
Resource-Aware Configuration in Smart Camera Networks

Bernhard Rinner, Bernhard Dieber, Lukas Esterle
Institute of Networked and Embedded Systems

Alpen-Adria Universität Klagenfurt, 9020 Klagenfurt, Austria
http://pervasive.aau.at

Peter R. Lewis, Xin Yao
School of Computer Science

University of Birmingham, UK
http://www.cercia.ac.uk

Abstract

A recent trend in smart camera networks is that they are
able to modify the functionality during runtime to better re-
flect changes in the observed scenes and in the specified
monitoring tasks. In this paper we focus on different config-
uration methods for such networks. A configuration is given
by three components: (i) a description of the camera nodes,
(ii) a specification of the area of interest by means of obser-
vation points and the associated monitoring activities, and
(iii) a description of the analysis tasks. We introduce cen-
tralized, distributed and proprioceptive configuration meth-
ods and compare their properties and performance.

1. Introduction
Camera networks have been used for wide area monitor-

ing for a very long time. In most of these networks, the
cameras act as distributed image sensors that continuously
stream video data to a central processing unit, where the
video is analyzed by a human operator. More recently, cam-
era nodes have become more capable allowing them to pro-
cess the captured images locally and to perform in-network
data analysis. Networks of smart cameras [12, 11] or visual
sensor networks [1, 14] have recently received a lot of in-
terest in academia and industry. An important trend in these
camera networks is that they are able to modify the func-
tionality to better reflect changes in the observed scenes and
in the specified monitoring tasks.

In this paper we focus on different configuration methods
for smart camera networks. As a configuration, we consider
the analysis tasks that have to be performed on the specific
cameras at a specific point in time. Thus, we focus on the
where and what and—since we are mainly interested in con-
structive configuration methods—how captured image data
is processed in the network. Basically, we specify a config-
uration of the camera network by three components: (i) a
description of the camera nodes, (ii) a specification of the
area of interest by means of observation points and the as-
sociated monitoring activities, and (iii) a description of the

analysis tasks.
The purpose of this paper is twofold. First, we introduce

and formally describe the configuration problem in smart
camera networks. Second, we identify the configuration
design space, summarize our recent work on centralized,
distributed and proprioceptive configuration methods (e.g.,
[4, 5, 7]) and qualitatively compare these approaches.

The remainder of this paper is organized as follows.
Section 2 specifies the configuration problem and briefly
discusses the design space of potential configuration algo-
rithms. Sections 3, 4 and 5 describe three different config-
uration methods and present selected experimental results.
Section 6 concludes this paper with a brief comparison and
outlook.

2. Configuration in Camera Networks
2.1. Problem Definition

Figure 1(a) sketches the configuration problem [4]. A
set of n camera nodes S is placed on a 2D space; the cover-
age area of each camera is represented by a segment. Each
observation point tj from the set T = t1, . . . , tm has to be
covered by at least one camera at a given QoS. The QoS
is determined by the frame rate (fps) and the pixel resolu-
tion at the observation point, i.e., the pixels on target (pot)
of a unit sized object. The covering camera (tj is within
si’s field of view) has to deliver the monitoring activity atj
of the observation point while not exceeding the available
resources (processing, memory and energy) of the camera.

Figure 1(b) depicts a potential solution to the example
problem. Three cameras s1, s3 and s5 are sufficient to cover
all four observation points and provide the analysis tasks
with the requested QoS.

More formally, we consider the sets

S = {s1, . . . , sn} (1)

including all sensors and their associated properties such as
position or field of view as well as the set

T = {t1, . . . , tm} (2)

http://pervasive.aau.at
http://www.cercia.ac.uk


(a) Problem specification (b) Possible solution

Figure 1. (a) A graphical sketch of an example configuration problem defined by five cameras (S1 . . . S5) and four observation points
(t1 . . . t4). (b) A possible solution where all observation points (targets) are covered by three cameras.

including all observation points and their surveillance QoS
requirements ”pixels on target”, ”framerate” and ”surveil-
lance activity”.

An activity represents a high-level monitoring task
which must be achieved at an observation point. Examples
for such activities include image compression and stream-
ing, object detection, and object tracking. We define the set
of all activities that can be performed as

A = {a1, . . . , al} . (3)

The function r̃(asi , ressi , fpssi) → (c̃si , m̃si , ẽsi) is
used to calculate the required processing c̃si , memory m̃si

and energy resources ẽsi to perform a certain activity asi on
a node si with a specified data input configuration (resolu-
tion ressi and framerate fpssi ). The required resources are
specified for processing a single frame.

We search for feasible configurations of the complete
network. This means that all resource requirements, QoS
requirements and activity requirements must be satisfied.
Thus, for each sensor, the required memory and process-
ing resources must not exceed the available resources. The
required resources for the given input data configuration can
be computed using r̃. In order to satisfy the QoS require-
ments, every observation point must be covered by at least
one camera. The sensor must be configured to guarantee the
specified pixels on target (pot) and framerate (fps). Finally,
the activity constraints must be satisfied. Every observation
point must be covered by at least one sensor which must
execute the desired monitoring activity for that observation
point.

In general, there are multiple feasible configurations pos-
sible for a given network configuration problem. Thus, we
are interested in configurations which optimize some crite-
ria including network lifetime, energy usage or activity per-
formance. Optimization can be performed using multiple
criteria with different objective functions.

2.2. Configuration Design Space

The configuration problem can be instantiated along sev-
eral dimensions which also span the design space for the
algorithms to solve it.

The dynamics of the environment represents one dimen-
sion, i.e., whether the observation points may change in the
monitoring area. Modifications of the observation points
may be caused externally (e.g., by the operator) or inter-
nally (e.g., by automatic data analysis) to focus attention to
different areas. In a static environment, offline configura-
tion would be feasible; a dynamic environment requires a
dynamic (re-)configuration.

The second dimension is the distribution of processing
and data of the configuration method. Centralized meth-
ods are typically easier to implement, but have limited scal-
ability. The required computation and communication re-
sources are a related issue here.

The homogeneity of sensors and tasks represents another
dimension. Sensor nodes can have identical or different
capabilities wrt. sensing, processing and communication.
This is also true for the observation points which can re-
quire homogeneous or heterogeneous monitoring activities.

Finally, the a priori knowledge about the network and
the monitoring activities has a strong influence on configu-
ration method. Such knowledge include information about
the network topology, the sensor calibration and the objects
and events to detect. Learning is one approach to overcome
limited a priori knowledge.

2.3. Configuration Methods

In this paper we discuss three different configuration
methods: centralized, distributed and proprioceptive con-
figuration. These methods have different capabilities and
requirements; they represent instances within the previously
discussed configuration design space.



In the centralized approach, the configuration prob-
lem is solved on a dedicated computer node where com-
plete knowledge about the camera network, the observation
points and the monitoring activities are available. We apply
a genetic algorithm to approximate the configuration prob-
lem.

In the distributed approach, the individual cameras per-
form simple operations to find solutions for observation
points within their FOV and exchange these local solutions
to iteratively improve to overall solution. The distributed
approach supports fast re-configuration and is therefore well
applicable in dynamic environments. Due to limited access
to global data and the simpler optimization method there
might be a deviation in the solution quality as compared to
the centralized approach.

In the proprioceptive approach, the camera nodes
act autonomously within the network. They collect
and maintain information about their state and progress,
which enables them to reason about their behavior (self-
awareness) and utilize this knowledge to effectively and
autonomously adapt their behavior to changing conditions
(self-expression) [8]. We use a socio-economic approach to
dynamically configure the camera network without a priori
knowledge and demonstrate it in multi-object, multi-camera
tracking.

3. Centralized Configuration
The search space for the configuration problem is typ-

ically very large and thus, a combinatorial search strat-
egy becomes infeasible. Since this search problem is also
multi-dimensional, the solution is no single point in the
search space but a set of Pareto-optimal solutions. A popu-
lar approach to tackle multi-dimensional optimization prob-
lems is the use of evolutionary algorithms [3] which are in-
spired by biological processes and apply the ”survival of the
fittest” principle in an iterative way [16].

The execution of an evolutionary algorithm can be in-
fluenced by changing the targeted population size (i.e., the
number of individuals present after selection), the mutation
rate and the crossover rate (i.e., the number of mutation
and crossover operations in one epoch). Evolutionary algo-
rithms make heavy use of random variables (e.g., to select a
chromosome to mutate).

3.1. Evolutionary Modeling and Approximation

We approximate the configuration problem in a hierar-
chical, evolutionary approach [4]. As illustrated in Algo-
rithm 1, the algorithm takes the sets of sensors S, observa-
tion points T and activities A as inputs and returns a set of
selected sensors S′ ⊆ S with assigned sensor configuration
D′ and procedures P̃ .

In the first step, we focus on the coverage problem and
search only for sensor selections and input configurations

Algorithm 1: Centralized configuration [4].
Algorithm centralized configuration()
INPUT: S, T,A
OUTPUT: active sensors S′ with assignments for D′ and P̃
ENCODING: for every sensor si its status and input config. di ∈ Di

set initial population
for every epoch do

MUTATE sensor status and input configuration
EVALUATE coverage
SELECT

call task allocations(”covering” solutions)
perform elitist selection

until termination

Algorithm task allocation()
INPUT: sensor selections satisfying ”coverage”
OUTPUT: feasible solutions with ranking
ENCODING: for every sensor si ∈ S′ its assigned procedures p̃i

set initial population
for every epoch do

MUTATE procedure assignment
EVALUATE resources and activity
SELECT

perform elitist selection
until termination

satisfying the coverage requirements. At the end of each
epoch, these ”covering” solutions are passed over to a sec-
ond evolutionary algorithm searching for feasible task as-
signments. This second step focuses on the resource and
activity constraints. Thus, the joint output of both steps sat-
isfies all conditions for feasible solutions which are ranked
according to the specified fitness functions. Although our
problem formulation considers scenarios with uncovered
observation points (i.e., points which are outside the FOV
of all cameras) as infeasible, our algorithm implementation
is able to eliminate these points in a preprocessing step and
still present solutions for all covered points.

4. Distributed Configuration

The basic idea of the distributed algorithm is that camera
nodes autonomously act in a greedy manner to cover obser-
vation points (also called targets) in their FOV. They then
exchange messages (so called descriptors) describing the
required resources to cover an observation point to inform
other nodes of their local solution. Improved solutions are
identified by comparing the exchanged descriptors. By per-
forming periodic re-evaluation of the assignments (the tar-
gets covered by that camera), the solution can be improved
iteratively.

In the basic distributed algorithm we do not require infor-
mation about camera neighborhood; the cameras exchange



descriptors with broadcast messages1. Each camera stores
the best descriptor for a certain target, be it a local solu-
tion or the solution of a remote node. This stored descrip-
tor is broadcast whenever the camera receives a worse de-
scriptor. We support multi-hop dissemination of descriptors
using this mechanism. This mechanism also improves the
robustness against message loss in unreliable networks.

Algorithm 2 shows a pseudocode description of the dis-
tributed algorithm. Nodes react to events such as the oc-
currence of new targets or the reception of new descrip-
tors2. Due to this simple protocol, we can quickly react to
changed environmental circumstances and detected events
in the monitored area. The distributed algorithm is fast and
has good scalability and is therefore feasible for online re-
configuration in dynamic environments [5].

Algorithm 2: Distributed configuration [5].
Algorithm distributed configuration()

/* executed on every camera node */
On receive new observation point t:

if t can be covered:
Calculate required (res, fps, activity)
Calculate required resources for (res, fps, activity)
Broadcast descriptor

fi
On receive descriptor d:

if better descriptor ds available (local / stored)
Broadcast ds

else
Store d as remote best descriptor for t
Broadcast d

fi
Do periodically:

if uncovered target in range
if it can be covered
Calculate required (res, fps, activity)
Calculate required resources (res, fps, activity)
Broadcast descriptor
fi

fi
Do periodically:

Offer most expensive target that is covered by this node

4.1. Comparison of Centralized and Distributed
Configuration

In the following we briefly compare the centralized and
the distributed configuration algorithm. This comparison is
based on the achieved solution quality of both algorithms,
i.e., the configuration algorithms optimized the overall en-
ergy consumption in four test scenarios. This comparison is

1Cameras are neighbors if they have a common observation point in
their FOV. If we know the neighbors, we can multicast the descriptors to
these nodes and reduce the communication in the network

2”On x” indicates the occurrence of event x on the node. Events for
new observation points or new descriptors are shown along with optional
periodic activities for optimization.

adopted from [5] which discusses both algorithms in more
detail.

The results of these test series are shown in Table 1. We
performed 500 simulation runs per scenario and show the
average, minimum and maximum deviation from the refer-
ence result of the central algorithm. We also present the av-
erage, minimum and maximum number of messages needed
to initially cover all points. We further show, how often the
algorithm found the optimal result initially and after an re-
evaluation phase of 100 message. Note, that even if the op-
timal result is not found, the result is still valid but requires a
higher amount of resources. Additionally we show the aver-
age, minimum and maximum deviation from the reference
result after the re-evaluation.

It can be seen that the algorithm performs very well in
the simple and medium complex scenarios. It is able to find
the optimal result for scenario a already in the initial assign-
ment phase. Also, the number of messages needed is very
low making the algorithm very suitable for resource-limited
networks (especially, if we consider that one message only
has a few bytes of size).

We can see that the algorithm found the optimal result for
scenario d initially in 4.5% of our test cases but was able
to increase this rate after the re-evaluation to nearly 42%.
Thus, the algorithm finds results fast and the re-evaluation
allows the improvement of the solution already with a small
number of additional messages.

To evaluate the performance of the distributed algorithm
in unreliable networks, we performed simulations where
some broadcast messages were lost randomly. The results
for 5% message loss are shown in Table 2. These results are
still very close to the case with no message loss. The bene-
fit of a continuous improvement after the initial assignments
can also be clearly seen (cf. last column).

5. Proprioceptive Configuration
Recently, tracking applications have been developed on

smart camera networks where the processing is distributed
among the camera nodes (e.g., [10, 13]). While these
distributed approaches apply different configuration strate-
gies for managing the tracking responsibilities, they rely
on topology knowledge and/or require iterative informa-
tion exchange among the cameras. Our proprioceptive ap-
proach, first introduced in [7], overcomes these limitations
and is able to achieve robust, flexible and scalable multi-
camera configuration with low computation and communi-
cation overhead.

The tracking handover can be seen as an instance of the
configuration problem in smart camera networks. The mov-
ing objects’ position represent the observation points which
are in this case highly dynamic. The monitoring activities
(the object tracking) and the camera nodes are typically ho-
mogeneous. The goal is to select the best camera for track-



Scenario Deviation [%] # Messages Opt. runs initial - after +100 msgs. [%] Deviation after +100 msgs. [%]
a 0 - 0 - 0 17.5 - 14 - 21 100 - 100 0 - 0 - 0
b 1.5 - 0 - 36.8 31.2 - 22 - 43 45.1 - 45.5 1.3 - 0 - 12.2
c 5.1 - 0 - 15.5 29.4 - 21 - 43 16.2 - 54.8 3.7 - 0 - 7.8
d 11.9 - 0 - 64.9 54.1 - 44 - 78 4.5 - 41.8 6.7 - 0 - 55.5

Table 1. Comparison of the centralized and distributed configuration algorithm using 4 different scenarios [5]. Average, minimum and
maximum deviation in predicted solution quality after the initial assignment (second column) and number of messages of the initial
assignment (third column) as well as the ratio of optimal solutions found initially and after re-evaluation (fourth column) are shown. The
last column depicts the average, minimum and maximum deviation from the optimal result after an re-evaluation of 100 messages.

Scenario Deviation [%] # Messages Opt. runs initial - after +100 msgs. [%] Deviation after +100 msgs. [%]
c 21.9 - 0 - 229 27.9 - 21 - 38 16.8 - 57.8 3.3 - 0 - 12.6
d 25 - 0 - 218 51.2 - 38 - 64 2.2 - 45.2 7.1 - 0 - 55.5

Table 2. Comparison of centralized and distributed configuration algorithm including a message loss of 5% [5]. Average, minimum
and maximum deviation in predicted solution quality after the initial assignment (second column) and number of messages of the initial
assignment (third column) as well as the ratio of optimal solutions found initially and after re-evaluation (fourth column) are shown. The
last column depicts the average, minimum and maximum deviation from the optimal result after an re-evaluation of 100 messages.

ing the object at any time.
The proprioceptive approach is based on ideas from both

social and economic systems. A market mechanism is used
to allocate objects to cameras for tracking. Subsequently,
an ant colony inspired mechanism is used to learn the cam-
era network’s topology during runtime. As the vision graph
is built up over time, it is then used to direct communica-
tion within the market mechanism in a more efficient man-
ner. Market principles have long been shown to be useful
in the control of distributed computing systems (e.g., [9, 2])
as have ant colony inspired algorithms (e.g., [6]). However,
our approach is the first use of artificial pheromones to en-
able targeted marketing which is completely different from
optimization. This provides us with the ability to efficiently
manage the trade-off between communication overhead and
performance at run-time.

5.1. Utility and Market Mechanism

In the proprioceptive configuration each camera is con-
trolled by a self-interested autonomous agent, with a utility
function which it attempts to maximize. A camera i, has a
set of owned objects Oi. The instantaneous utility of cam-
era i is then given by [7]

Ui(Oi, p, r) =
∑
j∈Oi

[cj · vj · φi(j)]− p+ r (4)

where φi : Oi → {0, 1} and is 1 if camera i attempts to
track object j and 0 otherwise. cj and vj represent the un-
derlying tracking confidence and visibility of object j re-
spectively. Cameras also make payments to each other in
exchange for ownership rights over objects. For example,
camera bmay pay camera s in order to buy the right to track
an object owned by s. If both cameras agree, then the ob-
ject is removed from Os and added to Ob. In equation 4, p
denotes the sum of all payments made by camera i at that

time, while r denotes the sum of all payments received.
We use Vickrey auctions [15] as the chosen market

mechanism. When attempting to sell an object it owns, a
camera hosts a single item Vickrey auction for that object.
The advantage of the Vickrey auction is that it has a dom-
inant strategy for bidders: to bid one’s truthful valuation,
regardless of the strategies of the other bidders. In common
with other market-based control systems (e.g., [9]), the cur-
rency used is not real money, it is an artificial quantity used
for system control.

The basic process which occurs in this approach is there-
fore as follows. Each camera advertises information to other
cameras about the objects it currently owns. Upon seeing
such an advertisement, a camera determines the utility it is
likely to gain if it owned the object, and had the right to
track it. The receiving camera may then bid for the object,
privately to the advertising camera. Since we use a Vickrey
auction, each camera may place only one bid and the dom-
inant strategy of each camera is to bid a value equal to its
truthful valuation of the object in terms of its contribution
to the camera’s utility (see equation 4).

5.2. Pheromone-based Vision Graph Generation

The market mechanism allocates objects to cameras
without requiring any topology information, since each
camera can advertise its objects to all other cameras in a
broadcast fashion. However, by introducing vision graph in-
formation, the process can be made more efficient in terms
of communication overhead. This topology information
need not be known a priori, since the ant colony inspired
algorithm is able to learn it online, by observing trading be-
havior. This is a key advantage of combining social and eco-
nomic approaches to solve the configuration problem. The
fundamental idea is that as a camera learns its neighborhood
relations, it may reduce total communication, by advertising



its objects only to those cameras which are likely to buy. At
the same time, it can still obtain a high utility, and adapt to
changes in the network topology by updating its model of
the vision graph during runtime.

As alluded to, the learnt vision graph information is dis-
tributed and local information is stored in cameras. We de-
fine for each camera i an adjacency list, Ei, the set of all
links (or edges) originating at that camera. Each element of
Ei is the tuple (i, x, τix), where x is another camera in the
network and τix is the strength of the link from camera i
to camera x. Each camera is initialized with an adjacency
list containing tuples from itself to all other cameras in the
network, each tuple with a strength value τix = 0 for all x.
Subsequently, each time camera i successfully sells an ob-
ject to camera x, τix is increased by a value ∆. The strength
of the links also decreases over time, allowing the system
to re-learn in response to changes in topology or cameras’
fields of view. The pheromone learning method is described
in full in [7].

As τ values are learnt, the inefficient broadcast behav-
ior of cameras can then be made more efficient. Specifi-
cally, when advertising an object, camera i sends a message
to camera x with probability P (i, x), otherwise it does not
communicate with camera x at that time.

We have investigated a number of strategies for deter-
mining P (i, x), based on the learnt τ values. These are
described in [7], where this socio-economic approach was
first introduced.

5.3. Autonomous Camera Control

Combining the camera’s utility function, decision pro-
cess, trading behavior and vision graph generation, we spec-
ify that each camera in the system behaves according to Al-
gorithm 3.

As indicated in step 4, the handover algorithm should
be run regularly enough to ensure that objects are handed
over as close as possible to the optimal time, but without
spending unreasonable resources identifying objects in the
scene purely for the purposes of determining optimal bids.

5.4. Experimental Study

To test our approach, we created a 2D simulation frame-
work with static cameras; the cameras’ fields of view are
modeled as segments. Each camera is independently con-
trolled by an autonomous software agent capable of com-
municating with other such agents via message passing. In
the simulation we assume perfect tracking (i.e., every object
within the FOV is properly detected and identified) and cal-
culate the visibility of an object based the inverse Euclidean
distance between the camera and the object and the simu-
lated position of within the FOV. In each simulation run,
the total cumulative utility across all cameras was recorded
(the social welfare) as a measure of tracking performance.

Algorithm 3: Proprioceptive handover algorithm [7].
Algorithm proprioceptive configuration()
/* executed on every camera node*/

1. Object trading of camera i

(a) Advertise owned objects to each other camera x with
probability P (i, x).

(b) For each received advertised object j, respond with a bid at
value ui(j) if this is greater than zero.

(c) Accept received bids for each object k for which ui(k) is
less than the highest received bid. For each accepted bid:

i. Remove k from Oi.
ii. Respond to the camera making the highest bid,

informing it of the required payment, the value of the
second highest received bid.

iii. Increment the camera’s utility by the value of the
second highest bid.

(d) For each object l for which the bid sent was accepted, add l
to Oi and deduct the payment amount from the camera’s
utility.

2. Vision graph update of camera i: Update τix for all x.

3. Tracking decisions of camera i: Select which objects in Oi to track
in order to maximize Ui(Oi).

4. Repeat at regular intervals.

Figure 2. System utility (above) and communication usage (below)
over time, during a typical run of a scenario with three objects.
Active and passive broadcast algorithms are compared.

The number of messages sent between cameras was also
measured.



Iteration 0 Iteration 100

Iteration 200 Iteration 300

Figure 3. The vision graph is built up through trading interactions,
over time, as the system operates [7]. Red lines indicate links in
the vision graph; thickness indicates strength. A cameras’ FOV
turning yellow indicates that it has detected an object.

Initially, two simple broadcast approaches, which we re-
fer to as active and passive, were tested in the simulation
environment. In both approaches, each advertisement mes-
sage is broadcast to all other cameras in the network. In
the active approach, each camera advertises every object
it owns to the entire network at each simulation time step.
This means that other cameras attempt to gain ownership
of objects as soon as they enter their FOV. On the one hand
this results in a perfect tracking utility since the camera with
the highest utility for an object has ownership of it, but on
the other hand the communication between the cameras is
significant. Contrary to this, the passive approach mini-
mizes the communication by sending advertisement mes-
sages only when an object is about to leave the FOV of its
current owner.

Figure 2 shows the overall system utility (i.e., the track-
ing performance of the network) and the communication
overhead for the active and passive algorithms in a scenario
with three moving objects. The spikes in utility occur when
the objects move into the areas of high visibility in front
of each of the cameras. As can be clearly seen, the active
approach uses significantly more communication.

Figure 3 illustrates the pheromone-based approach to
building the vision graph online during runtime. The state
of the vision graph is shown at four points through the sim-

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

T
o
ta

l 
U

ti
li

ty

Communication

Active Approaches

Passive approaches

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

T
o
ta

l 
U

ti
li

ty

Communication

Active Broadcast

Passive Broadcast

Active SMOOTH

Passive SMOOTH

Active STEP

Passive STEP

Figure 4. Performance (overall utility calculated across 1000 time
steps) of each of the six algorithms on a simple (above) and com-
plex (below) scenario [7]. Both utility and communication values
are normalized by those from the active broadcast algorithm.

ulation, from initialization where no adjacency information
is known. As the objects are traded between cameras, the
links (indicated by thicker red lines) are constructed. Over
time, unused links reduce in strength.

Figure 4 shows the overall performance of six variants
of the approach on two test scenarios, with one object in
the environment. Due to the stochastic nature of the ob-
ject’s trajectory and the communication algorithms, mean
and standard deviation are shown for each approach, calcu-
lated over 30 independent runs. More details on the experi-
mental evaluation can be found in [7].

These results clearly show that the greatest difference be-
tween outcomes in the simpler scenario is obtained when
switching between active and passive approaches, while the
difference between broadcast and multicast communication
schedules has little effect. However, in the more complex
scenario, the different approaches yield different outcomes



Property Centralized Distributed Proprioceptive
Environment static dynamic highly dynamic
Processing centralized distributed
Reconfiguration rate offline low high
Configuration goal global coverage individual objects
Sensors cameras, heterogeneous hardware
Tasks heterogeneous homogeneous (tracking)
A-priory knowledge topology and resources local resources none

Table 3. A qualitative comparison of centralized, distributed and proprioceptive configuration algorithms.

in the trade-off between communication and tracking per-
formance. A Pareto front emerges, allowing the operator to
select between different handover algorithms based on how
performance and communication are valued.

6. Discussion
In this paper, we have introduced the configuration prob-

lem in smart camera networks and the associated design
space for the configuration algorithm. We have compared
three different algorithms—centralized, distributed and pro-
prioceptive configuration—which exemplify different parts
in the design space. Table 3 highlights the main char-
acteristics of these three approaches. The centralized ap-
proach uses an evolutionary algorithm to globally approxi-
mate a configuration in a fixed environment with complete
knowledge. The distributed approach is able to perform on-
line re-configurations whereas the proprioceptive approach
achieves scalable and robust tracking handover in a self-
adaptive fashion without relying on any a priori topology
knowledge.

Acknowledgements
The research leading to these results has received fund-

ing from the European Union Seventh Framework Pro-
gramme under grant agreement no 257906. This work has
also been supported by Lakeside Labs GmbH, Klagenfurt,
Austria and funded in part by the European Regional Devel-
opment Fund (ERDF) and the Carinthian Economic Promo-
tion Fund (KWF) under grant KWF 20214/18354/27107.

References
[1] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury. A sur-

vey on wireless multimedia sensor networks. Computer Net-
works, 51:921–960, 2007. 1

[2] S. H. Clearwater, editor. Market-Based Control: A Paradigm
for Distributed Resource Allocation. World Scientific, Sin-
gapore, 1996. 5

[3] C. Coello Coello. Evolutionary multi-objective optimization:
a historical view of the field. IEEE Computational Intelli-
gence Magazine, 1(1):28–36, Feb 2006. 3

[4] B. Dieber, C. Micheloni, and B. Rinner. Resource-Aware
Coverage and Task Assignment in Visual Sensor Networks.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 21:1424–1437, 2011. 1, 3

[5] B. Dieber and B. Rinner. Distributed Online Reconfigura-
tion of Visual Sensor Networks for Resource-aware Cover-
age and Task Assignment. Technical report, Klagenfurt Uni-
versity, 2012. 1, 4, 5

[6] M. Dorigo and T. Stützle. Ant Colony Optimization. The
MIT Press, 2004. 5

[7] L. Esterle, P. R. Lewis, M. Bogdanski, B. Rinner, and X. Yao.
A Socio-Economic Approach to Online Vision Graph Gener-
ation and Handover in Distributed Smart Camera Networks.
In Proceedings of the ACM/IEEE International Conference
on Distributed Smart Cameras (ICDSC), pages 1–8, Ghent,
Belgium, August 2011. 1, 4, 5, 6, 7

[8] P. R. Lewis, A. Chandra, S. Parsons, E. Robinson, K. Glette,
R. Bahsoon, J. Torresen, and X. Yao. A survey of self-
awareness and its application in computing systems. In Pro-
ceedings of the 2011 IEEE Conference on Self-Adaptive and
Self-Organizing Systems Workshops (SASOW), Oct 2011. 3

[9] P. R. Lewis, P. Marrow, and X. Yao. Resource Allocation
in Decentralised Computational Systems: An Evolutionary
Market Based Approach. Journal of Autonomic Agents and
Multi-Agent Systems, 21(2):143–171, 2010. 5

[10] Y. Lin and B. Bhanu. A Comparison of Techniques for
Camera Selection and Handoff in a Video Network. In Pro-
ceedings of the ACM/IEEE International Conference on Dis-
tributed Smart Cameras, pages 1 – 8, 2009. 4

[11] C. Micheloni, B. Rinner, and G. L. Foresti. Video Analy-
sis in PTZ Camera Networks - From master-slave to coop-
erative smart cameras. IEEE Signal Processing Magazine,
27(5):78–90, 2010. 1

[12] B. Rinner and W. Wolf. A Bright Future for Distributed
Smart Cameras. Proceedings of the IEEE, 96(10):1562–
1564, October 2008. 1

[13] B. Song, A. T. Kamal, C. Soto, A. K. Roy-Chowdhury, and
J. A. Farrell. Tracking and Activity Recognition Through
Consensus in Distributed Camera Networks. IEEE Transac-
tions on Image Processing, 19(10):2564–2579, 2010. 4

[14] S. Soro and W. Heinzelman. A Survey of Visual Sensor Net-
works. Advances in Multimedia, pages 1–21, 2009. 1

[15] W. Vickrey. Counterspeculation, Auctions, and Competitive
Sealed Tenders. The Journal of Finance, 16(1):8–37, 1961.
5

[16] E. Zitzler, M. Laumanns, and S. Bleuler. A tutorial on evolu-
tionary multiobjective optimization. Metaheuristics for Mul-
tiobjective Optimisation, 535(535):21–40, 2004. 3


