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Abstract— This paper describes the integration of distributed
image analysis in a smart camera network with a control
application. The distributed smart cameras analyze the envi-
ronment of the controlled object and transfer accurate position
and orientation information of all detected obstacles to the
controller within guaranteed time bounds. With this information
the controller can optimize the trajectory of the load. We present
two different approaches for estimating the bounding boxes for
detected obstacles and compare their benefits and drawbacks.

Index Terms—Smart camera networks; hard real-time; obsta-
cle detection;

I. INTRODUCTION AND MOTIVATION

Fast and reliable obstacle detection is important for many
real world control applications where the controller determines
the behavior of the controlled object based on the observed
internal state. In this work we use multiple cameras to observe
the environment of the controlled object with the goal to
acquire information of the environment’s current state. The
controller exploits this auxiliary information, i.e., the posi-
tion, shape and velocity of obstacles, to optimize the control
behavior. The delivery of this information within guaranteed
time bounds—in hard real-time—is an important precondition
for the control optimization. Thus, our ultimate objective is to
integrate real-time image analysis, adaptive motion control and
synchronous communication between the imaging and control
subsystems.

In this work, we deploy distributed smart cameras [1] to
monitor the environment of a model crane. The smart cameras
perform local image analysis to identify the shape of potential
obstacles in their field of view (FOV). Shape information from
multiple cameras is then fused together to estimate the 3D
structure of the obstacles. The smart cameras are connected
over a time-triggered network with the crane’s control system
and deliver the position and velocity of all obstacles within the
predefined frame rate. By knowing the position of obstacles,
the controller can adapt the trajectory of the payload appro-
priately and increase the safety and efficiency of the crane
system.

This paper expands our previous work on such integration
of distributed image analysis, communication and control in
a hard real-time setting [2]. Our contribution comprises the
distributed real-time image processing in the smart camera
network, i.e., the image analysis, the obstacle reconstruction,

the object motion prediction and the communication with the
control system. Other aspects of this integrated approach such
as robustness and trajectory planning can be found in [3], [4],
[5] and [6]

The remainder of this paper is organized as follows. Sec-
tion II sketches related work. Section III describes the system
overview, the components of the system and the logical data-
flow of the distributed smart camera application. In section IV
we present details about the algorithms that are executed in this
setup and in section V we provide information about timing,
accuracy and delay of the system and single components.
Section VI concludes the results of the paper and section VII
shows suggestions for speed improvements of the system
based on the measured data.

II. RELATED WORK

There exists a large body of research in vision-based ob-
ject (and obstacle) detection. In the following we focus our
discussion to real-time detection on multiple cameras.

Wang et al. [7] introduced a scalable peer-to-peer wireless
smart camera system for detecting and tracking multiple
objects. Each camera autonomously performs tracking of
objects in the local FOV and record object information in its
local storage. Short messages are used to exchange label and
position of objects between cameras with a joint view. The
network is evaluated by tracking remote controlled cars and
by defining regions-of-interest for raising events.

Henrich et al. [8] presented a multi-camera system which
is used to guide a robot in a region with moving obstacles.
Obstacle detection is performed with four calibrated cam-
eras connected to a single computer where the position and
structure of the obstacles are calculated. After the planning,
each configuration (movement step of the robot) is tested for
collision with obstacles. If a collision is detected, the trajectory
is re-planned. The paper provides no information about the
update rate of the scene or if images are captured while the
robot is moving.

Lampert [9] presented a high-speed multi-camera system
that is able to detect colored objects in cluttered scenes. They
demonstrated a robotic table tennis deployment to estimate
ball trajectories through 3D space simultaneously from four
cameras images at a speed of 200 fps. However, their image



Fig. 1. System architecture and high-level data flow

processing is purely centralized, and the system has been
implemented on commercial-off-the-shelf hardware (standard
PC with GPU).

Work by Ladikos et al. [10] used a similar setup where
four cameras are connected to a PC. This PC calculates
the 3D model with the help of a GPU (graphics processing
unit). Potential collisions are checked based on bounding
boxes around detected obstacles. To prevent collisions these
bounding boxes are extended by a security distance. The
cameras operate at a resolution of 1024×768 and at a frame
rate of 30 fps.

III. SYSTEM OVERVIEW

Figure 1 depicts the system overview as well as the high-
level data flow. The main components include the multi-
camera subsystem, the control subsystem (including the crane
with its sensors and actuators), the real-time network for con-
necting the components, and a ground state monitor (GSM).
The distributed smart cameras analyze the crane environment,
i.e., the cameras perform object detection individually and fuse
this local information within the camera network to determine
the obstacle’s position and velocity in the 3D space. This
fused information is checked for plausibility by the GSM to
increase the reliability of the overall system. In case of an
implausible state the scene analysis is re-triggered—or if re-
triggering is not possible the whole system is re-started. The
checked position and velocity data of all detected obstacles
are then transferred to the control subsystem over the real-
time network.

A. Multi-camera subsystem

The model crane has a height of approx. 1.3 m and its jib has
a length of approx. 1 m. This results in an operation region of
the crane in form of a cylinder with radius and height of about
1 m (i.e., only a cylindrical segment with angle of 270◦ is
accessible by the crane). The ground plane of the observation
area is 2 m × 2.25 m which we consider as the observation

space. The model crane is operated in an indoor environment
with stable ambient light.

The arrangement of the cameras is important for deploy-
ment. We mounted three cameras to cover the observation
space of the crane model, providing three different object
views. In this setup, almost the entire ground plane is in
the FOV of all cameras. Due to the available space in the
laboratory, the cameras were mounted at a rather high position
of 1.5 m above the ground plane resulting in a downward angle
of about 60◦. A mounting at a lower height would lead to a
more accurate height estimation.

The processing in the multi-camera subsystem is partitioned
into two parts: the local pre-processing and the fusion process-
ing. During the pre-processing the images from the cameras
are analyzed. In this process the contours are abstracted from
the obstacles. These are then forwarded to be used by the
fusion process. The fusion part estimates size, position and
orientation of the obstacles. The pre-processing is executed
on each camera while the fusion is executed only on one of
the distributed cameras.

B. Control subsection

The task of the control subsection is to autonomously move
a load from a starting point to a destination point. This paper
will only give a rough overview on the processes that are
executed in the control system. For more details about this
system, see [5] and [6]. The trajectory is planned based on
some optimization goal before the movement of the load is
started. If an obstacle is detected—either before or during
the movement process—it is checked whether the obstacle
intersects the planned trajectory. If so, the trajectory is re-
planned by the controller in order to avoid a collision.

The control system is responsible for calculating a trajectory
from the start-position to the destination. The position and
current orientation of the crane (position of trolley, angle of jib,
. . . ) is measured using sensors. These sensor values are only
available to the control system. The other components provide
detailed information about obstacles that are present in the
environment space of the crane. This additional information is
used by the planner to find a trajectory that is low-cost - in the
sense of timing or power consumption - and avoids collisions
with obstacles that intersect the optimal path. The control
subsystem is based on a real-time work station equipped with
an Intel Core 2 Duo with 2.13 GHz CPU and 1024 MB RAM.
The smart cameras and the control subsystem are connected
via TTEthernet [11].

C. Real-time network

Another part of the system is the real-time communica-
tion network which has to guarantee that every data packet
is transferred within a strict period of time. The data is
transferred using the TTEthernet protocol [11] which extends
classical Ethernet with services based on time-triggered pro-
tocols to meet time-critical, deterministic or safety-critical
requirements. A dedicated software driver was developed to
support TTEthernet on our smart cameras.



Fig. 2. System architecture (logical connections) The black lines represent
the connections using TTEthernet, where the red line represents a connection
using the local loopback-device.

D. Data flow

Figure 2 depicts the data flow of the overall system. The
black lines represent a TTEthernet connection where the red
line represents a local loop back connection. The colors of the
boxes represent the cameras where the application modules
are executed. Blue corresponds to camera 1, green to camera 2
and red to camera 3. The white square represents the control
system including the crane. Each camera performs the pre-
processing and provides the result to the fusion unit. The
fusion unit reads the dataset and estimates the 3D scene. As
soon as the estimation is completed, the GSM (Ground State
Monitor) forwards the current ground state of the fusion unit to
the GSM-Validator. Not every detail of the GSM is described
in this document. The ground state consists of the transmit-
ted data plus some timing information. The GSM-Validator
checks the ground state of the fusion unit for plausibility by
comparing the received output with the expected output. The
expected output is calculated based on the previous ground-
states. If the current output seams reasonable, the validator
informs the GSM (2) that the estimated scene information can
be forwarded to the control system. If the output is not as
expected, the GSM has the option of restarting the fusion unit.
This is done by pre-loading an expected ground state. Another
important function of the GSM is the option of re-starting the
fusion unit if the software fails for any reason. Hence, the
GSM operates as a filter for the data and a monitoring device
for the fusion process. More details about the GSM can be
found in [3] and [4].

We use custom-built smart cameras from SLR Engineering
which are equipped with an Intel Atom processor running at
1.6 GHz and an 100 MBit Ethernet interface, see figure 3. The
camera has a CCD image sensor with a native resolution of

Fig. 3. Image of the used smart camera from SLR Engineering

1360×1024 pixels. The same cameras are also used for traffic
surveillance, see [12].

IV. COLLABORATIVE PROCESSING IN DISTRIBUTED
SMART CAMERAS

The implemented system relies on following assumptions.
All cameras are calibrated and their extrinsic and intrinsic
parameters are known (see section III). All obstacles that have
to be detected have cuboid structure and are placed on the
ground plane (plane with real-world height 0). For the scene
analysis a perfect object reconstruction is not required; the
detected obstacles must only be described by bounding boxes.

A. Local pre-processing

The local pre-processing captures new frames and detects
the obstacles and abstracts their contours. Obstacles are seg-
mented by background subtraction. The contours of these
segments are then represented by a list of corner points. This
list is forwarded to the fusion unit. Each scene (set of contours)
is transmitted within a single Ethernet frame (1500 Bytes).
Each contour is represented as a polygon with a variable
number of corner points.

As the number of points for a contour is limited by the
size of an Ethernet frame, it may happen that in complex
scenes, the contour representation has to be simplified. The
simplification works in a way that the points of the polygons
that have the smallest impact on the shape of the contour
are removed from the polygons. This way the quality of the
representation is dynamically fitted to the number of contours.
Even contours with a small number of corner points are
sufficient to perform a reasonable reconstruction of the objects
in the fusion step. Note that a perfectly segmented cuboid
would result in general in a contour of six corner points.

The quality of a polygon representation is defined by the
maximum distance between any point of a segmented contour
and the abstracted polygon. The maximum distance is set to
6 pixels, a lower distance would lead to slower processing
with no further improvement of the results in later phases.

B. Fusion

The fusion process grabs the preprocessed scene data from
the single cameras. These scene representations are analyzed
and bounding boxes of detected objects are generated.



Fig. 5. Combination of the projections from the single cameras to a combined
view. Blue: camera1, Green: camera 2, Red: camera3. The region where all
three overlap can be determined as ground area of the object

The estimation of the obstacles’ bounding boxes is per-
formed in two steps. The first step determines the ground area
of the obstacles. The detected ground area is used to calculate
the height in a second step.

1) Ground area determination: The ground area can be
assumed as the part of the object which overlaps in the
projection of the contours to the ground plane. With the help of
the ground area it is already possible to determine the length,
the width, translation (in x and y) and the orientation of the
object.

For determining the ground area of the objects, the contours
from all cameras are projected to the ground plane. This
mapping is done based on the intrinsic and extrinsic camera
parameters which are provided by each camera. Figure 4
shows an example of a single scene where one object is
present. This object is detected by all cameras. The contours
mapped to the ground plane are displayed for each camera.
Figure 5 shows the combined view of all cameras and the
estimated ground area is visualized as black rectangle.

In figure 4 the image in the center (the one of camera 2)
has an edge on the upper part of the object. This part was
falsely classified as background. It is actually a part of the
object. Effects like these happen due to poor segmentation.
To further explain this effect, the polygon was drawn to the
background image of camera 2. Figure 6 shows that the black
stand of the crane is the reason for the miss-classification.

As there might be regions of the ground plane which cannot
be seen by any camera (as this part is occluded by the
object, there might be a wrong estimation of the ground area.
However, this estimation will always be larger than the real
ground area. This means that a perfect representation is not
possible. Figure 7 shows the top view of a scene where an
object (blue) is detected by two cameras. The contours of
these two cameras (green and red) overlap in a region that
is larger than the ground area of the object.

2) Height calculation: For the height calculation, two dif-
ferent approaches have been implemented and tested. Both
implementations rely on the estimated ground area.

Fig. 6. Contour of camera 2 projected to background image from camera 2.
(The background image is not available for the fusion unit). red: Projection
of the ground area to the image, blue: detected points on ground plane
for height calculation, white crosses: corresponding points in the height,
turquoise: contour received from camera 2

Fig. 7. Top view of scene: An objects ground area is miss-detected in the
region where the ground plane is occluded from the cameras (the hatched
area)

The first implementation is based on vector intersection.
The height is determined by calculating the height of the point
where the vector from the camera center to the projection of
the ”head point” (white cross in figure 8) intersects the vector
in z direction from the projected head point on ground plane
(”foot point”, i.e., blue point in figure 8). Since we assume a
cuboid structure of the obstacles, head point and foot point are
corner pairs of the cuboid. Each contour offers two chances to
calculate the height this way, since in general there is a corner
pair on the most left and right edge of the contour. It turned
out that in some cases, these vectors do not show the correct
result as they might have an edge due to bad contour detection
(see figure 6, left - white cross) or due to miss-detection of the
point on ground (see Figure 8, right - blue point). We used the
maximum calculated value as effective height of the object.

The second approach relies on the fact that all contours
represent boxes with cuboid shape with already known ground
area. To calculate the height, a cuboid with the known length
and width and different height values is generated and mapped
to the contour. The mapping that covers most of the contour
is suggested as the best assumption for the height. Figure 9
shows example images. The top left image shows a contour
(blue) and a projection of a model (green) with a small height
value. The height of the model is increased until the contour
is well covered by the projection of the model (bottom right).



Fig. 4. Projection of contours to ground plane left: camera 1, middle: camera 2 and right: camera 3

Fig. 8. False detection of the point on the ground. As the line along the
ground area has no edge at the ground point at the back, the ground point is
assumed on the wrong position. This leads to a too high calculation of the
height of up to 50% note: this figure is not from the scene in Figure 5

Fig. 9. Example for model fitting: Contour (blue), model with different
heights (green)

V. RESULTS

The presented results focus on the collaborative processing
in the distributed smart camera system. All other components
(such as control unit and ground state monitor) are not
considered here.

A. Single camera application

In [2] we presented preliminary results on single camera
processing where we used a different resolution and contour
algorithm. This method turned out to be too inaccurate to
reconstruct 3D objects.

In the current implementation, the cameras were set to a
resolution of 640×480 pixels. The contours are represented

by bounding polygons as described in section IV-A. The time
measurements were taken from the camera where also the
fusion process is executed. This means that this is the worst
case situation. The other cameras execute within a shorter
time period. A measurement of 200 scenes (frames from each
camera) showed that the maximum processing delay is 70 ms.
With this setup it is possible to handle more than 10 contour
lists per second to the fusion process.

B. Fusion process

In section IV-B the two different methods for calculating the
bounding contours of the objects are described. Both methods
have the determination of the ground area in common. The
ground area estimation is performed in less than 2 ms. The
accuracy is depending on the location of the obstacle and the
placement of the cameras, but lies within 3 to 5 cm. This
value refers to the accuracy of the position and the dimensions
(width and length) of the objects.

The two methods for calculating the height differ mainly in
two aspects. The first aspect is the accuracy and the second
aspect is the calculation speed. Including the time for the
detection of the ground area, the first method, the calculation
of the height using the vector of the contour that represents
the height is executed within less than 10 ms. The achieved
height results were always equal or larger than to the true
height. In some cases, however, a large height error of about
50% was estimated which corresponds to an absolute error of
more than 40 cm. This is caused by adverse orientations of the
object (see figure 8) and our conservative height estimation,
i.e., selecting the largest estimate.

The second method for calculating the height resulted in an
accuracy of 5 cm for the height but has the drawback of a
slower execution. Each detected ground area is tested against
all heights starting with 0 cm up to 1000 cm. The step-size
was chosen to be 3 cm. If a contour has already been detected
by a different camera, the already detected height is chosen as
starting-value. During a series of more than 400 measurements
with a contour coverage of up to 25% of the whole field
of view of the camera, the algorithm took up to 200 ms to
calculate the scene. The median time for calculation was 66 ms
and the standard deviation was 27.9 ms. Further analysis of the



timing values showed, that the most time consuming part was
the transformation of the real-world 3D model to the single
camera views.

C. System performance

The main parameters that describe the whole performance of
the system are the delay from the change of the environment to
the notification of the control system and the update frequency.
The delay depends on the the slowest path for data calculation.
When looking at figure 2, this path starts with the local pre-
processing on the 3 cameras. This takes a maximum of 100 ms.
The next path for the data is the transmission to the fusion
unit. Due to real-time communication (TTEthernet), this time
is guaranteed to be limited to 20 ms. The next component is
the fusion unit. The maximum delay of this unit depends on
the implementation. As shown in this paper, the first approach
finishes within a maximum time of 10 ms. The alternative
(model-fitting) takes up to 200 ms. The final transmission to
the control (including the path via the ground state monitor)
takes another 50 ms. This results in a maximum delay of
180 ms for the first method for height calculation and 370 ms
for the model fitting approach.

The worst case update time depends on the time and
frequency of the slowest component. Using the fast imple-
mentation for the fusion unit, the distributed pre-processing is
the slowest component and the update time is 100 ms (10 Hz)
in the worst case. In the second case (model fitting), the fusion
process is the slowest component and the worst case update
time is 200 ms (5 Hz).

VI. CONCLUSION

This paper shows the results of a 3D obstacle detection with
the use of Intel Atom processors. Two different implementa-
tions are described for the height calculation. The local pre-
processing is done in a distributed manner and the data-size
is reduced to a single Ethernet frame per image (1500 Bytes).
This pre-processing is executed within less than 100 ms for
the worst case.

For the fusion process, two different implementations are
shown. One implementation offers high speed with an accu-
racy of 3 cm for the ground area and an error in height of
some times more than 50% (or 40 cm) of the obstacle height.
In any case the height is larger than the real obstacle height.
The second implementation offers an assumption of the ground
area with an equal accuracy of 3 cm. The height is calculated
more exactly and the accuracy is about 5 cm.

With the use of more powerful hardware like GPUs, FPGAs
or DSPs, it is still possible to reach better results in both
aspects, the local pre-processing and the fusion part.

VII. FUTURE WORK

The provided results for the two algorithms show that one
algorithm is relatively fast for the height calculation where the
other is more accurate.

There are a number of ways to reduce the height calculation
time. One way is to combine the two algorithms. The first

algorithm is used as described in this paper, where the second
algorithm is modified to use a top-down instead of a buttom-
up approach. The fast algorithm is used to determine the upper
bound for the height of the object. This upper-bound is then
used as a starting point for the second algorithm to obtain a
more accurate result.

Another improvement would be to replace the second (slow)
algorithm by an adaption of a binary search. The binary
search algorithm works in a way that the search-space is cut
into halves and it is checked which half includes the result.
The half that includes the result is then again cut into two
halves. This process continues recursively (always taking the
new boundaries into consideration) until a defined accuracy
is reached. This binary search algorithm can only be applied,
if the upper bound is known. Therefore the first algorithm is
again used to determine the first estimation for the height of
the object.
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