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Abstract—A visual sensor network (VSN) consists of a large to process large amounts of visual data in real-time and
amount of camera nodes which are able to process the captured perform rather complex algorithms to fulfill the applicatio
image data locally and to extract the relevant information. The requirements. To explore these requirements in some detalil

tight resource limitations in these networks of embedded sesors let's h | look at a tvpical itori licati
and processors represent a major challenge for the applicain ets have a closer look at a typical monitoring application

development. In this paper we focus on finding optimal VSN for VSN. The objective here is to cover (large parts of) the
configurations which are basically given by (i) the selectio of monitoring area with the cameras while performing various

cameras to sufficiently monitor the area of interest, (ii) tre setting  monitoring activities. Typical monitoring activities ide
of the cameras’ frame rate and resolution to fulfill the quality of motion detection, object detection and tracking. Note that

service (QoS) requirements, and (iii) the assignment of pessing ; ; .
tasks to cameras to achieve all required monitoring activies. these tasks vary in complexity and may change depending on

We formally specify this configuration problem and describean Space and time. The selection of cameras and assignment of
efficient approximation method based on an evolutionary alg- monitoring tasks to these cameras is therefore a challgngin
rithm. We analyze our approximation method on three different  and important problem for VSNs.
scenarios and compare the predicted results with measuremes |, this paper we focus on camera selection and task assign-
on real implementations on a VSN platform. We finally combine - . L
our approximation method with an expectation-maximization ment .m VSNS considering the strong resource Ilmltatlong. W
algorithm for optimizing the coverage and resource allocapn describe this challenge ascaverage and resource allocation
in VSN with pan-tilt-zoom (PTZ) camera nodes. problemwith the objective to find an optimal configuration
Index Terms—Visual sensor network; resource allocation; of the VSN. A configuration is basically given by (i) the
camera coverage; task assignment; evolutionary algorithm selection of cameras to sufficiently monitor the area ofragg
(ii) the setting of the cameras’ frame rate and resolution to
fulfill the quality of service (QoS) requirements, and (lifje
|. INTRODUCTION assignment of processing tasks to camera nodes to achleve al

Camera networks have been used for security monitorifauired monitoring activities. In order to solve this cage
and surveillance for a very long time. In these networks, tif&1d resource allocation problem we model the cameras’ ca-
cameras act as distributed image sensors that continuoupilities and resources, the observation space and nnimgjto
stream video data to a central processing unit, where tﬁ@thltleS as well as the available proceSSing tasks anid the
video is analyzed by a human operatdsual sensor networks resource requirements. We search for approximate sokition
(VSNs)consist of camera nodes, which integrate the imaging an evolutionary computing approach which provides a
sensor, embedded processor, and wireless transceivein[1]900d compromise between search time and solution quality.
a visual sensor network a large number of camera nodEae solutions are evaluated on our embedded camera platform
form a distributed system, where the cameras are ableWhich will be deployed in a biologically sensitive enviroant.
process image data locally and to extract relevant infaonat ~ This work contributes to the scientific knowledge in at
to collaborate with other cameras on the app|ication_$meci|east the fOIIOWing aSpectS: The first contribution is based
task, and to provide the systems user with information-riéf? the specification of the VSN configuration as a camera
descriptions of captured events [2]. coverage and task assignment problem. To the best of our

VSNs represent networks of embedded sensors and r}faowledge,this is the first formulation which jointly codsers

cessors with tight resource limitations. However, VSNsehagoverage, QoS and resource allocation in VSNs. The second

contribution includes our evolutionary algorithm whickief
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source consumption. objective of resource optimization is to adapt the avadabl
The remainder of this paper is organized as followsesources such as energy, communication bandwidth, servic
Section |l discusses related work with regard to resourdevel and sensing capability, such that a given goal functio
limited camera networks as well as sensor placement asdnaximized [2]. Typical goal functions are maximizing the
selection. Section Il introduces the problem formulation network lifetime and/or the coverage area. Zou et al. [14]
detail. Section IV describes our evolutionary approacthitier evaluates power consumption models for encoding, transmis
approximation of the problem and presents our software tagibn and recovery of video data in a camera network and
for specifying and solving the VSN coverage and resourogtimize for network lifetime. Yu et al. [15] also maximizeet
allocation problem. Section V discusses the achieved tesuletwork lifetime by optimizing camera selection for covgga
using different network settings and scenarios for the tooni and energy allocation to camera nodes. He et al. [16] present
ing activities. An experimental evaluation on camera plaifs a power-rate-distortion model to characterize relatigmste-
is also presented. Section VI concludes this paper withef briween power consumption of a video decoder and its rate-

summary and discussion about future work. distortion performance. Adaptive resource managemeiisds a
applied to realize camera selection and handoff for multi-
Il. RELATED WORK camera tracking applications [17], [18].

Middleware systems are yet another method for resource
optimization in camera networks [19]. Molla et al. [20] seyv

In many multi-camera networks [3], the available resourcescent research on middleware for wireless sensor networks
are limited. These resource limitations are especiallyglemt These middleware systems focus on reliable services for ad-
in distributed smart camerap!] and visual sensor networks hoc networks and energy awareness [21]. The spectrum ranges
[5], [2]. Different to the traditional camera networks, the- from a virtual machine on top of TinyOS, hiding platform
cessing of the visual data is distributed among the ind&liduand operating system details, to more data-centric micatew
camera nodes. A major reason for this distribution of pr@approaches for data aggregation (i.e., shared tuplespack)
cessing is to avoid transferring raw data and hence to stippdéita query. Agilla [22] and In-Motes [23], for example, use
down-scaling the required communication infrastructiiie [ an agent-oriented approach. Agents are used to implement th

Optimizing the resource assignment in camera networipplication logic in a modular and extensible way and agents
has recently gained interest in different fields of researatan migrate from one node to another. Cougar [24] or TinyDB
First, computing platforms and sensors are one such fie]@5] follow the data-centric approach, integrating all eedf
Due to the advances in semiconductors, sensing and corgputiie sensor network into a virtual database system where the
performance have increased quite dramatically while rieduc data is stored distributed among several nodes.
the power consumption. Thus, power-efficient camera nodes
have emerged recently; examples include WiCa [7], Meerkats .
[8] and Citric [9] platforms. Although these platforms vary B. Sensor placement and selection
the available sensing and processing performance, the trenPlacing and selecting sensors is an intensively studiea are
towards smaller, more capable and power-efficient camdoa wireless sensor networks. The fundamental question is
nodes can be clearly identified [6]. where to place the sensors—or alternatively what sensor to

Second, dynamic resource management tries to change shkect—such that the area is appropriately covered while
configuration of the camera nodes and the network durikgeping the network connected. The area of interest is often
operation to adapt to changes in the required functionalitjescribed by a set of critical sites (referred to as control
Maier et al. [10] introduce an online optimization methods f points), and each control point has to be covered by at least
dynamic power management in surveillance camera netwosensor nodes. Optimal node placement is a very challenging
where individual camera components changed their powgoblem that has been proven to be NP-hard for most of
modes based on the current performance requirements of te formulations of sensor deployment [26]. To tackle such
network. Winkler et al. [11] present camera nodes combiniripmplexity, several heuristics have been proposed to fibe su
low and high power radios. Karuppiah et al. [12] describe @ptimal solutions (e.g., [27]). Placement problems areroft
resource allocation framework to coordinate distributbiat represented as an integer programming (ILP) model (e.g.,
tracking in camera networks. The fundamental block in th[28]).
framework is the fault containment unit which provides a In contrast to traditional sensor networks which assume
service using a redundant set of resources. This set of osanidirectional sensors, camera networks facilitatectivaal
sources supports local fault compensation but also hiei@k sensors which introduce additional complexity to the senso
resource updates by exchanging fault information. Dynanytacement problem [29], [30]. Similar to the omnidirectidn
resource allocation is also applied to optimize the transfease, this problem is often described as an ILP [31], and vari
of (compressed or raw) video data over a camera netwodus heuristics have been proposed to find good approxingation
Shiang et al. [13] focus on how multiple cameras shou[®82], [33]. The proposed approaches in literature diffethia
efficiently share the available wireless network resouares assumptions about the sensors (homogeneous vs. heteroge-
transmit their captured information to a central monitdriey neous; fixed vs. mobile), assumptions about the environment
compare a centralized approach, a game-theoretic and dygregtatic vs. dynamic), the sensor coverage modeling and the
approach for making the resource allocation decisions. Thptimization objectives. For example, sensor coveragééno

A. Resource-limited camera networks
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modeled as simple 2D trapezoids or segments (e.g., [34] [29]
and [33]). Cai et al. [35] evaluate algorithms for solving th
multiple directional cover sets (MDCS) problems of setting
the directions of sensors into a group of nondisjoint coets s

to extend the network lifetime.

In networks comprised of pan-tilt-zoom (PTZ) cameras,
the covered area can be actively controlled by changing the
cameras’ PTZ parameters [36]. This allows to keep "moving”
control points within the coverage area—which is important
for various tracking applications. However, to steer PTéhea
eras appropriately for tracking applications, accuratecage
modeling and efficient optimization are crucial. Such visua
coverage models have be described by Mittal et al. [37] and
Karuppiah et al. [12]. Examples for efficient algorithms fOIEig, 1. Agraphical sketch of a simple sensor selection asouree allocation
PTZ configurations are based on expectation-maximizatipmblem. Five cameras;, .. ., s5 with fixed FOV (red segments) are placed

[38], consensus and game theoretic approaches [39], 0], [ on the monitoring area to cover four observation poitis...,ts. The
objective is to find a network configuration, i.e., the set eem which are

Typ|ca! sensor network prOblemS (Q.g., placementz Comra'rgquired to cover all observation points and the assignroeall necessary
and routing) have also been described as a multi-objectiwege processing procedures to the covering cameras, vefitisfies all

optimization problem [42]. Rajagopalan et al. [43] discergg-  resource (equirements_ a}nd_ c_)ptimizes some target funtﬂ!’vzm'en'tiz_al optimiza-
. . . tion criteria include minimizing global energy usage or tngixing overall
lutionary algorithms for wireless sensor networks to saleé | cuvork litetime.
only sensor placement problems but also coverage, routidg a
aggregation optimization tasks. Although the presenteded
work has some similarities to the presented approach, tirere Ps, must be executed a; while not exceeding the available
significant differences. First, we consider the coveragktask resources (processing, memory and energy) of the camera.
assignment problem as finding an optin8N configuration A potential solution to the configuration problem depicted
where the in-networking processing (i.e., task assignjream in Figure 1 is the selection of cameras s3 andss. Sincet;
be changed as well. Second, resource consumption and seigseovered bys;, this camera must be configured to achieve
coverage are modeled corresponding to the different requigt least 8 fps and 20pot and executes a change detection
ments of the (PTZ) camera nodes. Finally, the hierarchigaioceduret, andt; are covered bys; thus, this camera must
evolutionary algorithm achieves an efficient approximatd be configured with at least 18s and the resolution to achieve
a rather complex configuration problem. at least 30pot at to and 40pot at t3. Change detection and
object tracking procedures must be executedpriinally, s
coverst,; this camera must be configured to achieve at least
] ) 8 fps and 30pot and execute object detection procedures.
A. Overview and assumptions For modeling the network configuration problem we make
As discussed in Section Il research has just recently fatugbe following assumptiors
on resource-limited visual sensor networks. A fundamental, The camera network consists of directional sensors with
problem here is to determine an optimal network configuratio  a fixed position and fixed field of view (FOV). The frame
while satisfying various functional and resource requigats. rate and the resolution of the image sensor can be changed
In contrast to typical optimization problems, we focus heme within an a-priori known set of sensor configurations.
a combinedsensor selection and resource allocation problem o Each camera is able to capture images (at the defined
The objective is (i) to select a subset of cameras which are resolution and frame rate), to execute a sequence of
able to sufficiently monitor the area of interest, (ii) to set image processing procedures and to transfer data/results
the sensors’ frame rate and resolution appropriately &@id (i to other camera nodes in the network. This data transfer
to assign the necessary monitoring procedures to the camera is realized in a simple peer-to-peer manner. Complete
nodes. Thisonfigurationof the camera network has to satisfy communication coverage among the nodes and a potential
the resource constraints of all camera nodes and the mimgjtor base station is assumed.

IR
pot,=30
, fos=8
“* object detec

pot,=30
o fps,=4
2 change detection

pot, = 40 t
fps,=18
object tracking

I1l. PROBLEM FORMULATION

constraints of all observation points. « The observation points are static locations in the monitor-

The considered network configuration problem is depicted ing area which must be covered by at least one camera’s
in Figure 1. A set ofn camera sensor§ is placed on a FOV at sufficient resolution, i.e., pixels on target. The
2D space; the coverage area of each camera is representedpixels on target are determined by the sensor resolution
by a segment. Each observation potntfrom the setT = and the distance between camera and observation point.
t1,...,tn has to be covered by at least one camera at a given, We currently only consider convex 2D space without
QoS. The QoS is determined by the frame rgtges) and the obstacles restricting the camera’s FOV.

pixel resolution at the observation point, i.e., the pixefs

target (pot) of a unit sized object. The Covering camerg ( lin Section IV we describe an extension of our network conéitian
approach to optimize PTZ camera configurations. Naturally,are able to

Cover'ng.tj) ha§ to 'dehver the mpnltorlng aCt'V't_%j of the rejax some of these assumptions for this extension, i.eed OV and 2D
observation point, i.e., a set of image processing pro@dugpace modeling.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHN@GY 4

order to achievebject trackingwe can combine a background
subtraction procedure (e.g., mixture of Gaussian or frame
differencing), an object detection procedure (e.g., cotate
components) with a tracking algorithm (e.g., CamShift ofTKL
tracking). Different combinations of these proceduredeh
the desired activity, but naturally impose different reseu
requirements.

For each activitya € A we define the setP, =

{pa1 Yoo ,p%} representing alternative procedures for achiev-
ing a. Thus, each alternative,, € P is a set of procedures
Paiy s+ Paiy» and the execution of all these procedures is

necessary to achieve A camera can perform multiple activ-
ities simultaneously, and for each activity covered by that
camera we must select an approprigterom P,,. The set of
setsPSj contains allp,, assigned ta; . If 1531 = () no image
procedure is assigned tg, and this camera can be switched
off to save resources.
Y The function#(P;,,ds,) — (,,7s,,¢6s,) Specifies the
required processing, memory and energy resources for the
Fig. 2. The 2D model of the cameras field of view (gray aredjréel by ndjvidual procedures for a specific data input configuratio
covering anglej (blue), covering distance (green) and orientatiofi (red). . ip . .
The location of the sensor is depicted byand y. The required resources are specified on a single frame basis.
To compute the pixels on target for a certajnve use the
function f (D xT") which is based on our simple 2D geograph-
B. Problem definition ical model. The pixels on target can be calculated by using
the angular size of a unit sized object at the given distance
dist;j = /(xs;, — ;)2 + (ys, — y1;)? between camera;
S ={s1,....8n} and observation point;.
. ) . By taking into account the camera’s resolutiars; and the
where for each sensay; we know its geographical position camera’s covering anglg, we can estimate the 1D resolution

(s, Ys, ), Its available resozlrces,i - (CS“mS'“eSi% dgscrk;tl)- at the target, i.e., the pixels on target of a unit sized dhjéc
ing processing, memory and energy resources argissible 1m. This simple estimation is based on the ratio between the

We consider a set of camera sensors

:itjpllgrzu'[ Conf?uratl;)rrfsire:se{riﬁllé i gﬁt; }i’n""rgigaljtsiigr:san @ngular size of the target within the camera’s FOV (which can
1"€8sijs JPSsij e approximated by—3%2—) and the covering anglé;.

the frame rate of the image sens®. = {D,,,...,D;, } PP ’T'd””vf) g angle
represents the set of input configurations for all cameras. res; - =300 . L i & is coveringt;
Furthermore, the orientatioh,, of the camera and its field of  f(d;,t;) = { boAmdistiy 0 e Y
view—expressed by the covering andle and the covering 0 otherwise.

distancew,,—are known. This 2D model is illustrated in
Figure 2. The parametets,, J;, andw,, are computed on C. Feasible configuration
the basis of the real value of the height, pan angle, tilt @ngl

: rch forfeasibl nfigurations of th mplet
and focal length assigned to each camera by the EM-base € search 1o easible configurations o € compiete
. network. This means that all resource requirements, QoS
coverage computation.

X . . requirements and activity requirements must be satisfieds,T
Further, we define the set af observation points as . .
for each sensors;, the required memory and processing
T={t1,...,tm} resources of all assigned procedufgs must not exceed the
available resources. The required resources for the gijeut i

where for eachi; we know its geographical positia@,, y:,),  data configuration can be computed #2;,, ds, ). Thus, the
the monitoring activitya;, € A (where A is the set of all fo|lowing condition must hold:

monitoring activities that the sensors are capable of) ds we
as the required QoS expressed as pixels on target and Vs €S8 :¢s <cs Ams <mig (2

frame ratefpsy,. | q , h S , b )
An activity represents a high-level monitoring task which n oraer to satisfy the QoS requirements, cvery o se_rvatlon
nt must be covered by at least one sensor. This point must

must be achieved at an observation point. Examples for SL@‘P’I‘ ithin the field of vi  th g b
activities areimage compression and streamjnhange de- °€ WIthin the field of view of the camera. The sensor must be
configured to guarantee a certain number of pixels on target:

tection object detectionperson countingand object tracking
These activities are realized by executing some image pro-

cessing procedures at the covering cameras. In generes, the ; ~ T3s; A3dy, : fi(ds,,t) > pots A fpsa > fpse (3)
exist many different combinations of single image proaegsi ' T -
procedures which realize a certain activity. For exampie, wherel represents the number of sensor configurations.
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Finally, to satisfy the activity constraints, every obsgion V. APPROXIMATION WITH EVOLUTIONARY ALGORITHM
point must be covered by at least one sensor which myst Approach
execute the set of image processing procedures that achie

Vi .
the desired activity for that observation point: ?he search space for the combined coverage and resource

allocation problem is typically very large and thus, a combi
natorial search strategy becomes infeasible. Since thiclse
problem is also multi-dimensional, the solution is no singl
point in the search space but a set of Pareto-optimal sakitio
A popular approach to tackle multi-dimensional optimiaati
problems is the use of evolutionary algorithms [44] whick ar
In general, there are multiple feasible configurations pos&SPired by biological processes and apply the "survivahef
ble for a given network configuration problem. Thus, we afiftest” principle in an iterative way [45]. _
interested in configurations which optimize some criteFlsis N @n évolutionary algorithm, one permutation of the prob-
optimization can be performed in multiple optimizatiorteria €M Space variables is called a chromosome or individual.
and with different optimization objectives. In this papae Many chromosomes form a population (the working set of
are focusing on three different criteria: (i) quality, eegsed the alggnthm). In every iteration (als:o referred to as dyoc _
as pixels on target, frame rate and surveillance activity; (2 Certain number of chromosomes is altered by the genetic
energy usage; and (iii) processed data volume. Naturamgerators mutatlon and/or crossover. The mutatloq gereaat
different criteria can be defined as well. copy of a single chromosome and alters some variables of the

Sincer calculates the resource usage for processing a sinhgéﬁen'ed chromotsome. Thte crossover recombines parts of two
frame, we define the remaining lifetime of a node using t romosomes 1o generate a new one.

required and available energy as well as the frame rate: During the breed 0].( a new generation by mutation and
crossover, the population may grow. To keep the population

€s; size constant, the fittest chromosomes must be selecteé at th
Es, - [DSs, end of each epoch. The selection strategy is an elementgry pa
of the evolutionary algorithm and consists of two phasés: (i
In terms of energy usage, the optimization can follow défér assigning a fitness value to each individual, and (i) silgct

Vt€T3s; A3pe Py, :p€ P, 4

D. Optimization criteria

L, =

criteria. Examples criteria include: a subset of the population based on the fitness values and the
« Minimum global energy usage: applied selection strategy.' If thg selectepl popu]atiprpn‘alher
than the targeted population size, dominated individuady m

(5) diversity.

The execution of an evolutionary algorithm can be influ-
enced by changing the targeted population size (i.e., the-nu
ber of individuals present after selection), the mutatete and
the crossover rate (i.e., the number of mutation and cressov
operations in one epoch). Evolutionary algorithms makeyea
use of random variables (e.g., to select a chromosome to
mutate).

) be added to the population again to ensure a maximum

n
min <Z €s; - fpss,

i=1

o Maximum lifetime for a specific node;:
maz (L) ®)
o Maximum overall network lifetime:

maz (min (Ls,)) ) B. Evolutionary modeling and approximation
Considering the data volume processed on a node we caiVe approximate the combined camera coverage and task
minimize the data volume with respect to resolution and &an@ssignment problem in a hierarchical, evolutionary apgitoa
rate. (cp. Figure 3). As illustrated in Figure 3, the algorithmeak
the sets of sensorS, observation point§” and activitiesA
as inputs and returns a set of selected senS6rs S with
) (8) assigned sensor configuratid? and procedure®.
In the first step, we focus on the coverage problem and
search only for sensor selections and input configurations
To express surveillance quality at the task level, we assigsatisfying the coverage requirements (Equ. 3). At the end
quality rating to the processing procedures using the fanct of each epoch, these "covering” solutions are passed over to
q(P). This function then maps a set of image processing proce-second evolutionary algorithm searching for feasiblé tas
dures to a quality ranking. By accumulating all quality \edu assignments. This second step focuses on the resource-and ac
we achieve a global quality measure for our surveillandestastivity constraints (Equ. 2 and 4). Thus, the joint output oftb
steps satisfies all conditions féeasiblesolutions which are
( n ) ranked according to the specified fitness functions. Altloug
max

n
min g ress, - fpss,

=1

Zq(Psi) (9) our problem formulation considers scenarios with uncayere
i=1 observation points (i.e., points which are outside the F®V o
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ith d assi t : .
Algorithm: coverageand assignment() calculated by the maximum possible data volume of all nodes

INPUT: S, T, A !
OUTPUT: active sensor§’ with assignments foD’ and P normalized by the total data volume processed at all nodes.
ENCODING: for every sensos; its status and input configl; € D; n
res - s
setinitial population ) Z; ( maz,, " fP mazsi)
for every epochdo costratio = - (10)
MUTATE sensor status and input configuration Z (7“685,5 . fpssi)

EVALUATE coverage (Equ. 3) i
SELECT

1

call task allocations("covering” solutions) 2) Task assignment:The ”coyering" solutions at each
perform elitist selection epoch of the first step serve as input to the second step. Here
until termination we try to find a task assignment for every camera such that
Algorithm task allocation() each activity of the cove.red observation points can be aetiig
INPUT: sensor selections satisfying "coverage” and the resource requirements of the cameras are fulfilled.
OUTPUT: feasible solutions with ranking imiz ati i i ifati
ENCODING: for every sensos; € S’ its assigned procedurgs The optlmlzat'lon goal IS. the gnergy .Con.sumptlon and lifetim
as specified in the optimization objectives (Equ. 5, 6, 7, 9,
set initial population respectively).
for every epochdo i i -
MUTATE procedure assignment A chrqmosome is represented by the fet of a55|gn§d pro
EVALUATE resources and activity (Equ. 2 and 4) ced'ureSpi to all activated cameras; e”S . .The pptentlal
SELECT ' assignments of procedures are specifiedPinIn this step
perform elitist selection we also perform only mutation as genetic operator. Thus, the

until termination .
assignments of procedures to cameras are changed randomly.

. . . . . " The fitness function is defined by Equ. 2 and Equ. 4. For each
Fig. 3. Hierarchical evolutionary algorithm for approxiting the camera . .
coverage and task assignment problem. solution we can calculate the processing, memory and energy
requirements, i.e., for each feasible assignniettie required
resources , , my, s, are computed for all camera$ € S’
all cameras) as infeasible, our algorithm implementat®n by applying the functiorr.
able to eliminate these points in a preprocessing step @hd st The function7 can be realized either by a mathemat-
present solutions for all covered points. ical model of the resource consumptions or by empirical
Note, that the camera coverage and task assignment problasasurements of the resource consumptions on the target
can also be approximated by a standard, non-hierarchicdlgrdware. For our algorithm we adhere to the second approach
evolutionary algorithm. However, our hierarchical apmtoa and measured the required resources for all algorithms and
helps to significantly reduce the number of calls to thimput data configurations on the available camera platforms
fitness functions which are computationally expensive aridp. Figure 12). These resource values are stored in a table.
dominate the overall runtime of the evolutionary algorithniThus, the resource functiohcan then be realized as a simple
In the following, we describe both steps of our approach table lookup.
more detail. Note, that in both algorithm steps, we generateThe fithess function for this algorithm checks if the reseurc
the initial population randomly. To generate random sensmquirements are met on all cameras. The first parameter
configurations, we randomly select initial resolutiongnfie in the decision vector is the total globally achieved qualit
rates and activities from a given set. To generate an irggal calculated according to equation 9. The second parameter
of tasks for a certain activity (task assignment), we rangomis computed according to the resource-related optimimatio
select initial procedures that fulfill the given activity. goal. For criterion 5, we calculate the global energy usage
1) Camera coverage and input data configuratidn:the egio1q; and useeqllbal as fitness value. For criterion 6, we
first step we try to select the necessary sensors and setdakulate the lifetime for node; use it as fitness value. For
resolution and frame rate such that every observation p@intcriterion 7, the minimum lifetime is taken as fithess valuleisT
covered appropriately. The optimization goal is to minimizfitness function also calculates the resulting quality adicg
the data volume processed on all camera nodes. to Equation 9.
For the genetic encoding, a chromosome is represented b) Elitist selection: For both steps we use alitist selec-
the status (on/off) and the input data configuratidn of tion [45] method which stores the best found chromosome
each sensos;. The available input data configurations arendependently of the main population in order to avoid the
represented in the sd?. We only apply mutation as geneticloss of already found good chromosomes. In every epoch we
operator which simply corresponds to randomly changirayld chromosomes to the elite which are not dominated by
the sensors’ status and input data configuration. The fitness/ other element in this elite. Note that chromosomes may
function is given by Equ. 3. The decision vector generatedmain in the elite. Thus, if the same chromosome is stilhen t
by the fitness function is defined by two parameters. Thetite in later epochs, we (re-)use the stored task assigtimen
first parameter is equal to the number of observation poiriteat chromosome and can avoid the expensive execution of the
"covered” by the chromosome, i.e., the number of obseraatisecond step, i.e., a call of the algorithm "taakocation()”.
points which have a properly configured camera coveringlf a feasible task assignment is found, the chromosome
them. The second parameter corresponds to a cost metemains in the elite, otherwise it will be removed. Since
referring to the data volume processed at all sensors. Itthere may be allocations which represent feasible solsition
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. . . Point | pot | fps activity
to the sensor selegtlon and sensor conflguranor_l problgm, bu % 10 | 8 | change detection
for which no feasible task allocation exists, this additibn to 10 | 4 | change detection
step is necessary. By restricting the use of the task altat t3 20 | 18 | object tracking
. . . ta 15 8 object detection
algorithm to only the members in the elite (and not to all
members in the population) we need to test only a small subset TABLE |

THE QUALITY REQUIREMENTS OF OBSERVATION POINTS -4 EXPRESSED

of the whole population. In fact, this approach guarantted, AS PIXELS ON TARGET FRAMES PER SECOND AND ACTIVITY

only the chromosomes with the best performance will be teste
for resource and activity requirements.

functions for decision vectors of arbitrary lengths {). Con-

sequently, our framework is able to perform multi-dimensio
Our approach for sensor selection and resource allocat@pproximations.

considers only static cameras. To be able to use it in PTZWe implemented our algorithms in a way, that every model

scenarios, we combine our approach with the expectation mased in the calculations (e.g., the camera model and the

imization algorithm described in [38]. To solve the problemsalculation of QoS parameters) can easily be exchanged with

of the optimal coverage as in [38] a set ®levance maps more sophisticated models if necessary.

2-dimensional discrete functions in the formmaf: N2 — R In order to adapt our framework to a new optimization

representing a relevance value for each point of a discrafe nproblem the following tasks need to be performed:

of the scene, has been computed. Since, assuming a planay pefine the model and implement a corresponding chro-

scene, the intersection of the field of views (representEd asS  mosome a|ong with suitable mutation and crossover

cones) with the ground plane are ellipses, finding the optima  gperations

camera configuration can be reduced to a data fitting problemp) pefine the fitness function

Such a problem consists in finding a set of ellipses of thetha framework will then run the evolutionary optimiza-
cardinality of the number of cameras that best fits the relesa tion autonomously. The framework comes with predefined
maps and maximizes their coverage. In order to determine 0@l ection single- and multi-criteria strategies. Howewae
available solutions, in [38] a space projection is perfame g iaction strategy can be modified if necessary as well.
particular, for each camera a surrounding sphere is deflnedrhe core algorithm of the framework performs mutation,

and the corresponding relevance map is projected into SUCR8ssover and selection in each epoch. Large parts of the
sphere. In this way, the problem is transformed in finding fQfjyorithm can automatically be parallelized to achievehbig
each sphere (camera) a circle whose center specifies the paf,mance on multi-processor systems. The framework is
and tilt angles of the camera and the diameter its FOV ang ﬁTpIemented in C#.Net and is compatible to M8ramd can

In order, to converge to the optimal solution, the maximaat thus be used an various platforms including Windows, Linux
step executed by each camera needs to know the probability; macos

that a point in the relevance map is in the FOV of other
cameras. Since the relevance maps, to handle the occlusions
can be different from camera to camera, this information .
can be made available by sharing the relevance maps amonC valuate our approach, we performed systematic tests of
the cameras in the network. Then, each camera runs loc&lf @lgorithm using a simple, a medium and a complex sce-
the EM-based reconfiguration considering all the camerd¥io. We evaluate the impact of parameters such as popuilati
Being a deterministic process, all the cameras will reagh tAiZ€, mutation rate and number of epochs on the performance
same solution that will represent the optimal configuration Of the evolutionary algorithm. We further study the runtime
maximize the coverage given the relevance maps. of our algorithm, explore the tradeoff between surveilanc
The result of the PTZ optimization is transformed into quality and resource utilization and compare the predicted
suitable input for our evolutionary algorithm by taking théesource of the assigned tasks with the measured resource
camera positions, orientations and zoom factors into agcoytONSUMPption on the target platform. Finally, we evaluat th
Observation points can be generated from activity maps i.&tegration of the PTZ optimization.
an observation points are placed in areas of high activity, b
also manually placed by users. A. Scenarios

1) Simple scenarioOur first scenario is the example setup
from Section Il (see Figure 1). This simple scenario cdissis
of five cameras and four observation points on a 000

To accelerate the development of algorithms and to Migeter area. The requirements of the observation points ean b
imize change effort, we have implemented a generic framgsen in Table I. The algorithms used in the task assignment
work for evolutionary single- and multi-objective optiration  are shown in Table 11l (these apply to all scenarios).
problem$. It facilitates reuse of core evolutionary algorithms, For this simple scenario, a single optimal solution for sens
enCOding of the Chromosomes, and the SpeCiﬁC&tion of fitn%‘é’ﬂection and sensor Conﬁguration exists (|f all proc@sin

C. PTZ optimization

V. RESULTS

D. Simulation environment

2http://nemo.codeplex.com Shttp://www.go-mono.org
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Sensor res fps activity Simple scenario optimal results. Population size: 500
s1 SQCIF | 8 change detection Mechym scenaro faac rescls. Popelation s 1000
so QCIF 4 change detection Complex scenario feasible resuts. Population size: 5000 &
s3 QVGA | 18 object tracking wroe 8 o
S4 off off off 5 8 g 4
S5 VGA 8 object detection g .

TABLE Il g

THE OPTIMAL SOLUTION FOR THE SIMPLE SCENARIO ASSUMING NO
PREVIOUSLY ALLOCATED RESOURCES ON THE NODES

X . . .
0 1000 2000 3000 4000 5000
Number of epochs

Fig. 6. The relation between number of epochs and the ratending
optimal and feasible results (success rate), respectively

number of possible solutions. In a basic scenario of seven
observation points we vary the number of covering sensors.
Every additional covering sensor increases the number of
solutions. This impacts the runtime and the final result. Our
basic scenario has five cameras placed such that every point
is covered by exactly one camera. We then add cameras to
achieve degrees of overlap of two, three and five. Addition-
ally, we constructed two scenarios that have additional non
covering cameras. The scenarios are shown in Figure 5.

For these scenarios we show multi-criteria approximation
including the quality ratings of algorithms. We manually
assigned a quality rating to each algorithm for our second
algorithm stage (see Table ).

| Algorithm | Quality ]
Simple Frame Differencing] 0.5
Double Frame Differencingl 0.8

Fig. 4. The randomly scenario with 100 cameras and 20 ols@mvpoints.

Mixture of Gaussians 1
Blobfinder 1
tasks have an equal quality assigned): assuming that alsnod Kalman Tracker 2
0 g CCCR Tracker (openCV) 0.6
have 100% free resources and at most one activity per sensor,
s4 is switched off and object tracking is assignedoThis is TABLE il

. . . UALITY RATING FOR ALGORITHMS.
becausess is closer tot; and can thus cover this observation Q

point at lower resolution. The optimal configuration forsthi
scenario is shown in Table II. The total global data volume is
at about 5.6% of the maximum global data volume.

If the amount of free resources af is reduced to 10% B. Evaluation of the evolutionary approximation
of the available resource, the task of object tracking cadg on 1) Number of epochs:Typically, in evolutionary algo-
be assigned t@, and sz should be switched off. We testedrithms, the results improve with increasing number of egoch
multiple such allocations to ensure that the task allocatigt can easily be seen that an increased population size gl a
eliminates solutions which would use more resources thggquire increasing the number of epochs to achieve the same
available. results at the same mutation rate.

2) Complex scenarioWe tested our approach in a more In Figure 6 we show the change in number of feasible and
complex scenario of 100 sensors and 20 observation pointsjstimal results with increased number of epochs. By chapsin
an area of 250250 meters (see Figure 4). The observatioa suitable population size, a predictable rate of feasiselts
points require between 10 and 30 pixels on target. can be achieved. Depending on the complexity of the task, a

3) PTZ scenario:We demonstrate the combination of outarger number of epochs may be required.
approach with the PTZ coverage optimization in a medium 2) Population size: The population size represents the
sized scenario with eight cameras and five observation poinumber of different permutations present at a certain point
on an area of 10080 meters. Wefirst perform the expectationin time. A larger population size increases the probabilitgt
maximization algorithm to find the optimal PTZ-parametdrs ahe population contains good individuals.
each sensor. Then, we run our evolutionary algorithm to find For our algorithm, it is necessary to increase the popuiatio
the optimal sensor configuration and task allocation. size with increasing complexity of the scenario. As our ltssu

4) Impact of increasing number of solution®Ve further show, a population size of 5000 individuals is sufficient to
evaluate the behavior of our algorithm in scenarios that amehieve good results even for the complex scenario. For less
within the same level of complexity but which have differentomplex tasks, population sizes of between 100 and 1000 are
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d)

Fig. 5. Scenarios with a degree of overlap of a) one, b) twdyo)with noncovering sensors, d) three, e) three with noedog sensors and f) five.

a)

Simple scenario Medium scenario
Mutation rate: 1

Feasible result @ Mutation rate: 1 Mutation rate: 1
Epochs 1000 Optimal result & Epochs: 2000 Feasible result @ Epochs: 5000 -
100 ! [ ! L[] 100

° 0 100 ]
L]
80

c)
Complex scenario

80 i
60 60
40 A

Success Rate [%]
Success Rate [%]

40 - @

00

20 A

L]
Success Rate [%]
L]

L L
0 200 400 600 800 1000 0 1000 2000 3000 4000

0
5000 0 2000 4000 6000 8000 10000
Population size

Population size Population size

Fig. 7. Relation between population size and the rate ofrijdeasible results (success rate) for a) Simple b) Mediuth@rComplex scenario.

sufficient. | Figure 7 shows the impact of larger populatiocomplexity, i.e., to run 1000 epochs at 0.5 mutation rate and

sizes on the resulting rate of finding feasible solutiongalt population size 1000 takes the same amount of time for the

be seen that the solution quality of complex scenarios can ctemplex and the simple scenario, respectively.

improved by increasing the population size. We performed the tests on a standard PC equipped with an
3) Mutation rate: Since the mutation rate determines howntel Core2Duo processor with 2.5 GHz. For each scenario we

many chromosomes are altered per epoch, it greatly inflisentan at least 1500 test runs at different combinations of tiwurta

the number of epochs needed to find good results. rate and population size and took dumps of the algorithne stat
Figure 8 shows the influence of mutation rate on that certain epochs.

achieved rate of feasible solutions. It can be seen thaedarg Runtimes for scenarios with increasing degree of FOV

mutation rates not necessarily yield higher success ratess, overlap are shown in Figure 10. It can be seen that an

the mutation rate must be chosen carefully. increasing number of solutions has a small impact on the
runtime (whereas this also means that feasible solutioghtmi
) . be found earlier). Increasing the scenario complexity lirzgl
C. Algorithm runtime

non-covering cameras however, has almost no impact on the
Evlolutionary algorithms typically have a very large sémrcruntime.
space which causes long runtimes. We show that our algorithm
has a linear runtime w.r.t. population size (Figure 9a), bam D Surveillance Quality

of epochs (Figure 9b) and mutation rate (Figure 9c).Noté tha By assigning quality ratings to algorithms, we can explore
the runtime values shown are independent of the scenatie tradeoff between surveillance quality and resourdezaHi
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a) b) 9
Simple scenario Medium scenario Complex scenario
Population size: 1000 Feasibl I Population size: 2000 Population size: 5000
Epochs 1000 easible result @ Epochs 2000 Epochs 5000
Optimal result A

Feasible result @ Feasible result @
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Fig. 8. The relation between mutation rate and the rate ofrfinéeasible results (success rate) for a) Simple b) Mediath@ Complex scenario.
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Fig. 9. Runtime with respect to population size, number afobg and mutation rate for a) Simple b) Medium and ¢) Comptenario..

Rurinesordiren s oo Node | Tasks
Mutation rate: 0.5 SingIeGaUSSian
FrameDoublediff

* l l I FrameDoublediff, Blobfinder, Kalmar

off
FrameDoublediff, Blobfinder
] TABLE IV
THE RESULT OF THE TASK ALLOCATION FOR THE SIMPLE SCENARIO

g bh WN P

Average runtime [s]
8

ap 3
flap s

Overlapl
Overlap2
Overlap 2-Complex
Over
o

Scenario

Fig. 10. The runtimes for our overlap scenarios.
energy usage.

We can then usg as a lookup table in the algorithm
tion. Figure 11a shows the Pareto front for the scenario tuf predict the resource usage of a certain combination of
medium complexity for an elite size of 20 (i.e., we choose 2@lgorithms. We implemented the application according ® th
non-dominated solutions from the pareto front). task assignment in Table IV and measured the CPU load

Figure 11b shows an example Pareto front for the scenaand power usage. For these tests, the application read $mage
with five overlapping cameras per observation point. We us&@m a video file of the calculated resolution and executes th
an elite size of 100 for this experiment. This shows thataher assigned tasks.

a large number of possible solutions that our algorithm Is ab We use Atom-based embedded boards as target platforms.

to find. All those solutions must be regarded as equally godd tested all algorithms on pITX-SP 1.6 plus board manufac-

tradeoffs between quality and resource usage. From thosged by Kontrofl. The board is shown in Figure 12 and serves

possible solution one has to be selected. This may be da®eprocessing platform for our camera nodes. It is equipped

according to a predefined weighting of quality versus ressurwith a 1,6 GHz Atom Z530 and 2GB RAM.

usage or by any other metric or selection function. As it can be seen from Table V, our predictions match with
the measured results.

E. Measurements of resource usage
The result of our evolutionary algorithm is a feasible camef- Integration of PTZ configuration

configuration and a task allocation along with a predictiébn o |n PTZ scenarios we want ) find feasible configurations
the resource usage. To evaluate the accuracy of the resouyjig task allocations anii) to select the subset of sensors
prediction, we experimentally tested the resource usageeof \yhich is required to cover the observation points. The senso
assigned tasks on a real platform. Based on the hardwgygich are not required, can then be commanded to basic

platform used in our tests (see below), we constructed thgverage while the other sensors can focus on detection and
mapping 7 from measuring algorithm performance on thigracking at the observation points.
hardware. We did this by running the algorithms with videos

of different resolutions as inputs while measuring resewantd  “http://www.kontron.com
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Fig. 11. Pareto fronts for a) medium scneario and b) scenditlo5 overlapping cameras. The resource optimization go&lobal minimum energy usage
Fig. 14. Scenario evolution. First row shows the evolutidrthe environment by introducing trajectory clusters TRRZ2T TR3, TR4, TR5. Second row

show the evolution of the activity map as consequence of ¥beigon of the environment represented in the image ab®Wéd row as for first row but for
introducing clusters TR6, TR7, TR8, TR9, TR10. Fourth rowf@ssecond row but concerning the evolution presented irtfire row.

Node | CPU,[%] | Powerp[W] | CPUL[%] | Powerm,m[W]
1 4.32 0.09 3.6 0.1
2 0.34 0.01 0.21 0.01
3 17.55 0.35 16.2 0.3
5 12.28 0.25 11.6 0.2
TABLE V

THE PREDICTED AND MEASURED RESOURCE USAGE FOR NODES IN THE
SIMPLE SCENARIQ C'PU, AND Power, ARE PREDICTED VALUES
CPU,, AND Powery,, ARE MEASURED VALUES.

1) PTZ optimization:To test the automatic configuration of
the pan, tilt and zoom parameters of the proposed PTZ network
a map representing the university area has been selected. On
such a map eight different cameras have been deployed to

Fig. 12. The pITX-SP hardware platform used in our tests.
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Fig. 16. Input for the sensor selection and resource almtaiptimizer.

Fig. 13. Deployment of the cameras (black circles) on the itomed
environment. Each camera is placed at height 14m.

Scenario EM Coverage The PTZ network reconfiguration process on the adopted
Evolution | Iterations data achieved the configuration presented in Figure 15eTabl
Empty 174 97, 5% VIl presents the PTZ parameters for the initial configumatio
TR1 67 98,5% hieved d for the final e X
TRo 93 98 4% achieved on an empty map and for the final configuration. It
TR3 33 99% is interesting to notice how all the parameters have changed
TR4 46 98.5% significantly, i.e., the FOV of the cameras for the final config
TRS 66 97.9% tion i h narrower than that for the initial configioat
TRe 105 98.3% uration is much narrower than tha g
TRY o1 97 8% The FOVs of the cameras have been narrowed of ab@fit
TR8 49 87.7% on average. This means that the magnification of each camera
TR9 73 998? has been increased thus the resolution with which the abject
ALL %8 97.2% of interest moving inside the areas of activity is increaaed

TABLE VI well.
EM BASED RECONFIGURATION PERFORMANCETHE TABLE SHOWS THE
REQUIRED ITERATIONS TO CONVERGE TO THE OPTIMAL SOLUTION AND

THE COVERAGE ACHIEVED BY THE SOLUTION Camera Pan Pan Tt Tt FOV EVV

Initial Final Initial Final Initial Final
1 35.02 | 8.868 | 77.820| 80.859 | 35516 | 27.6258
2 21.28 | -22.370 | 80.170 | 80.967 | 44.7594 | 35.2792
. . . 3 14.93 | 37.427 | 79.223 | 82.467 | 38.4954 | 38.8806
cover the entire environment. In Figure 13 a representation a 11150 94758 | 78845 | 81.499 | 41.8634 | 31.0868
the testbed area together with the deployment configurafio 5 138.57 | 148.612 | 80.868 | 82.202 | 34.1896 | 12.4892
the PTZ network is presented_ 6 -75.38 | -133.639 | 80.619 | 81.615| 37.2104 | 14.9248
o i . . 7 7834 | -97.754 | 81.414| 80.794 | 45.5406 | 11.0936
' Initially, a camera conflguratloq has peen achieved by rup 8 17830 174446 | 79416 | 82220 | 36.8536 | 243778

ning the EM based network configuration on a homogeneous

e . TABLE VI
aCtIVIty map (e'g" each cell of the map has the same aCtIVIt¥’TZ PARAMETERS OF THE CAMERAS AFTER THE INITIALIZATION AND

density). Then, ten different trajectory clusters havenbeerne LAST CONFIGURATION. THE FIELD OF VIEW (FOV) IS EXPRESSED IN
defined as shown in Figure 14. DEGREES AND IT DESCRIBES THE ANGLE OF THE MINIMUM CONIC FIELD

. OF VIEW THAT INSCRIBES THE REAL CAMERA FIELD OF VIEW
As clusters have been added to the scenarios, the EM based

reconfiguration has been executed on the new data. Hence,

while the scenario evolves by considering new trajectories

thus new activities occurred inside the monitored envirentn

the PTZ network adapts its parameters to focus on the areas ) . )

with higher probability of activity. In Table VI, the numbef 2) Sensor selection and resource allocatiofiaking the
iterations required by each camera to compute its paramet&sult of the PTZ optimization as input, we have run the senso
together with the final coverage of the monitored area ap§l€ction and resource allocation optimizer. In the aréaga
presented in relation to the inclusion of the trajectorystéus. activity, we have placed observation points requiring obje
It is worth noticing, that the number of iteration is quitavio d€téction or object tracking. The resulting input for aigon
(around100) and that the coverage of the area is always kept £sShown in Figure 16.

close as possible tt)0%. This means that the reconfiguration Table VIII shows the results for the sensor selection and
can be done distributedly on each camera with lower compaensor configuration. Table X shows a resulting task alloca
tational requirements and that the new configuration bétser tion. The resulting Pareto front for the task allocationtiewsn

the activity probability without reducing the area coverag in Figure 11a.
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Fig. 15. Configuration of the eight cameras (one to eight ffefinto right top to bottom) after the EM based reconfigunatadgorithm on the final activity

map.

was less than 1.3 %, and the deviation for the power consump-
tion was less than 0.05 W. Our PTZ camera scenario shows
that our method can be used to find camera configurations

Sensor| res fps activitiy
1 SQCIF 4 object detection
2 VGA 18 object tracking
4 QVGA 4 object detection
7 SQCIF | 12.5 | object tracking
8

TABLE VIII

oCIF 2" | object detection for complex monitoring activities, i.e., to select PTZ caase
which can best cover specific observation points and cameras

THE RESULT FOR SENSOR SELECTION AND SENSOR CONFIGURATION WhICh Car'] cover Wlder areas. AS Wlth our Standard methOd’
SENSORS3, 5, 6 ARE OFF. the combined method also approximates the task assignment
for all cameras.

There are several possibilities for improving our approach

Sei'sor ,IaDS;SBF C%UZE%’] Mer8'7[;v'B] POS’SBQN] Thus, future work includes (i) the improved modeling of the
2 FDD. BF, K | 70.22 18 14 VSN resources such as communication bandwidth and delay,
4 FDD, BF 1.65 1.49 0.03 (i) further evaluations using both manually generated tes
; EBB' SE’ K i'gi (1"13 8'8‘21 data and scenarios from actually deployed VSNs, and (id) th

) TA'BLE X ' : integration in an VSN application. Further, we will present

THE RESULTING TASK ALLOCATION. FDD: FRAME DoOUBLE DIFF. BF:

a distributed solution for this problem as part of our future

BLOBFINDER. K: KALMAN . SENSORS3, 5, 6 ARE OFF, work. It will also be able to dynamically update the network
according to changed environmental parameters like moving
objects or changed PTZ configurations.

VI. CONCLUSION

In this paper we have presented a formulation and an
approximation method for the camera selection and task
assignment problem for visual sensor networks. We havé!
analyzed our approximation method on different scenanmaks a
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