Several timeout policies have been studied in the literature. An adaptive timeout pol-
icy proposed in [Douglis et al. 1995] adjusts the timeout period by the ratio of the
current and the previous timeout period. [Olsen and Narayanaswarni 2006] propose
an OS-directed timing scheme to eliminate the periodic system timer ticks associated
with the idle state of the operating system to reduce power consumption. When there
are no more tasks to execute in the active state, the system is switched to a low-power
state and a timeout value is determined. However, when there are some tasks to be
executed in the idle state, the normal periodic system timer is restored.
[Shih and Wang 2012] propose an adaptive timeout scheme to adjust the timeout pe-
riod with the bursty request arrival patterns. The proposed scheme first derives the
average idle time of a system in the bursty period and non-bursty period separately. To
increase power saving, it uses the average idle time in the bursty period to adjust the
timeout value. In the non-bursty period, the average idle time is used to decide which
low-power state the system should be switched to.
With a critical analysis of the existing timeout policies for power management, follow-
ing conclusions can be drawn.

— Without a proper anticipation of workload, timeout policies result in wasting a sig-
nificant amount of power waiting for the timeout to expire.

— Timeout policies work at the idle state(s) of a device and do not deal with the non-
operational (sleep or power-down) states.
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— Timeout policies do not provide mechanisms for controlling the tradeoff between
power consumption and performance.

2.2. Predictive Policies
Predictive policies work on a system model that is learned from historic information
in order to best adjust themselves to the system dynamics. The basic idea of predictive
policies is to forecast the length of idle periods and switch the device into a low-power
mode when the predicted idle period is longer than a certain threshold. The relevant
literature describes several predictive policies for power management.
The first work in predictive policies [Srivastava et al. 1996] uses nonlinear regression
over the history of past idle periods to predict the length of the next idle period. The
limitation of this approach is that it requires an offline data collection and analysis to
construct and fit the regression model [Benini et al. 2000]. Moreover, it does not ad-
dress the performance penalty.
Another approach [Chung et al. 1999], which is able to control multiple sleep states,
uses adaptive learning trees to transform sequences of idle periods into discrete events
and stores them into tree nodes. This algorithm predicts idle periods using finite-state
machines to select a path which resembles previous idle periods. However, this algo-
rithm also does not consider the system’s performance.
[Hwang and Wu 2000] propose two improvements over the previous work to deal with
workload uncertainty to a certain level: (i) This approach uses online exponential
weighted average of previous idle periods to predict the next idle period; (ii) At the
end of predicted idle period, it performs a predictive wakeup to decrease the delay for
servicing the first incoming request after an idle period.
A more recent and advanced work [Young et al. 2010] describes a predictive shutdown
method based on collecting and analyzing information on the access patterns to I/O
devices. The trace of function calls is monitored until the processor initiates an access
to a certain I/O device. By analyzing the pattern of program counter values, the next
I/O access time is predicted and the device is shutdown if the predicted time is longer
than a certain threshold. When a certain access pattern at an I/O device is observed,
the device is woken up (in advance) before the actual I/O access requests take place in
order to reduce the performance penalty.
Predictive policies share the following limitations:

— Predictive approaches do address workload uncertainty, but they assume determin-
istic response and transition times for the system [Benini et al. 2000].

— Predictive policies work at idle state(s) of a device. The only option in a non-
operational state is to wakeup the device as soon as a request arrives. Hence, pre-
dictive policies cannot deal with general system models where multiple incoming
requests can be queued before processing when the device is in off or sleep state.

— Predictive policies do not offer a possibility to control the tradeoff between power
consumption and performance.

2.3. Stochastic Policies
Some of the limitations (uncertainty, queuing, power-performance tradeoff) of predic-
tive policies are addressed by stochastic policies. These policies make probabilistic as-
sumptions about the usage pattern of a device and exploit the nature of the probabil-
ity distribution to formulate an optimization problem, which derives an optimal DPM
strategy [Fallahi and Hossain 2007]. The device states and request queues in stochas-
tic policies are generally modeled as Markov Decision Process (MDP).
A discrete-time MDP based stochastic power management policy [Benini et al. 1999]
introduces an abstract system model for the formulation of a linear optimization prob-
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lem whose solution is computed in polynomial time. Due to the discrete nature of MDP,
this approach has two drawbacks: (i) It requires observing and issuing power com-
mands at regular time-discretized intervals which results in an additional power cost;
(ii) It assumes a stationary geometric distribution for all state transitions which is not
true in many practical cases [Simunic et al. 2000]. These issues are addressed by [Qiu
and Pedram 1999] with a continuous-time MDP to issue power commands upon event
occurrences instead of regular discrete intervals. The state-transitions in this work
are assumed to follow an exponential distribution which is a better assumption than
the geometric distribution, but exclusively fit to the models where the request arrival
times are exponentially distributed. This problem is further addressed by [Simunic
et al. 2001] with a semi-Markov model which can treat a general distribution occurring
at the same time with an exponential distribution. However, none of these approaches
is able to handle non-stationary request pattern.
In order to adapt to non-stationary requests, some approaches model the request ar-
rival distribution and analyze the history of past request arrival times to estimate
the current workload [Eui-Young et al. 2002][Ren et al. 2005]. These models are still
based on discrete-time MDP which is not a realistic model for a request process. These
models expose two drawbacks: (i) A prior modeling of request arrival distribution is re-
quired, and (ii) these models are memory and computation expensive [Shih and Wang
2012]. A recent work [Durand et al. 2012] uses continuous-time MDP for the power
management of printers. However, this approach also requires modeling the sequence
of requests from a statistical point of view.
Stochastic policies do provide a flexible way to control the power-performance tradeoff.
However, these policies share the following limitations.

— Stochastic policies require a rigorous modeling of the system and the system-specific
formalization of the optimization problem. Therefore, they are model dependent.

— Solving the stochastic optimization problem to find the optimal DPM strategy either
in a time-driven or event-driven manner increases the complexity [Irani et al. 2003].

— The selection of a distribution for modeling the request pattern is problem specific
and is not realistic in most of the real world applications.

— Stochastic policies that can deal with non-stationary requests are memory and com-
putation expensive.

2.4. Machine Learning Policies
Several approaches apply machine learning to learn the request arrival patterns for
dynamic power management. In [Fei et al. 2006], the authors use a genetic algorithm
to predict idle periods. However, this approach shares the same limitations as the
aforementioned predictive policies do.
Supervised learning approaches for dynamic power management [Mannor et al.
2006][Hwisung and Pedram 2010] use Bayesian classifiers to predict the system per-
formance state from some readily available features (e.g., sensor measurements, pri-
ority of an incoming request, and occupancy state of service queue) and then use this
predicted state to look up the optimal power management action from a pre-computed
policy table. These approaches require offline data collection and training of a classi-
fier. The effort involved in the offline data preparation and training is comparable to
the one needed to model a system in stochastic policies.
Recently, RL-based approaches have gained increasing attention due to their simplic-
ity and interaction to a system in a natural way. RL-based approaches do not require
the construction of a system model. Instead, they learn the dynamics by interacting
with the system, implementing certain actions, evaluating the effects of the imple-
mented actions, and adjusting the actions on the fly. The RL-based DPM approaches
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proposed by [Dhiman and Rosing 2006][Prabha and Monie 2007] use a set of pre-
selected DPM policies for controlling power consumption under different workloads.
These policies are referred to as experts. The algorithm associates and maintains rel-
ative weights for each expert which reflect its individual performance. The weights
are adjusted online and at any point in time the best performing expert is selected
with highest probability. These approaches do lead to an optimal DPM policy, but they
are dependent on and limited to the chosen experts. In [Tan et al. 2009], the authors
propose a constrained RL algorithm for DPM using the same MDP based generic sys-
tem model as proposed in [Benini et al. 1999]. This is also a model-free approach that
does not require any pre-selected experts. However, the size of state-space used in
this algorithm is quite large which results in increased complexity. Additionally, this
work is based on a discrete time model of the stochastic process, and thus has a large
computational overhead in real implementations. Following the merits of this work,
[Wang et al. 2011b] propose a modified, continuous-time RL algorithm by incorporat-
ing a Bayesian classifier based workload estimation to guide the learning algorithm
for changing workloads. They implement this prediction approach on the real data of
a WLAN card which performs well for this setting due to the regular traffic. Never-
theless, the same workload prediction can not render acceptable accuracy with non-
stationary workloads, e.g., road traffic workload.
We address this issue in our prior work [Khan and Rinner 2012a][Khan et al. 2012]
by proposing a model-free, RL-based DPM algorithm for non-stationary workloads. We
use a ML-ANN based workload estimator with backpropagation algorithm to provide
estimated workload information to the learning algorithm. Based on the estimated
workload, the power manager executes certain timeout values in the idle state and
waits for the service queue to be populated with a certain number of requests. The
decisions of timeout values and the time spent in sleep state are controlled by an
adjustable power-performance tradeoff parameter. Workload estimation using a ML-
ANN achieves higher accuracy with the non-stationary data and the algorithm is ca-
pable of exploring the tradeoff in the power-performance design space. However, the
upper and lower bounds of average latency in request processing cannot be ascertained
in this approach. Moreover, since the algorithm waits for certain number of requests in
the queue, a drawback of this approach is the high latency in request processing when
the workload drops abruptly.
RL-based DPM approaches have following advantages.

— These approaches are simple, easy to implement, and computationally efficient.
— No (a priori) system model is required.
— The power-performance tradeoff can be flexibly controlled.
— Non-stationary workloads can be efficiently dealt with.
— Online learning and policy implementation can take place in parallel.

However, RL-based approaches do face the following generic challenges.

— The large state-space results in large computational overhead. Therefore, the state-
space should be designed carefully and kept as small as possible.

— The convergence (speed) of the RL algorithm is an issue in many problems. However,
this problem can be overcome by optimal design of state-space, balanced selection
of random vs. deterministic actions, and/or multiple states update with a slightly
increased overhead [Khan and Rinner 2012b].

2.5. Control-Theoretic and Model Predictive Approaches
Several approaches apply predictive and machine learning techniques with the combi-
nation of control theory and Model Predictive Control (MPC) for the DPM of multipro-
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cessor Systems-On-Chip (SoC) and embedded systems. [Moser et al. 2010] studies the
application of MPC in designing three controllers for the DPM of an energy harvesting
embedded system: (i) application rate controller; (ii) service level allocator, and (iii)
real-time transmission scheduler. The approach targets the DPM of wireless sensor
networks powered by solar cells. A predictive technique is used to estimate the future
energy harvesting to optimize the system performance. This estimation is further in-
corporated into an online scheduler to control the application. Although this technique
outperforms other types of controllers used in the same perspective, it is based on mod-
eling a large variety of application scenarios, constraints and optimization objectives.
Several control-theoretic approaches use MPC for Dynamic Voltage and Frequency
Scaling (DVFS). [Kandasamy and Abdelwahed 2004] propose a control-theoretic ap-
proach for the DPM of embedded processors. The proposed technique is based on an
online MPC which predicts the future behavior of a processor over a finite look-ahead
interval and derives the lowest possible frequency-voltage settings subjected to several
QoS constraints. This technique also requires a mathematical model of the processor
operation.
Another technique proposed in [Ghasemazar et al. 2012] addresses the problem of
DVFS for Chip Multiprocessors (CMPs) for performance optimization of heterogeneous
multiprocessor systems subjected to a total power budget and the die temperature es-
timated by a moving-average based predictive method. A convex optimization based
algorithm is formulated and solved online for core consolidation, application assign-
ment, and producing optimal DVFS settings. This approach is based on several models
and assumptions that do capture the first order effects which are important to the
problem, but are not the most accurate and realistic models and may ignore some sec-
ond order effects.
Some approaches use Voltage-Frequency Island (VFI) partitioning for the DPM of mul-
tiprocessor and multicore embedded platforms. These techniques combine DVFS on
voltage islands to further exploit temporal workload variations of each island. [Bog-
dan et al. 2012] proposes an optimal control method based on fractional calculus to
manage the power consumption of VFI based systems. This approach enables the sys-
tem to capture fractality and non-stationary characteristics of a workload. It considers
both processing elements and routers in the control scheme for voltage-frequency set-
tings and allows to directly optimize a certain performance metric subjected to some
fractional derivatives state equations (i.e., for queue utilization) and bounded control
signals (i.e., operating frequencies). However, this approach does not provide a flexibil-
ity to control power-performance tradeoff.
The techniques proposed in [David et al. 2012][Ogras et al. 2009] use online algo-
rithms for DVFS. These techniques solve a feedback control problem by monitoring
the communication between different islands and adjusting the cores voltage and fre-
quency levels to save power while maintaining the required performance imposed by
application constraints. These approaches provide different solutions of power vs. per-
formance and runtime vs. accuracy.

2.6. Our Work in Comparison with Related Work
A qualitative comparison of the DPM approaches is summarized in Table I. The DPM
approach proposed in this paper is a continuous-time, event-driven, RL-based timeout
approach. We explore a deeper tradeoff between the power consumption and perfor-
mance. Therefore, in contrast to the existing DPM algorithms (timeout, predictive)
which aim for an immediate response as soon as a request arrives in sleep state, our
DPM algorithm uses timeout values both in idle and sleep states, so that the comput-
ing device does not necessarily wakeup immediately to process a request if the request
arrives before the sleep timeout expires. This allows delaying the request processing
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Table I: Comparison of DPM techniques

Performance
Constraint

Power-
Performance

Tradeoff

Workload
Handling

Queuing
Model

Model-
Free

Non-
Stationary
Workload

Offline
Analysis

Complexity

Static Timeout
6 6 6 6 4 6 6 Low

Adaptive Timeout
6 6 4 6 4 6 6 Low

Predictive Shutdown
6 6 4 6 4 4 6 Low

Predictive Wakeup
4 6 4 6 4 4 6 Low

Stochastic
4 4 4 4 6 4 4 High

Evolutionary
6 6 4 6 4 6 6 Low

Supervised Learning
4 4 4 6 4 4 4 Medium

Online RL
4 4 4 4 4 4 6 Medium

to save more energy and avoid more frequent state transitions. To the best of our
knowledge, using timeout periods both in operational and non-operational states of a
computing device has never been studied in the literature.
Our DPM approach has the following advantages.

— The proposed approach does not require any offline data analysis or system modeling.
— The wakeup decisions of the aforementioned DPM approaches, that can deal with

queuing models [Benini et al. 1999], are based on the queue occupancy. These ap-
proaches result in poor system response in case of low workload. However, using
timeout values in sleep states delivers an improved performance.

— We use a ML-ANN to estimate the workload and incorporate this information to the
learning algorithm in order to use optimal timeouts in both idle and sleep states.

— The power/performance tradeoff can be adjusted by a selectable parameter.
— Our online RL based algorithm is able to adapt to a given constraint of power con-

sumption or latency.

3. IMPLEMENTATION PLATFORM
Our traffic surveillance system has a heterogeneous setup with different types of sen-
sors each having different capabilities. The two main components of the sensing plat-
form comprise visual sensors (smart RGB, grayscale, infrared, high-resolution RGB)
and an Intel ATOM based processing platform for image processing. This heteroge-
neous setup serves many purposes: (i) the tasks can be distributed among different
sensors; (ii) different light spectrums can be efficiently covered; (iii) different focal
lengths provide different views of the scene (e.g., while one sensor gives an overview
of the scene, the other delivers an enlarged view of the object); (iv) the redundant in-
formation from multiple sensors helps to increase reliability. With the combination of
these advantages, the setup enables full 3D reconstruction to perform measurements
on the objects under surveillance. Figure 1 provides a high-level view of our sensing
platform. The sensing platform has a multi-tier architecture where the sensors reside
at different levels based on their energy consumption and capabilities. A multi-tier
framework leverages the heterogeneity of sensors to allow their on-demand exploita-
tion. In such a setup, high-power and more capable sensors can operate at higher
levels in an event-driven manner. These higher-level sensors can be triggered to sense
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Fig. 1: High-level architecture of the traffic surveillance system

an event by the power-efficient sensors running at lower levels in continuous mode. In
our setup, a smart, low-power color camera, that runs on-board algorithms for event
detection, operates at the third (lowest) level. The smart camera triggers other cam-
eras at the higher levels in case of detected events. When triggered, the higher-level
cameras capture and transfer synchronized images to the smart camera where they
are temporarily buffered in a queue. The queued images from all cameras are then
periodically sent to the processing platform for processing.
All sensing and processing elements have been deployed with the perspective of low-
power hardware design. While one of the sensors operates in continuous mode, the
other (higher-level) sensors only operate in trigger mode, where they capture and
transfer images after reception of a trigger signal or stay in the waiting state oth-
erwise. The waiting state of these sensors is the only configurable energy-saving state
which has less power consumption than the image capture and the image transfer
states. A complete shutdown of these sensors and waking them up at the detection of
an event causes huge latency in initialization and establishing network connections.
Therefore, such a configuration is not appropriate for capturing events in real-time.
Hence, our aforementioned sensor configuration is already power and latency efficient
and does not provide a mandate for additional power savings with a software frame-
work. However, the processing platform, which is the major contributor to the overall
power consumption in the entire system, does have different power saving modes. Due
to the power-efficient hardware design, targeting individual components (processor,
memories, buses, etc) of the processing platform will be of limited use. Instead, we are
committed to enable aggressive power management strategies that encompass the en-
tire system. Therefore, the contribution of an efficient DPM policy in this platform is to
determine at what point in time it is appropriate to switch the processing platform to a
low-power state, considering the power-latency cost associated to the state transitions
and current rate of event occurrence. Likewise, the DPM policy must also determine
when the processing platform should be put to the operational state to process the
queued images, so that both the power consumption and performance remain at an
optimal level. Since the performance can be compromised for higher energy savings
(or vice versa), the aforementioned DPM decisions should also reflect a user-specified
bias for the two objectives.
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4. ONLINE LEARNING OF TIMEOUT POLICIES
Our platform adopts a generic system model for DPM which was originally proposed
for stochastic policies [Benini et al. 1999]. This model (Figure 2) provides a generalized
way to control the power-performance tradeoff and deals with systems where the re-
quests can be queued before processing. In this abstract model, the Service Requestor
(SR) is the (software) application that generates requests which are buffered in the
Service Queue (SQ) before processing. The Service Provider (SP) is the request pro-
cessing device which can be in any of the available power states (e.g., busy, idle, sleep,
etc.) in any point in time. The Power Manager (PM) is the dynamic power management
algorithm that decides which power mode the SP should be switched to.

Service Provider (SP)

Sleep Idle Busy

Service Queue (SQ)

Power Manager (PM)

Service Requestor

(SR)

Requests

Observations

Observations
Observations

Power

Commands

Fig. 2: Generic DPM model

In our implementation platform, the event detector serves as the SR, the image queue
maintained in the smart camera represents the SQ, the processing platform represents
the SP, and the PM (the learning agent that issues appropriate power commands to
the SP) resides on the smart camera. The workload estimator, running on the smart
camera, is based on a ML-ANN which receives the detected events as input from the
SR. In this setup, the smart camera works as a controller on the sensing platform that
issues control signals (trigger, power and data transfer commands) to other compo-
nents of the system. Figure 3 shows a low-level view of the sensing platform.
The processing platform has several power modes including busy (when some requests
are being processed), idle (waiting for requests), sleep (standby), hibernate, and off.
Since hibernate and off states have a long latency to an operational state, we consider
only busy, idle and sleep states in the learning algorithm. However, our algorithm can
be easily extended to a processing platform having more power states. The power and
state-transition delay characteristics of the processing platform are given in Table II.
Psleep, Pidle, Pbusy and Ptrans represent the power consumptions in sleep, idle, busy and
transition (sleep to idle, idle to sleep) states, respectively. ts2i and ti2s represent the
time required to switch the board from sleep to idle state and vice versa, respectively.
The transitions from busy to idle (and vice versa) are assumed to be instantaneous and
autonomous. Given the characterization of processing platform and an estimation of
the workload, we can design a RL-based DPM algorithm which converges to an opti-
mal DPM policy based on a selected power-performance criteria.

Table II: Power and delay characteristics of the processing platform

Psleep Pidle Pbusy Ptrans ts2i ti2s

3 Watt 25 Watt 32 Watt 15 Watt 6 Seconds 4 Seconds

At each decision time, the PM receives an observation that includes the estimate of
the SR (low/high workload), the state of the SQ (number of requests waiting in the
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Fig. 3: Architecture of the DPM on the processing platform

image queue) and the state of the SP (power state of the processing platform). Based
on these observations, the PM issues an appropriate DPM action. Therefore, each sys-
tem state, S, has a composite form S = (SR, SQ, SP ), where SR = {0, 1} is the current
workload estimate (low, high), SQ = {0, 1, 2, ..., q} is the number of requests in the
image queue, and SP = {sleep, idle, busy} is the power state of the processing plat-
form. We apply a state aggregation in the design space for limiting the values of the
SQ to a state having no requests in the queue and the one having some requests, i.e.,
∀sq ∈ SQ, sq = {0, q|q ∈ N}. Aggregating SQ states not only reduces search space but
also contributes to speed up the convergence of the learning algorithm.
In each (composite) state, the available actions comprise a set A of pre-selected dis-
cretized timeout values tkout which depend on a selected threshold Tthr and are defined
as:

A =
{
tkout
}

= {εkTthr} , εk ∈ R+, k = 1, 2, ..., n (1)

where εk is a positive weight and Tthr represents a threshold time period (break-even
time) which can amortize the power-performance cost associated to the state transi-
tions. The break-even time for a system depends on its power model. The same thresh-
old period is used for predicting the next request arrival time by the ML-ANN work-
load estimator. For our implementation platform and traffic workload, we use Tthr = 10
seconds to classify the predicted workload as high if the next inter-arrival time is pre-
dicted to be less than Tthr (or low otherwise). However, adapting Tthr during operation
would be an interesting area for future research.
The discretization step and the size of the action set can be selected by the user. In
general, the action set can comprise timeout values such as:

A = {0, 0.1Tthr, 0.2Tthr, ..., Tthr, 1.1Tthr, ..., nTthr} (2)

The problem of selecting timeouts can be formulated as follows. When the SP enters
the idle state (after it has processed all the requests in the image queue) or the sleep
state, it waits for a certain timeout before the next state-transition occurs. There are
two cases possible.

Case 1. If there are some requests in the SQ in sleep state, the SP is woken up at
the end of the timeout period to process the requests. Otherwise, the SP stays in
sleep state for another timeout period.
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Case 2. The SP enters the idle state and waits for requests during the timeout pe-
riod. If some requests arrive, they are immediately executed followed by another
timeout period if the SQ is empty. If no requests arrive during the timeout period,
the SP is switched to sleep state.

The decisions of selecting timeout periods and switching the power state of the SP are
taken by the PM. These decisions are taken when the last selected timeout expires or
the state of the SQ changes. Figure 4 shows the state-transition diagram of the system.
tout, tsleep and tidle in the diagram represent the timeout period and the time spent in
the sleep and the idle states respectively.

0 sleep outSQ t t ! "

0 sleep outSQ t t" ! "

0 idle outSQ t t ! "

0SQ "

0SQ "

0SQ  

Fig. 4: System state-transition diagram

The selection of timeout values in sleep and idle states is subjected to two objectives,
i.e., minimizing power consumption and maximizing performance. We consider the
average latency per request caused by an action as the performance measure. The av-
erage latency includes the average queuing time plus the average execution time. In
a multi-objective RL problem, it is convenient to combine the multiple objectives into
a single objective function via the process of linear scalarization [Natarajan and Tade-
palli 2005]. The primary advantage of linear scalarization is that the user can assign
a relative weight/preference to each objective and can direct the algorithm to a specific
part of the objective space by favoring one objective over another. Our multi-objective
optimization problem involves the simultaneous optimization of two conflicting objec-
tives such that any improvement in one objective results in a possible degradation of
the other objective. Therefore, we do not have a unique optimal solution, but rather a
set of non-inferior, alternative solutions which can be obtained by varying the relative
weight between the objectives. The solutions thus obtained are called Pareto-optimal
solutions and a plot of the entire Pareto set in the design objective space represents a
Pareto-optimal tradeoff.
In our RL algorithm, we combine the average energy consumption and average latency
caused by an action taken in a specific state into a single objective function and call
it a cost function which can be treated in the same way as the reward. In each state,
the learning algorithm evaluates the effectiveness of a selected action by the measure
of the cost computed after executing the action. The objective of the RL algorithm is
to minimize the cost function with respect to the relative weights assigned to power
consumption and latency. The cost function is defined in equation 3.

ct(s, a, ω) = (1− ω)pt(s, a) + ωlt(s, a) (3)

pt(s, a) and lt(s, a) are the average power and average latency in state s at time t after
taking an action a. The relative weight ω ∈ (0, 1) between the two objectives serves as
a trade-off parameter. The value of ω can be varied from 0 to 1 to obtain the Pareto-
optimal trade-off curve. ω also determines the preference/precedence of the two ob-
jectives. If the power consumption is assigned more weight, performance takes the
precedence (or vice versa).
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The decisions of selecting timeout values and/or changing power states are taken in
the following scenarios.

idle -> idle. The SP was in idle state and the SQ transits from 0 to N . In this case,
the SP immediately processes the new requests and enters the idle state again.
idle -> sleep. The SP was in idle state and no request arrived during the timeout
period.
sleep -> sleep. The SP was in sleep state and no request arrived during the timeout
period.
sleep -> idle. The SP was in sleep state and the SQ transits from 0 to N . At the end
of the timeout period, the SP changes to idle state.

Based on the above mentioned scenarios, the cost function has the following structure.

ci→i(s, a, ω) = (1− ω)pt(s, a) + ωlt(s, a) (4a)
ci→s(s, a, ω) = (1− ω)pt(s, a) + ωl2avge

−βtout (4b)
cs→s(s, a, ω) = (1− ω)pt(s, a) (4c)
cs→i(s, a, ω) = (1− ω)pt(s, a) + ωlt(s, a) (4d)

Equations 4a and 4d represent the standard cost function as defined in equation 3.
Note that in self-transition sleep -> sleep case, we do not have an immediate latency
value to include in the cost function (equation 4c). Similarly, when the SP transits from
idle to sleep state, there are no requests processed in the last state. For this case, we
incorporate the quadratic value of overall average latency, lavg, in the cost function (to
make this cost latency aware). Since the quadratic value of overall average latency in
equation 4b takes a higher value, we relax it by the factor e−βtout , where β ∈ (0, 1) and
tout is the timeout period spent in the idle state before transiting to sleep state. The
constant β just normalizes the timeout value so that the relaxing factor may not be too
large or too small due to the negative exponential function. Based on our experiments,
we select β = 0.5 which adequately normalizes the value of the relaxing factor.
A 1-step Q-learning algorithm [Watkins and Dayan 2011] can be used to approximate
the state-action values with the evaluated cost. The approximated state-action val-
ues provide a long-term judgement about selecting an action in a specific state. In
Q-learning, policies and the value function are represented by a 2-dimensional lookup
table indexed by state-action pairs. For all (s, a) ∈ S × A, the Q-learning principle is
given in equation 5,

Q(t+1)(st, at) = Qt(st, at) + αt(st, at)[rt+1 + γmax
a′

Q(t+1)(st+1, a
′)−Qt(st, at)] (5)

where αt(st, at) ∈ (0, 1) is the learning rate which is adjusted properly (slowly de-
creased) during the learning process. Qπ(s, a) for each state-action pair represents the
expected long-term reward if the system starts from state s, takes action a, and there-
after follows policy π. The positive constant γ ∈ (0, 1) is called discount factor which
determines the importance of the reward.
However, we must incorporate the time spent in each state to the update rule. More-
over, the selection of timeout values in idle and sleep states follows an opposite behav-
ior. If the power saving is given more preference over latency (ω → 0), the learning
algorithm should select higher timeouts in sleep state and smaller timeouts in idle
state to save power. But a higher preference to the latency should follow an opposite
behavior. Therefore, the calculated cost of an action and the best value of the next state
must be discounted with appropriate factors to learn the optimal timeout values sub-
jected to a selected preference. We introduce two discount factors for the Q-learning
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update rule defined in equation 5.

d1 = (1− e−βtout), β ∈ (0, 1) (6a)
d2 = (1− d1) (6b)

In the above equations, tout is the time (selected timeout period) spent in a state. For
the composite state S = (SR, SQ, SP ), action set A =

{
t1out, t

2
out, ..., t

n
out

}
, and ∀(s, a) ∈

S ×A, equation 5 can be modified with the discount factors d1 and d2 as follows:

Q(t+1)(st, at) = Qt(st, at)+αt(st, at)[d1c(t+1)(s, a, ω)+d2 min
a′

Q(t+1)(s(t+1), a
′)−Qt(st, at)]

(7)
The best next-state value in equation 7 is the one with the minimum cost. The two
discount factors d1 and d2 account for the opposite behavior of timeout selection in idle
and sleep states.

5. WORKLOAD ESTIMATION
In our system model, the workload (or the request rate) comprises the rate of images
captured by all the cameras at the detection of events (vehicle detection). Therefore,
the workload reflects the arrival rate of the vehicles. We used real workloads for the
learning algorithm by taking several test recordings on different highways, where we
recorded the inter-arrival times of vehicles by a vehicle detection algorithm [Pletzer
et al. 2012]. Figure 5 shows the inter-arrival times distribution (spaced by an interval
of 5 seconds) of four different test recordings on different locations. The collected data
shows that the inter-arrival time has a maximum probability within the interval of
5 to 10 seconds. Therefore, it is appropriate to set the threshold Tthr to 10 seconds to
classify the current workload as low or high. If the inter-arrival time of the next re-
quest is estimated to be less than or equal to 10 seconds, the workload is classified as
high (or low otherwise).
It is worth mentioning that the workloads depicted in Figure 5 represent the long-
term, accumulated sum of inter-arrival times in different intervals. The long-term and
self-similar accumulated behavior is an intrinsic property of all CPS workloads [Bog-
dan and Marculescu 2011a]. However, at a granular level, the CPS workloads do ap-
pear different and exhibit non-stationarity which is the major addressable issue in our
proposed DPM technique. Disregarding the type of distribution, our proposed DPM
technique addresses the non-stationarity of the workloads which can be exhibited by
any workload distribution.
For workload estimation, we use a fix-sized moving window on the history of previous
inter-arrival periods and input these inter-arrival periods (normalized between 0 and
1) to the ML-ANN. The ML-ANN estimates the length of the next inter-arrival period
(de-normalized). Figure 6 shows the 3-layer ANN based workload estimator where vij
denotes the weight of the connection between jth neuron from the input layer and the
ith neuron of the hidden layer. Whereas, wi represents the weight of the connection
between ith neuron from the hidden layer and the neuron of the output layer. The out-
puts of the input layer, hidden layer and output layer, represented by Ii, h and z are
calculated as follows,

Ii =

n∑
j=1

vijxj , i = 1, ...,m (8a)

h =

m∑
i=1

wif(Ii) (8b)

z = f(h) (8c)
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Fig. 5: Distribution of inter-arrival times from different test recordings
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Fig. 6: ML-ANN based workload estimator

where f is the sigmoid function. The weights are adjusted according to the following
back-propagation rule [Phit and Abe 2006],

∆vij(t) = η(u− z)wixjf
′
(h)f

′
(Ii) + µ∆vij(t− 1) (9a)

∆wi(t) = η(u− z)yif
′
(h) + µ∆wi(t− 1) (9b)

f
′

= f(1− f) (9c)

where u is the observed inter-arrival period, η = 0.05 is the learning rate, and µ = 0.5
is a positive constant which is determined experimentally. The derivative of sigmoid
function f ′ determines the direction of gradient descent to minimize the estimation
error. The experimental size of the moving window (and the number of input neurons)
is selected to be n = 8. The number of hidden layer neuron is taken as m = 13. The
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prediction accuracy of the online ML-ANN workload estimator, which is defined as the
ratio of correctly predicted intervals to the total number of predicted intervals [Zafra
et al. 2011], is 81.24%.
The values of n and m in the ML-ANN do determine a desired level of accuracy. If the
value of n is too small, the decisions of ML-ANN are biased towards the short-term
variations in the workload which can be caused only by a single inter-arrival time. On
the other hand, if the value of n is too large, the workload estimation focuses on rel-
atively longer history of inter-arrival times and hence a real workload change cannot
be captured immediately. The values of n and m selected in our learning framework
are based on our experiments. The achieved average prediction accuracy of 81.24% is
sufficient for our learning framework.

6. EXPLORING POWER-PERFORMANCE TRADEOFF
In each decision time, the PM finds the system in sleep, idle or busy state. In sleep and
idle states, the PM selects a timeout value and relinquishes the control until the time-
out expires or some requests arrive during the timeout period in idle state. At the end
of the timeout period (or when the timeout is forced to terminate by the incoming re-
quests), the PM regains the control and evaluates the last action by assigning it a cost
(equation 3) and updates the Q-value of the last visited state-action pair (equation 7).
The PM then selects another action (timeout) in the new state based on the probabili-
ties of the individual actions. The overall learning algorithm is described in Algorithm
1. T represents the state-transition matrix which keeps track of the recent history of
visited (composite) states, actions, respective costs, queue occupancy and other param-
eters. The learning matrix Q, transition matrix T and the probability matrix pr are
randomly initialized derived from a uniform distribution. The sizes of these matrices
depend on the size of state-space. In our implementation framework, the sizes of ma-
trix Q and pr are 6 × 20 (6 composite states and 20 actions) respectively. The size of
matrix T is 8× 8. For the larger and more complex systems, the sizes of these matrices
will increase linearly with the size of the state-space which will only (slightly) affect
the convergence speed of the algorithm due to the larger state-space. The larger state-
space and the increased sizes of these matrices will also require slightly larger amount
of memory. Nevertheless, these matrices are not affected by the traffic complexity.

ALGORITHM 1: RL based timeout policy
Input: Power-performance parameter ω ∈ (0, 1)
Initialize Q, T and probability matrix pr randomly;
repeat

Obtain the current workload estimation;
Get the current observations: (SR, SQ, SP );
Calculate action probabilities: pkr (s, ak) ;
Select an action, a, with probability pr ;
Execute the selected action;
Calculate the cost of the last action: ct+1(s, a);
Update the learning rate: αt(s, a);
Update T with the new state-action pair;
Update Q-value of the visited state-action pair: Qt+1(s, a);

until specific number of iterations or a certain threshold of error estimate is achieved;
Output: The policy: π = minaQ(s, a), ∀s ∈ S, a ∈ A

The learning rate αt(s, a) reflects the degree to which a state-action pair has been cho-
sen in the recent past. For each state-action pair, it is decreased slowly and calculated
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Table III: Characteristics of different traffic workloads
Workload Mean Inter-Arrival Time No. of Requests Duration
Workload 1 6.79 sec 11649 22 hours
Workload 2 11.13 sec 7762 24 hours
Workload 3 11.07 sec 7803 24 hours
Workload 4 9.06 sec 9502 24 hours
Workload 5 12.05 sec 7155 24 hours

as

αt(s, a) =
ξ

visited(s, a)
(10)

where ξ ∈ (0, 1) is a positive constant. Every time a state-action pair (s, a) is visited
with this learning rate, the difference between its estimated Q-value Q(t+1)(s, a) and
the current Q-value Qt(s, a) reduces. Hence, for all state-action pairs, the algorithm
converges to a timeout policy. The value of ξ determines the learning rate. If this value
is too large, the learning rate is relatively slow. On the other hand, a too small value
makes the learning rate faster which cannot fully capture the dynamics of the system,
thus leading to a local minimum for a state-action pair. We select ξ = 0.25 and find that
based on the frequency of visiting a state-action pair, this value provides a moderate
learning rate.
In order to balance exploration and exploitation, we use a semi-greedy exploration
policy [Sutton 1990] in our learning algorithm. This policy starts out with selecting
random actions (exploration) which are equally distributed. When the algorithm ac-
quires more knowledge about the system, the probabilities of actions with minimum
cost begin to increase. Eventually, the policy becomes greedy by selecting minimum-
cost actions due to their high probabilities (exploitation). The action probabilities, pkr ,
in a state are given by equation 11,

pkr (s, a) =
e
Qt(s,ak)

τ∑n
k=1 e

Qt(s,ak)

τ

, ∀a ∈ A, n = |A| (11)

where τ is called a temperature coefficient. It is initialized with a high value which
gives equal weights (probabilities) to all actions (exploring). τ is then decayed over
time which increases the probability for low-cost actions. Thus, the behavior of the
learning changes towards exploiting.
We tested the algorithm for different workloads of road traffic to explore the power-
performance tradeoff. The characteristics of these workloads are given in Table III.
For each workload, we vary the relative weight ω between power and latency in the
cost function (equation 3) from 0 to 1 and obtain a number of Pareto-optimal solutions.
Figure 7a shows the power-performance tradeoff curve of workload 4 and Figure 7b de-
picts its comparison with the power-performance curves of other workloads mentioned
in Table III. Note that the power-performance tradeoff curves of all workloads follow
the same trend. However, the power profile of each workload depends on the Mean
Inter-Arrival Time (MIAT) of the requests. In case of shorter MIATs, the SP has to
spend more time in idle and busy states. Since workload 2, 3 and 5 do not have sig-
nificantly different MIATs, their curves overlap with each others. On the other hand,
workloads 1 and 4 have relatively (shorter) MIATs as compared to workload 2,3 and 5.
Therefore, the power profiles of these workloads are shifted upward.
It is worth mentioning that the power profile does not have a short term correlation
with the inter-arrival times, but rather depends on the MIAT measured over a long pe-
riod. In environments where the workload is higher, the average power consumption
increases because the algorithm has to select timeout values such that the performance
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(a) Power-performance tradeoff curve (workload 4)
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Fig. 7: Pareto-optimal tradeoff curves of different workloads

is not significantly degraded and the incoming requests (arriving at a higher rate) may
be processed with a reduced latency.
Our proposed algorithm also ascertains the upper and lower bounds of the latency in
request processing, which are given as:

[lmin, lmax] = [tp, (ti2s + tsleep + ts2i + tp)] (12)

In the above equation, the minimum latency lmin can be as small as the processing
time tp of the request. On the other hand, suppose that the PM issues a sleep com-
mand to the SP and a request arrives at the same time. The maximum latency lmax in
this case can be as high as the sum of the transition time from idle to sleep ti2s, the
timeout period in sleep state tsleep, the transition time from sleep to idle ts2i, and the
processing time of the request.
Figure 8 shows the influence of ω on the time (hours) spent in each state and during
transitions. For a higher preference for power consumption (ω → 0), the SP stays in
sleep state for a larger amount of time. When ω is increased (ω → 1), the SP spends
more time in the idle state for an immediate request service. The time in processing
(busy) state is same for all cases due to same number of requests.
The state transition overhead is an important aspect in DPM. Our approach considers
this overhead, i.e., the additional and non-negligible power consumption and latency
caused by any state transition. The state transition overhead is incorporated in the
cost function of our learning algorithms (cp. equation 3 and table II). Except issuing a
state-transition command based on the expiration of timeout and/or the arrival of new
requests in the service queue, the power manager does not have to implement/process
any additional logic/command or computation. After the state transition, the cost of
the previous action is determined and the state-transition value is calculated by equa-
tion 7.
The computational overhead in our learning framework involves calculating the cost of
the implemented action (equation 3), calculating the state-action values by the update
rule defined by equation 7, and selecting the next action by the exploration-exploitation
policy (equation 11). The computational complexity/overhead of the cost function and
the value function per state-action update is independent of the size of the state-space
and is given by O(1). Disregarding the number of states and actions in the search
space, the cost and the state-action values are updated with the same computational
complexity and the execution time. The computational complexity of the exploration-
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Fig. 8: Influence of ω on states occupancy (in hours) for workload 1

exploitation policy is a function of the state-space size and grows linearly with the size
of the action set (timeout values) and is given by O(|A|), where |A| denotes the size of
the action set. In our DPM implementation on the smart camera, the overhead for the
state-action update and the exploration-exploitation policy is between 2-3 ms for each
iteration.

We compare the performance of our proposed DPM technique with some of the tech-
niques found in the literature including fixed timeout, adaptive timeout [Douglis et al.
1995], ML-ANN predictive policy based only on our workload estimation, exponen-
tial predictive [Hwang and Wu 2000], and online Timeout/N policy [Khan and Rinner
2012a] which learns timeout policies only for the idle state and takes wakeup decisions
based on the queue occupancy. The comparison was performed on the same workload
(Workload 1). The break-even time threshold Tthr for all the policies is set to 10 sec-
onds.
Figure 9 shows the comparison of our proposed DPM techniqe, Online Learning of
Timeout Policies (OLTP), with the above mentioned DPM policies for workload 1. From
the figure, it is evident that our power manager is capable of finding a better power-
performance tradeoff than the other DPM policies. The online Timeout/N policy does
allow to control the power-performance tradeoff, but results in higher latency. Our
power manager provides a much deeper power-performance tradeoff curve with the
same level of power consumption and a significantly reduced latency corresponding
to each solution on the pareto-front. The fixed timeout policy results in the highest
power consumption. The predictive policies perform better than the fixed timeout poli-
cies with almost the same latency level. The ML-ANN predictive policy gives slightly
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higher power savings than the exponential predictive policy. The adaptive timeout pol-
icy, due to its intrinsic similarity to our online timeout policy, matches with one of its
solutions.

7. ONLINE ADAPTATION OF POWER/PERFORMANCE WEIGHT
In online adaptation of power/performance weight, the aim is to define a constraint of
either power consumption or latency while optimizing the other. This can be achieved
by online adjusting the value of the power/performance weight ω. Online adjustment
of the weights assigned to different objectives in a multi-criteria optimization problem
is a challenging issue. For a system having a dynamic workload, as in our case, a small
online adjustment of the weights may lead to a significant divergence (large overshoot
or undershoot) of the policy. A possible way is to train multiple RL agents concurrently
with different sets of objective weights and then select the agent which satisfies the
constraint while minimizing/maximizing the other criteria. However, this approach is
not viable as the system performance during online learning with multiple agents will
be deteriorated.
We can perform the online adjustment of ω by comparing the actual power consump-
tion (or performance) to the power (or performance) constraint over equally distributed
RL decision intervals. For a given power or performance constraint, we use an itera-
tive approach for online adaptation of ω. If the average power and average latency of an
optimal policy in the update interval i are represented by φP and φL, then for a given
power constraint CP or latency constraint CL, we use the following rule to update the
value of ω per fixed number of RL decisions.

ωi+1 = ωi + κ(CP − φP ) (13a)
ωi+1 = ωi − κ(CL − φL) (13b)

In equations 13a-13b, κ = 0.01 is an adapting coefficient. From the cost function (equa-
tion 3), it is clear that varying the value of ω has opposite effects on power and latency.
Therefore, we use equation 13a to update ω for power constraint and equation 13b
for latency constraint. Since ω ∈ (0, 1), the updated value of ω based on the devia-
tion from the constraint must be in the interval (0,1). Therefore the deviation of the
average power (or latency) with the given constraint must be normalized within this
range. Since the average power consumption or average latency is bounded, we find
that assigning the value of 0.01 to the adapting coefficient κ adequately normalizes
the adjustment quantity to the interval (0,1). Even if the given constraint is inacces-
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Fig. 10: Online adaptation of power-performance weight

sible by the online adaptation rule (if it is far away from the [min, max] bounds of
average power or latency), the online adaptation sets the value of ω to either mini-
mum or maximum (0 or 1) to get as close to the given constraint as possible. Figure 10
provides a high-level view of the online adaptation algorithm with a simple explana-
tion of the logic expressed in equation 13a and 13b. It shows the integration of discrete
Online Adaptation of Power/performance (OAPP) controller to the main OLTP frame-
work. In Figure 10, the average power φP and the average latency φL are unified by φ.
The constraints are represented by C.
The decision to check and update the value of ω is taken after each N RL updates.
The length of the decision interval influences the performance of the online adapta-
tion. Using a large value of N will delay the decision making and the value of ω may
get a larger deviation. Likewise, using a (too) small value of N will result in a more
opportunistic approach by rapidly updating the value of ω and the algorithm may not
get sufficient time for adaptation. Based on our experiments, we find that the decision
making after each 50 RL updates (N = 50) and then waiting for further 50 RL updates
for adaptation provide the algorithm sufficient time for adaptation.
The value of ω is initialized randomly. After 50 RL updates, the OLTP triggers the
OAPP controller to take the update decision. If the OAPP controller finds a signif-
icant deviation between the average power (or latency) and the given constraint, it
updates the value of ω accordingly. After the update phase, the algorithm enters into
the re-exploration phase where the learning parameters are reset and the OLTP starts
learning the environment with the updated value of ω. The re-exploration phase fur-
ther spans 50 RL updates after which we start keeping trace of φ and make the next
update decision after 50 RL updates. For a more detailed explanation of our online
adaptation algorithm, please refer to [Khan 2013].
Figure 11 shows the convergence of the algorithm to two constraints for workload
1: (i) average latency constraint C = 8.47 sec, and (ii) average power constraint
C = 13 Watt. We tested the algorithm on workloads 1-5 for a number of power and
latency constraints. Table IV and V show the results of ω adaptation for different con-
straints of latency and power consumption, respectively. The first columns of the two
tables show the given constraints (CL and CP ), the second columns show the actual
average latency and average power (φL and φP ) achieved by the algorithm, the third
columns show the percentage of deviation from the given constraint, and the fourth
columns show the converged value of ω. The results show that our algorithm can sat-
isfactorily fulfill the given constraints by the online adjustment of power-performance
weight. The inter-arrival times do not have an immediate effect on the value of omega.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 U.Khan, B.Rinner

0 5 10 15 20 25 30 35 40
8

10

12

14

16

18

20

Number of   updates

A
v
e
ra

g
e
 L

a
te

n
c
y

 

 

Average Latency
Latency Constraint=8.47 sec

(a) Convergence to a latency constraint

0 5 10 15 20 25 30 35 40 45 50
8

9

10

11

12

13

14

Number of   updates

A
v
e
ra

g
e
 P

o
w

e
r 

C
o
n
s
u
m

p
ti
o
n

 

 

Average Power Cosumption

Power Constraint=13 Watt

(b) Convergence to a power constraint

Fig. 11: Power-performance weight adaptation for latency and power constraints

Table IV: Latency constraint adaptation for different workloads
Latency Constraint CL (sec) Actual Latency φL (sec) Relative Difference (%) ω

17.40 17.30 0.57 0.16
15.38 15.11 1.74 0.21
13.54 13.30 1.71 0.28
9.00 8.97 0.33 0.40
8.47 8.50 0.27 0.51

Table V: Power constraint adaptation for different workloads
Power Constraint CP (Watt) Actual Power φP (Watt) Relative Difference (%) ω

12.23 12.14 0.70 0.16
13.53 13.83 2.21 0.32
14.73 15.01 1.93 0.40
16.00 15.96 0.27 0.52
17.83 17.58 1.40 0.62

If the workload changes, the average power consumption (or average latency) signifi-
cantly deviates from the defined constraint. During the update interval, the value of
omega is adjusted accordingly which reflects the change in the workload. For example,
suppose that the online algorithm has to achieve a constraint of an average latency.
If the inter-arrival times begin to decrease (workload increases), the current average
latency gradually increases and becomes larger than the given constraint. This is due
to the fact that the timeout values selected and implemented by the online algorithm
to deal with the (relatively) lower workload and to achieve the given constraints are no
longer appropriate for a higher workload. If this change is detected during the update
interval, the value of omega is increased with a margin as described in equation 13b.
Figure 12 shows the power consumption profile of ω adaptation for workload 1 with
two different latency constraints: CL = 18.50 sec and CL = 7.29 sec. The test record-
ings start at 2.00 am when the workload was relatively low and the algorithm kept
the power consumption low. When the traffic intensity increases (at 5 am), the power
profile for the two constraints change. When the traffic intensity declines again (at 8
pm), the power consumption reduces and both profiles converge. For achieving lower
latency constraint CL = 7.29 sec, the power consumption is higher than the one for
achieving higher latency constraint CL = 18.50 sec. This experiment demonstrates
that our algorithm is not only able to keep different power (or latency) profiles for
different constraints, but also dynamically changes the power (or latency) with the
changing workload by adjusting the value of power-performance weight ω.
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8. CONCLUSION
In this paper, we proposed a RL-based DPM approach for optimal selection of time-
out values in the different device states. The timeout selection is based on workload
estimates derived from a Multi-Layer Artificial Neural Network (ML-ANN) and an ob-
jective function given by weighted performance and power parameters. Our approach
relies neither on any offline workload data analysis nor on a priori system model; it is
able to explore and (after some learning time) exploit the power-performance tradeoff.
Our DPM approach is further able to adapt the given power/performance constraints.
We have completely implemented our DPM algorithm on our embedded traffic surveil-
lance platform and performed long-term experiments using real traffic data. These
experiments show that a Pareto-optimal tradeoff between average power consumption
and average latency per request is achieved. The adaptive DPM algorithm promptly
converges to different power/performance constraints.
Our future work includes migrating our DPM algorithm from application level to (OS)
kernel level and targeting an embedded platform having more number of operational
and sleep states as defined by Advanced Configuration & Power Interface (ACPI)
framework [Packard et al. 2011]. We are confident that our online, RL-based DPM
algorithm running at the OS level and addressing multiple idle and sleep states is
able to outperform static ACPI policies and to further improve the power-performance
tradeoff. Additionally, our proposed DPM framework may be applied at a rather lower
level for the DPM of a multiprocessor system-on-chip which is an active area of re-
search [Ogras et al. 2009][Bogdan et al. 2012]. The DPM approaches proposed in this
context consider the network-on-chip architectures partitioned into several Voltage-
Frequency Islands (VFIs) which can be represented as states in our model-predictive
and machine learning based approach to learn timeout policies for each VFI.

REFERENCES
F. Barrero, S. Toral, M. Vargas, F. Cortés, and J. Milla. 2010. Internet in the development of future road-

traffic control systems. Internet Research 20, 2 (2010), 154–168.
L. Benini, A. Bogliolo, and G. De Micheli. 1999. Policy optimization for dynamic power management. IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems 18, 6 (1999), 813–833.
L. Benini, A. Bogliolo, and G. De Micheli. 2000. A survey of design techniques for system-level dynamic

power management. IEEE Trans. on Very Large Scale Integration Systems 8, 3 (2000), 299 –316.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 U.Khan, B.Rinner

K. Bhatti, C. Belleudy, and M. Auguin. 2010. Power management in real time embedded systems through
online and adaptive interplay of dpm and dvfs policies. In IEEE/IFIP 8th International Conference on
Embedded and Ubiquitous Computing (EUC). 184–191.

H. Bischof, M. Godec, C. Leistner, B. Rinner, and A Starzacher. 2010. Autonomous audio-supported learning
of visual classifiers for traffic monitoring. IEEE Intelligent Systems 25, 3 (2010), 15–23.

P. Bogdan and R. Marculescu. 2011a. Cyberphysical systems: workload modeling and design optimization.
IEEE Trans. on Design & Test of Computers 28, 4 (2011), 78–87.

P. Bogdan and R. Marculescu. 2011b. Non-stationary traffic analysis and its implications on multicore plat-
form design. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 30, 4 (2011),
508–519.

P. Bogdan and R. Marculescu. 2011c. Towards a science of cyber-physical systems design. In Proc. of
IEEE/ACM International Conference on Cyber-Physical Systems (ICCPS). 99–108.

P. Bogdan, R. Marculescu, S. Jain, and R.T. Gavila. 2012. An optimal control approach to power management
for multi-voltage and frequency islands multiprocessor platforms under highly variable workloads. In
Proc. of IEEE/ACM Sixth International Symposium on Networks on Chip (NoCS). 35–42.

E.Y. Chung, L. Benini, and G. De Micheli. 1999. Dynamic power management using adaptive learning tree.
In Proc. of IEEE/ACM International Conference on Computer-Aided Design. 274–279.

R. David, P. Bogdan, and R. Marculescu. 2012. Dynamic power management for multicores: Case study
using the intel SCC. In Proc. of IEEE/IFIP 20th International Conference on VLSI and System-on-Chip
(VLSI-SoC). 147–152.

G. Dhiman and T.S. Rosing. 2006. Dynamic power management using machine learning. In Proc. of
IEEE/ACM International Conference on Computer-Aided Design. 747–754.

F. Douglis, P. Krishnan, B. Bershad, and others. 1995. Adaptive disk spin-down policies for mobile comput-
ers. Computing Systems 8, 4 (1995).

J. Durand, S. Girard, and V. Ciriza. 2012. Optimization of power consumption and device availability based
on point process modelling of the request sequence. Journal of the Royal Statistical Society 3 (2012).

C. Eui-Young, L. Benini, A. Bogliolo, L. Yung-Hsiang, and G. De-Micheli. 2002. Dynamic power management
for nonstationary service requests. IEEE Trans. on Computers 51, 11 (2002), 1345 – 1361.

A. Fallahi and E. Hossain. 2007. QoS provisioning in wireless video sensor networks: a dynamic power
management framework. IEEE Trans. on Wireless Communications 14, 6 (2007), 40–49.

K. Fei, T. Pin, and Q. Shi. 2006. Genetic algorithm based idle length prediction scheme for dynamic power
management. In Proc. of IMACS Multiconference on Computational Engineering in Systems Applica-
tions. 1437 –1443.

M. Ghasemazar, H. Goudarzi, and M. Pedram. 2012. Robust optimization of a Chip Multiprocessor’s per-
formance under power and thermal constraints. In Proc. of IEEE 30th Conference on Computer Design
(ICCD). IEEE, 108–114.

C. H Hwang and A.C. H. Wu. 2000. A predictive system shutdown method for energy saving of event-driven
computation. ACM Trans. on Design Automation of Electronic Systems 5, 2 (2000), 226–241.

J. Hwisung and M. Pedram. 2010. Supervised learning based power management for multicore processors.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 29, 9 (2010), 1395 –1408.

S. Irani, S. Shukla, and R. Gupta. 2003. Online strategies for dynamic power management in systems with
multiple power-saving states. ACM Trans. on Embeded Computing Systems 2, 3 (2003), 325–346.

N. Kandasamy and S. Abdelwahed. 2004. A control-theoretic approach to power management in embedded
processors. In In Proc. of Informatics 9. 1–12.

U.A. Khan. 2013. Online Learning of Timeout Policies for Dynamic Power Management. Ph.D. Dissertation.
Alpen-Adria Universität Klagenfurt, Austria.

U.A. Khan, M. Godec, M. Quaritsch, M. Hennecke, H. Bischof, and B. Rinner. 2012. MobiTrick–Mobile Traffic
Checker. In Proc. of ITS World Congress.

U.A. Khan, M. Quaritsch, and B. Rinner. 2011. Design of a heterogeneous, energy-aware, stereo-vision based
sensing platform for traffic surveillance. In Proc. of the 9th Workshop on Intelligent Solutions in Embed-
ded Systems. 47 –52.

U.A. Khan and B. Rinner. 2012a. Dynamic power management for portable, multi-camera traffic monitoring.
In Proc. of IEEE Real Time and Embedded Technology and Applications Symposium.

U.A. Khan and B. Rinner. 2012b. A reinforcement learning framework for dynamic power management of a
portable, multi-camera traffic monitoring system. In Proc. of IEEE Conference on Green Computing and
Communications.

Y.H. Lu and G. De Micheli. 2001. Comparing system-level power management policies. IEEE Trans. on
Design & Test of Computers 18, 2 (2001), 10–19.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Online Learning of Timeout Policies for DPM A:25

S. Mannor, B. Kveton, S. Siddiqi, and C.H. Yu. 2006. Machine learning for adaptive power management.
Autonomic Computing 10, 4 (2006), 299–312.

C. Moser, J. Chen, and L. Thiele. 2010. Dynamic power management in environmentally powered systems.
In Proc. of Design Automation Conference (ASP-DAC). IEEE, 81–88.

S. Natarajan and P. Tadepalli. 2005. Dynamic preferences in multi-criteria reinforcement learning. In Proc.
of International Conference on Machine Learning. 601–608.

U.Y. Ogras, R. Marculescu, D. Marculescu, and E.G Jung. 2009. Design and management of voltage-
frequency island partitioned networks-on-chip. IEEE Trans. on Very Large Scale Integration (VLSI)
Systems 17, 3 (2009), 330–341.

C.M. Olsen and C. Narayanaswarni. 2006. PowerNap: An efficient power management scheme for mobile
devices. IEEE Trans. on Mobile Computing 5, 7 (2006), 816–828.

H. Packard, Intel, Microsoft, Phoenix, and Toshiba. 2011. Advanced Configuration and Power Interface Spec-
ification (ACPI). ACPI Specification Document 5 (2011).

A. Paul. 2013. Dynamic Power Management for Ubiquitous Network Devices. Advanced Science Letters 19,
7 (2013), 2046–2049.

T. Phit and K. Abe. 2006. Packet inter-arrival time estimation using neural network models. In Proc. of
Internet Conference.

F. Pletzer, R. Tusch, L. Böszörmenyi, and B. Rinner. 2012. Robust traffic state estimation on smart cameras.
In Proc. of IEEE Conference on Advanced Video and Signal-Based Surveillance. 434–439.

V.L. Prabha and E.C. Monie. 2007. Hardware architecture of reinforcement learning scheme for dynamic
power management in embedded systems. EURASIP Journal on Embedded Systems 07, 1 (2007), 1–6.

Q. Qiu and M. Pedram. 1999. Dynamic power management based on continuous-time Markov decision pro-
cesses. In Proc. of the 36th annual ACM/IEEE Design Automation Conference. 555–561.

Z. Ren, B.H. Krogh, and R. Marculescu. 2005. Hierarchical adaptive dynamic power management. IEEE
Trans. on Computers 54, 4 (2005), 409 – 420.

H.C. Shih and K. Wang. 2012. An adaptive hybrid dynamic power management algorithm for mobile devices.
Computer Networks 56, 2 (2012), 548–565.

T. Simunic, L. Benini, P. Glynn, and G. De Micheli. 2000. Dynamic power management for portable systems.
In Proc. of the 6th International Conference on Mobile Computing and Networking. 11–19.

T. Simunic, L. Benini, P. Glynn, and G. De Micheli. 2001. Event-driven power management. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems 20, 7 (2001), 840 –857.

M.B. Srivastava, A.P. Chandrakasan, and R.W. Brodersen. 1996. Predictive system shutdown and other
architectural techniques for energy efficient programmable computation. IEEE Trans. on Very Large
Scale Integration (VLSI) Systems 4, 1 (1996), 42 –55.

R.S. Sutton. 1990. Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming. In Proc. of the International Conference on Machine Learning. 216–224.

Y. Tan, W. Liu, and Q. Qiu. 2009. Adaptive power management using reinforcement learning. In Proc. of
International Conference on Computer-Aided Design. 461–467.

Y. Wang, Q. Xie, A. Ammari, and M. Pedram. 2011b. Deriving a near-optimal power management policy
using model-free reinforcement learning and Bayesian classification. In Proc. of Design Automation
Conference. 41–46.

Z Wang, H Wang, X Chen, and J Lin. 2011a. Cyber Physical Systems. Journal of Chinese Computer Systems
32, 5 (2011), 881–886.

C.J.C.H. Watkins and P. Dayan. 2011. Q-Learning. Machine Learning 8 (2011), 279–292. Issue 3-4.
H. Young, K. Sung, and C. Ki-Seok. 2010. A predictive dynamic power management technique for embedded

mobile devices. IEEE Trans. on Consumer Electronics 56, 2 (2010), 713 –719.
A. Zafra, E.L. Gibaja, and S. Ventura. 2011. Multiple instance learning with multiple objective genetic

programming for web mining. Applied Soft Computing 11, 1 (2011), 93–102.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.


