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Abstract—A visual sensor network (VSN) consists of a large
amount of camera nodes which are able to process the captured
image data locally and to extract the relevant information.The
tight resource limitations in these networks of embedded sensors
and processors represent a major challenge for the application
development. In this paper we focus on finding optimal VSN
configurations which are basically given by (i) the selection of
cameras to sufficiently monitor the area of interest, (ii) the setting
of the cameras’ frame rate and resolution to fulfill the quality of
service (QoS) requirements, and (iii) the assignment of processing
tasks to cameras to achieve all required monitoring activities.
We formally specify this configuration problem and describean
efficient approximation method based on an evolutionary algo-
rithm. We analyze our approximation method on three different
scenarios and compare the predicted results with measurements
on real implementations on a VSN platform. We finally combine
our approximation method with an expectation-maximization
algorithm for optimizing the coverage and resource allocation
in VSN with pan-tilt-zoom (PTZ) camera nodes.

Index Terms—Visual sensor network; resource allocation;
camera coverage; task assignment; evolutionary algorithm

I. I NTRODUCTION

Camera networks have been used for security monitoring
and surveillance for a very long time. In these networks, the
cameras act as distributed image sensors that continuously
stream video data to a central processing unit, where the
video is analyzed by a human operator.Visual sensor networks
(VSNs)consist of camera nodes, which integrate the image
sensor, embedded processor, and wireless transceiver [1].In
a visual sensor network a large number of camera nodes
form a distributed system, where the cameras are able to
process image data locally and to extract relevant information,
to collaborate with other cameras on the application-specific
task, and to provide the systems user with information-rich
descriptions of captured events [2].

VSNs represent networks of embedded sensors and pro-
cessors with tight resource limitations. However, VSNs have
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to process large amounts of visual data in real-time and
perform rather complex algorithms to fulfill the application
requirements. To explore these requirements in some detail,
let’s have a closer look at a typical monitoring application
for VSN. The objective here is to cover (large parts of) the
monitoring area with the cameras while performing various
monitoring activities. Typical monitoring activities include
motion detection, object detection and tracking. Note that
these tasks vary in complexity and may change depending on
space and time. The selection of cameras and assignment of
monitoring tasks to these cameras is therefore a challenging
and important problem for VSNs.

In this paper we focus on camera selection and task assign-
ment in VSNs considering the strong resource limitations. We
describe this challenge as acoverage and resource allocation
problem with the objective to find an optimal configuration
of the VSN. A configuration is basically given by (i) the
selection of cameras to sufficiently monitor the area of interest,
(ii) the setting of the cameras’ frame rate and resolution to
fulfill the quality of service (QoS) requirements, and (iii)the
assignment of processing tasks to camera nodes to achieve all
required monitoring activities. In order to solve this coverage
and resource allocation problem we model the cameras’ ca-
pabilities and resources, the observation space and monitoring
activities as well as the available processing tasks and their
resource requirements. We search for approximate solutions
using an evolutionary computing approach which provides a
good compromise between search time and solution quality.
The solutions are evaluated on our embedded camera platforms
which will be deployed in a biologically sensitive environment.

This work contributes to the scientific knowledge in at
least the following aspects: The first contribution is based
on the specification of the VSN configuration as a camera
coverage and task assignment problem. To the best of our
knowledge, this is the first formulation which jointly considers
coverage, QoS and resource allocation in VSNs. The second
contribution includes our evolutionary algorithm which effi-
ciently finds good approximations of the coverage and task
assignment problem. Further, we combine our approximation
method with an expectation-maximization (EM) algorithm.
This combination is able to optimize camera coverage and re-
source allocation in VSNs with pan-tilt-zoom (PTZ) cameras,
supports an accurate spatial modeling and achieves a better
camera utilization than with static cameras in dynamically
changing environments. Finally, the achieved configurations
are mapped and executed on our embedded camera platforms
which enables a comparison of estimated and measured re-
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source consumption.
The remainder of this paper is organized as follows.

Section II discusses related work with regard to resource-
limited camera networks as well as sensor placement and
selection. Section III introduces the problem formulationin
detail. Section IV describes our evolutionary approach forthe
approximation of the problem and presents our software tool
for specifying and solving the VSN coverage and resource
allocation problem. Section V discusses the achieved results
using different network settings and scenarios for the monitor-
ing activities. An experimental evaluation on camera platforms
is also presented. Section VI concludes this paper with a brief
summary and discussion about future work.

II. RELATED WORK

A. Resource-limited camera networks

In many multi-camera networks [3], the available resources
are limited. These resource limitations are especially prevalent
in distributed smart cameras[4] and visual sensor networks
[5], [2]. Different to the traditional camera networks, thepro-
cessing of the visual data is distributed among the individual
camera nodes. A major reason for this distribution of pro-
cessing is to avoid transferring raw data and hence to support
down-scaling the required communication infrastructure [6].

Optimizing the resource assignment in camera networks
has recently gained interest in different fields of research.
First, computing platforms and sensors are one such field.
Due to the advances in semiconductors, sensing and computing
performance have increased quite dramatically while reducing
the power consumption. Thus, power-efficient camera nodes
have emerged recently; examples include WiCa [7], Meerkats
[8] and Citric [9] platforms. Although these platforms varyin
the available sensing and processing performance, the trend
towards smaller, more capable and power-efficient camera
nodes can be clearly identified [6].

Second, dynamic resource management tries to change the
configuration of the camera nodes and the network during
operation to adapt to changes in the required functionality.
Maier et al. [10] introduce an online optimization methods for
dynamic power management in surveillance camera networks
where individual camera components changed their power
modes based on the current performance requirements of the
network. Winkler et al. [11] present camera nodes combining
low and high power radios. Karuppiah et al. [12] describe a
resource allocation framework to coordinate distributed object
tracking in camera networks. The fundamental block in this
framework is the fault containment unit which provides a
service using a redundant set of resources. This set of re-
sources supports local fault compensation but also hierarchical
resource updates by exchanging fault information. Dynamic
resource allocation is also applied to optimize the transfer
of (compressed or raw) video data over a camera network.
Shiang et al. [13] focus on how multiple cameras should
efficiently share the available wireless network resourcesand
transmit their captured information to a central monitor. They
compare a centralized approach, a game-theoretic and a greedy
approach for making the resource allocation decisions. The

objective of resource optimization is to adapt the available
resources such as energy, communication bandwidth, service
level and sensing capability, such that a given goal function
is maximized [2]. Typical goal functions are maximizing the
network lifetime and/or the coverage area. Zou et al. [14]
evaluates power consumption models for encoding, transmis-
sion and recovery of video data in a camera network and
optimize for network lifetime. Yu et al. [15] also maximize the
network lifetime by optimizing camera selection for coverage
and energy allocation to camera nodes. He et al. [16] present
a power-rate-distortion model to characterize relationship be-
tween power consumption of a video decoder and its rate-
distortion performance. Adaptive resource management is also
applied to realize camera selection and handoff for multi-
camera tracking applications [17], [18].

Middleware systems are yet another method for resource
optimization in camera networks [19]. Molla et al. [20] survey
recent research on middleware for wireless sensor networks.
These middleware systems focus on reliable services for ad-
hoc networks and energy awareness [21]. The spectrum ranges
from a virtual machine on top of TinyOS, hiding platform
and operating system details, to more data-centric middleware
approaches for data aggregation (i.e., shared tuplespace)and
data query. Agilla [22] and In-Motes [23], for example, use
an agent-oriented approach. Agents are used to implement the
application logic in a modular and extensible way and agents
can migrate from one node to another. Cougar [24] or TinyDB
[25] follow the data-centric approach, integrating all nodes of
the sensor network into a virtual database system where the
data is stored distributed among several nodes.

B. Sensor placement and selection

Placing and selecting sensors is an intensively studied area
for wireless sensor networks. The fundamental question is
where to place the sensors—or alternatively what sensor to
select—such that the area is appropriately covered while
keeping the network connected. The area of interest is often
described by a set of critical sites (referred to as control
points), and each control point has to be covered by at leastk

sensor nodes. Optimal node placement is a very challenging
problem that has been proven to be NP-hard for most of
the formulations of sensor deployment [26]. To tackle such
complexity, several heuristics have been proposed to find sub-
optimal solutions (e.g., [27]). Placement problems are often
represented as an integer programming (ILP) model (e.g.,
[28]).

In contrast to traditional sensor networks which assume
omnidirectional sensors, camera networks facilitate directional
sensors which introduce additional complexity to the sensor
placement problem [29], [30]. Similar to the omnidirectional
case, this problem is often described as an ILP [31], and vari-
ous heuristics have been proposed to find good approximations
[32], [33]. The proposed approaches in literature differ inthe
assumptions about the sensors (homogeneous vs. heteroge-
neous; fixed vs. mobile), assumptions about the environment
(static vs. dynamic), the sensor coverage modeling and the
optimization objectives. For example, sensor coverage is often
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modeled as simple 2D trapezoids or segments (e.g., [34] [29]
and [33]). Cai et al. [35] evaluate algorithms for solving the
multiple directional cover sets (MDCS) problems of setting
the directions of sensors into a group of nondisjoint cover sets
to extend the network lifetime.

In networks comprised of pan-tilt-zoom (PTZ) cameras,
the covered area can be actively controlled by changing the
cameras’ PTZ parameters [36]. This allows to keep ”moving”
control points within the coverage area—which is important
for various tracking applications. However, to steer PTZ cam-
eras appropriately for tracking applications, accurate coverage
modeling and efficient optimization are crucial. Such visual
coverage models have be described by Mittal et al. [37] and
Karuppiah et al. [12]. Examples for efficient algorithms for
PTZ configurations are based on expectation-maximization
[38], consensus and game theoretic approaches [39], [40], [41].

Typical sensor network problems (e.g., placement, coverage
and routing) have also been described as a multi-objective
optimization problem [42]. Rajagopalan et al. [43] discussevo-
lutionary algorithms for wireless sensor networks to solvenot
only sensor placement problems but also coverage, routing and
aggregation optimization tasks. Although the presented related
work has some similarities to the presented approach, thereare
significant differences. First, we consider the coverage and task
assignment problem as finding an optimalVSN configuration
where the in-networking processing (i.e., task assignment) can
be changed as well. Second, resource consumption and sensor
coverage are modeled corresponding to the different require-
ments of the (PTZ) camera nodes. Finally, the hierarchical
evolutionary algorithm achieves an efficient approximation of
a rather complex configuration problem.

III. PROBLEM FORMULATION

A. Overview and assumptions

As discussed in Section II research has just recently focused
on resource-limited visual sensor networks. A fundamental
problem here is to determine an optimal network configuration
while satisfying various functional and resource requirements.
In contrast to typical optimization problems, we focus hereon
a combinedsensor selection and resource allocation problem.
The objective is (i) to select a subset of cameras which are
able to sufficiently monitor the area of interest, (ii) to set
the sensors’ frame rate and resolution appropriately and (iii)
to assign the necessary monitoring procedures to the camera
nodes. Thisconfigurationof the camera network has to satisfy
the resource constraints of all camera nodes and the monitoring
constraints of all observation points.

The considered network configuration problem is depicted
in Figure 1. A set ofn camera sensorsS is placed on a
2D space; the coverage area of each camera is represented
by a segment. Each observation pointtj from the setT =
t1, . . . , tm has to be covered by at least one camera at a given
QoS. The QoS is determined by the frame rate(fps) and the
pixel resolution at the observation point, i.e., the pixelson
target (pot) of a unit sized object. The covering camera (si
coveringtj) has to deliver the monitoring activityatj of the
observation point, i.e., a set of image processing procedures

Fig. 1. A graphical sketch of a simple sensor selection and resource allocation
problem. Five camerass1, . . . , s5 with fixed FOV (red segments) are placed
on the monitoring area to cover four observation pointst1, . . . , t4. The
objective is to find a network configuration, i.e., the set cameras which are
required to cover all observation points and the assignmentof all necessary
image processing procedures to the covering cameras, whichsatisfies all
resource requirements and optimizes some target function.Potential optimiza-
tion criteria include minimizing global energy usage or maximizing overall
network lifetime.

P̃si must be executed atsi while not exceeding the available
resources (processing, memory and energy) of the camera.

A potential solution to the configuration problem depicted
in Figure 1 is the selection of camerass1, s3 ands5. Sincet1
is covered bys1, this camera must be configured to achieve
at least 8fps and 20pot and executes a change detection
procedure.t2 andt3 are covered bys3; thus, this camera must
be configured with at least 18fps and the resolution to achieve
at least 30pot at t2 and 40pot at t3. Change detection and
object tracking procedures must be executed ons3. Finally, s5
coverst4; this camera must be configured to achieve at least
8 fps and 30pot and execute object detection procedures.

For modeling the network configuration problem we make
the following assumptions1:

• The camera network consists of directional sensors with
a fixed position and fixed field of view (FOV). The frame
rate and the resolution of the image sensor can be changed
within an a-priori known set of sensor configurations.

• Each camera is able to capture images (at the defined
resolution and frame rate), to execute a sequence of
image processing procedures and to transfer data/results
to other camera nodes in the network. This data transfer
is realized in a simple peer-to-peer manner. Complete
communication coverage among the nodes and a potential
base station is assumed.

• The observation points are static locations in the monitor-
ing area which must be covered by at least one camera’s
FOV at sufficient resolution, i.e., pixels on target. The
pixels on target are determined by the sensor resolution
and the distance between camera and observation point.

• We currently only consider convex 2D space without
obstacles restricting the camera’s FOV.

1In Section IV we describe an extension of our network configuration
approach to optimize PTZ camera configurations. Naturally,we are able to
relax some of these assumptions for this extension, i.e., fixed FOV and 2D
space modeling.
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Fig. 2. The 2D model of the camera’s field of view (gray area) defined by
covering angleδ (blue), covering distanceω (green) and orientationθ (red).
The location of the sensor is depicted byx andy.

B. Problem definition

We consider a set ofn camera sensors

S = {s1, . . . , sn}

where for each sensorsi we know its geographical position
(xsi , ysi), its available resourcesrsi = (csi ,msi , esi) describ-
ing processing, memory and energy resources and itsl possible
data input configurationsDsi = {dsi1, . . . , dsil} wheredsij is
a tuple(ressij , fpssij) representing a certain resolution and
the frame rate of the image sensor.D = {Ds1 , . . . , Dsn}
represents the set of input configurations for all cameras.
Furthermore, the orientationθsi of the camera and its field of
view—expressed by the covering angleδsi and the covering
distanceωsi—are known. This 2D model is illustrated in
Figure 2. The parametersθsi , δsi and ωsi are computed on
the basis of the real value of the height, pan angle, tilt angle
and focal length assigned to each camera by the EM-based
coverage computation.

Further, we define the set ofm observation points as

T = {t1, . . . , tm}

where for eachti we know its geographical position(xti , yti),
the monitoring activityati ∈ A (whereA is the set of all
monitoring activities that the sensors are capable of) as well
as the required QoS expressed as pixels on targetpotti and
frame ratefpsti .

An activity represents a high-level monitoring task which
must be achieved at an observation point. Examples for such
activities areimage compression and streaming, change de-
tection, object detection, person countingandobject tracking.
These activities are realized by executing some image pro-
cessing procedures at the covering cameras. In general, there
exist many different combinations of single image processing
procedures which realize a certain activity. For example, in

order to achieveobject tracking, we can combine a background
subtraction procedure (e.g., mixture of Gaussian or frame
differencing), an object detection procedure (e.g., connected
components) with a tracking algorithm (e.g., CamShift or KLT
tracking). Different combinations of these procedures achieve
the desired activity, but naturally impose different resource
requirements.

For each activity a ∈ A we define the setPa =
{

pa1
, . . . , pap

}

representing alternative procedures for achiev-
ing a. Thus, each alternativepai

∈ P is a set of procedures
pai1

, . . . , paib
, and the execution of all these procedures is

necessary to achievea. A camera can perform multiple activ-
ities simultaneously, and for each activityai covered by that
camera we must select an appropriatepk from Pai

. The set of
setsP̃sj contains allpai

assigned tosj . If P̃si = ∅ no image
procedure is assigned tosi, and this camera can be switched
off to save resources.

The function r̃(P̃si , dsi) → (c̃si , m̃si , ẽsi) specifies the
required processing, memory and energy resources for the
individual procedures for a specific data input configuration.
The required resources are specified on a single frame basis.

To compute the pixels on target for a certainti we use the
functionf(D×T ) which is based on our simple 2D geograph-
ical model. The pixels on target can be calculated by using
the angular size of a unit sized object at the given distance
disti,j =

√

(xsi − xtj )
2 + (ysi − ytj )

2 between camerasi
and observation pointtj .

By taking into account the camera’s resolutionresi and the
camera’s covering angleδi, we can estimate the 1D resolution
at the target, i.e., the pixels on target of a unit sized object of
1m. This simple estimation is based on the ratio between the
angular size of the target within the camera’s FOV (which can
be approximated by 360

2π·disti,j
) and the covering angleδi.

f(di, tj) =

{

resi ·
360

2π·disti,j
· 1

δi
if si is coveringtj .

0 otherwise.
(1)

C. Feasible configuration

We search for feasible configurations of the complete
network. This means that all resource requirements, QoS
requirements and activity requirements must be satisfied. Thus,
for each sensorsi, the required memory and processing
resources of all assigned proceduresP̃si must not exceed the
available resources. The required resources for the given input
data configuration can be computed byr̃(P̃si , dsi). Thus, the
following condition must hold:

∀s ∈ S : c̃s ≤ cs ∧ m̃s ≤ ms (2)

In order to satisfy the QoS requirements, every observation
point must be covered by at least one sensor. This point must
be within the field of view of the camera. The sensor must be
configured to guarantee a certain number of pixels on target:

∀t ∈ T∃si ∧ ∃dsi : fi(dsi , t) ≥ pott ∧ fpsd ≥ fpst (3)

wherel represents the number of sensor configurations.
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Finally, to satisfy the activity constraints, every observation
point must be covered by at least one sensor which must
execute the set of image processing procedures that achieve
the desired activity for that observation point:

∀t ∈ T∃sj ∧ ∃p ∈ P̃sj : p ∈ Pat
(4)

D. Optimization criteria

In general, there are multiple feasible configurations possi-
ble for a given network configuration problem. Thus, we are
interested in configurations which optimize some criteria.This
optimization can be performed in multiple optimization criteria
and with different optimization objectives. In this paper,we
are focusing on three different criteria: (i) quality, expressed
as pixels on target, frame rate and surveillance activity; (ii)
energy usage; and (iii) processed data volume. Naturally,
different criteria can be defined as well.

Sincer̃ calculates the resource usage for processing a single
frame, we define the remaining lifetime of a node using the
required and available energy as well as the frame rate:

Lsi =
esi

ẽsi · fpssi

In terms of energy usage, the optimization can follow different
criteria. Examples criteria include:

• Minimum global energy usage:

min

(

n
∑

i=1

ẽsi · fpssi

)

(5)

• Maximum lifetime for a specific nodesi:

max (Lsi) (6)

• Maximum overall network lifetime:

max (min (Lsi)) (7)

Considering the data volume processed on a node we can
minimize the data volume with respect to resolution and frame
rate.

min

(

n
∑

i=1

ressi · fpssi

)

(8)

To express surveillance quality at the task level, we assigna
quality rating to the processing procedures using the function
q(P̃ ). This function then maps a set of image processing proce-
dures to a quality ranking. By accumulating all quality values,
we achieve a global quality measure for our surveillance tasks.

max

(

n
∑

i=1

q(P̃si )

)

(9)

IV. A PPROXIMATION WITH EVOLUTIONARY ALGORITHM

A. Approach

The search space for the combined coverage and resource
allocation problem is typically very large and thus, a combi-
natorial search strategy becomes infeasible. Since this search
problem is also multi-dimensional, the solution is no single
point in the search space but a set of Pareto-optimal solutions.
A popular approach to tackle multi-dimensional optimization
problems is the use of evolutionary algorithms [44] which are
inspired by biological processes and apply the ”survival ofthe
fittest” principle in an iterative way [45].

In an evolutionary algorithm, one permutation of the prob-
lem space variables is called a chromosome or individual.
Many chromosomes form a population (the working set of
the algorithm). In every iteration (also referred to as epoch)
a certain number of chromosomes is altered by the genetic
operators mutation and/or crossover. The mutation generates a
copy of a single chromosome and alters some variables of the
copied chromosome. The crossover recombines parts of two
chromosomes to generate a new one.

During the breed of a new generation by mutation and
crossover, the population may grow. To keep the population
size constant, the fittest chromosomes must be selected at the
end of each epoch. The selection strategy is an elementary part
of the evolutionary algorithm and consists of two phases: (i)
assigning a fitness value to each individual, and (ii) selecting
a subset of the population based on the fitness values and the
applied selection strategy. If the selected population is smaller
than the targeted population size, dominated individuals may
be added to the population again to ensure a maximum
diversity.

The execution of an evolutionary algorithm can be influ-
enced by changing the targeted population size (i.e., the num-
ber of individuals present after selection), the mutation rate and
the crossover rate (i.e., the number of mutation and crossover
operations in one epoch). Evolutionary algorithms make heavy
use of random variables (e.g., to select a chromosome to
mutate).

B. Evolutionary modeling and approximation

We approximate the combined camera coverage and task
assignment problem in a hierarchical, evolutionary approach
(cp. Figure 3). As illustrated in Figure 3, the algorithm takes
the sets of sensorsS, observation pointsT and activitiesA
as inputs and returns a set of selected sensorsS′ ⊆ S with
assigned sensor configurationD′ and procedures̃P .

In the first step, we focus on the coverage problem and
search only for sensor selections and input configurations
satisfying the coverage requirements (Equ. 3). At the end
of each epoch, these ”covering” solutions are passed over to
a second evolutionary algorithm searching for feasible task
assignments. This second step focuses on the resource and ac-
tivity constraints (Equ. 2 and 4). Thus, the joint output of both
steps satisfies all conditions forfeasiblesolutions which are
ranked according to the specified fitness functions. Although
our problem formulation considers scenarios with uncovered
observation points (i.e., points which are outside the FOV of
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Algorithm coverageand assignment()
INPUT: S, T, A
OUTPUT: active sensorsS′ with assignments forD′ and P̃
ENCODING: for every sensorsi its status and input config.di ∈ Di

set initial population
for every epochdo

MUTATE sensor status and input configuration
EVALUATE coverage (Equ. 3)
SELECT

call task allocations(”covering” solutions)
perform elitist selection

until termination

Algorithm task allocation()
INPUT: sensor selections satisfying ”coverage”
OUTPUT: feasible solutions with ranking
ENCODING: for every sensorsi ∈ S′ its assigned procedures̃pi

set initial population
for every epochdo

MUTATE procedure assignment
EVALUATE resources and activity (Equ. 2 and 4)
SELECT

perform elitist selection
until termination

Fig. 3. Hierarchical evolutionary algorithm for approximating the camera
coverage and task assignment problem.

all cameras) as infeasible, our algorithm implementation is
able to eliminate these points in a preprocessing step and still
present solutions for all covered points.

Note, that the camera coverage and task assignment problem
can also be approximated by a standard, non-hierarchically
evolutionary algorithm. However, our hierarchical approach
helps to significantly reduce the number of calls to the
fitness functions which are computationally expensive and
dominate the overall runtime of the evolutionary algorithm.
In the following, we describe both steps of our approach in
more detail. Note, that in both algorithm steps, we generate
the initial population randomly. To generate random sensor
configurations, we randomly select initial resolutions, frame
rates and activities from a given set. To generate an initialset
of tasks for a certain activity (task assignment), we randomly
select initial procedures that fulfill the given activity.

1) Camera coverage and input data configuration:In the
first step we try to select the necessary sensors and set the
resolution and frame rate such that every observation pointis
covered appropriately. The optimization goal is to minimize
the data volume processed on all camera nodes.

For the genetic encoding, a chromosome is represented by
the status (on/off) and the input data configurationdsi of
each sensorsi. The available input data configurations are
represented in the setD. We only apply mutation as genetic
operator which simply corresponds to randomly changing
the sensors’ status and input data configuration. The fitness
function is given by Equ. 3. The decision vector generated
by the fitness function is defined by two parameters. The
first parameter is equal to the number of observation points
”covered” by the chromosome, i.e., the number of observation
points which have a properly configured camera covering
them. The second parameter corresponds to a cost metric
referring to the data volume processed at all sensors. It is

calculated by the maximum possible data volume of all nodes
normalized by the total data volume processed at all nodes.

costratio =

n
∑

i=1

(resmaxsi
· fpsmaxsi

)

n
∑

i=1

(ressi · fpssi)
(10)

2) Task assignment:The ”covering” solutions at each
epoch of the first step serve as input to the second step. Here
we try to find a task assignment for every camera such that
each activity of the covered observation points can be achieved
and the resource requirements of the cameras are fulfilled.
The optimization goal is the energy consumption and lifetime
as specified in the optimization objectives (Equ. 5, 6, 7, 9,
respectively).

A chromosome is represented by the set of assigned pro-
ceduresp̃i to all activated camerassi ∈ S′. The potential
assignments of procedures are specified inP . In this step
we also perform only mutation as genetic operator. Thus, the
assignments of procedures to cameras are changed randomly.
The fitness function is defined by Equ. 2 and Equ. 4. For each
solution we can calculate the processing, memory and energy
requirements, i.e., for each feasible assignmentP̃ the required
resources̃c

s′
i

, m̃s′
i
, ẽs′

i
are computed for all camerass′i ∈ S′

by applying the functioñr.
The function r̃ can be realized either by a mathemat-

ical model of the resource consumptions or by empirical
measurements of the resource consumptions on the target
hardware. For our algorithm we adhere to the second approach
and measured the required resources for all algorithms and
input data configurations on the available camera platforms
(cp. Figure 12). These resource values are stored in a table.
Thus, the resource functioñr can then be realized as a simple
table lookup.

The fitness function for this algorithm checks if the resource
requirements are met on all cameras. The first parameter
in the decision vector is the total globally achieved quality
calculated according to equation 9. The second parameter
is computed according to the resource-related optimization
goal. For criterion 5, we calculate the global energy usage
eglobal and use 1

eglobal
as fitness value. For criterion 6, we

calculate the lifetime for nodesi use it as fitness value. For
criterion 7, the minimum lifetime is taken as fitness value. This
fitness function also calculates the resulting quality according
to Equation 9.

3) Elitist selection:For both steps we use anelitist selec-
tion [45] method which stores the best found chromosome
independently of the main population in order to avoid the
loss of already found good chromosomes. In every epoch we
add chromosomes to the elite which are not dominated by
any other element in this elite. Note that chromosomes may
remain in the elite. Thus, if the same chromosome is still in the
elite in later epochs, we (re-)use the stored task assignment for
that chromosome and can avoid the expensive execution of the
second step, i.e., a call of the algorithm ”taskallocation()”.

If a feasible task assignment is found, the chromosome
remains in the elite, otherwise it will be removed. Since
there may be allocations which represent feasible solutions
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to the sensor selection and sensor configuration problem, but
for which no feasible task allocation exists, this additional
step is necessary. By restricting the use of the task allocation
algorithm to only the members in the elite (and not to all
members in the population) we need to test only a small subset
of the whole population. In fact, this approach guarantees,that
only the chromosomes with the best performance will be tested
for resource and activity requirements.

C. PTZ optimization

Our approach for sensor selection and resource allocation
considers only static cameras. To be able to use it in PTZ
scenarios, we combine our approach with the expectation max-
imization algorithm described in [38]. To solve the problem
of the optimal coverage as in [38] a set ofrelevance maps,
2-dimensional discrete functions in the form ofm : N2 7→ R

representing a relevance value for each point of a discrete map
of the scene, has been computed. Since, assuming a planar
scene, the intersection of the field of views (represented as
cones) with the ground plane are ellipses, finding the optimal
camera configuration can be reduced to a data fitting problem.
Such a problem consists in finding a set of ellipses of the
cardinality of the number of cameras that best fits the relevance
maps and maximizes their coverage. In order to determine only
available solutions, in [38] a space projection is performed. In
particular, for each camera a surrounding sphere is defined
and the corresponding relevance map is projected into such a
sphere. In this way, the problem is transformed in finding for
each sphere (camera) a circle whose center specifies the pan
and tilt angles of the camera and the diameter its FOV angle.
In order, to converge to the optimal solution, the maximization
step executed by each camera needs to know the probability
that a point in the relevance map is in the FOV of other
cameras. Since the relevance maps, to handle the occlusions,
can be different from camera to camera, this information
can be made available by sharing the relevance maps among
the cameras in the network. Then, each camera runs locally
the EM-based reconfiguration considering all the cameras.
Being a deterministic process, all the cameras will reach the
same solution that will represent the optimal configurationto
maximize the coverage given the relevance maps.

The result of the PTZ optimization is transformed into a
suitable input for our evolutionary algorithm by taking the
camera positions, orientations and zoom factors into account.
Observation points can be generated from activity maps i.e.,
an observation points are placed in areas of high activity, but
also manually placed by users.

D. Simulation environment

To accelerate the development of algorithms and to min-
imize change effort, we have implemented a generic frame-
work for evolutionary single- and multi-objective optimization
problems2. It facilitates reuse of core evolutionary algorithms,
encoding of the chromosomes, and the specification of fitness

2http://nemo.codeplex.com

Point pot fps activity

t1 10 8 change detection
t2 10 4 change detection
t3 20 18 object tracking
t4 15 8 object detection

TABLE I
THE QUALITY REQUIREMENTS OF OBSERVATION POINTS1-4 EXPRESSED

AS PIXELS ON TARGET, FRAMES PER SECOND AND ACTIVITY.

functions for decision vectors of arbitrary lengths (≥ 1). Con-
sequently, our framework is able to perform multi-dimensional
approximations.

We implemented our algorithms in a way, that every model
used in the calculations (e.g., the camera model and the
calculation of QoS parameters) can easily be exchanged with
more sophisticated models if necessary.

In order to adapt our framework to a new optimization
problem the following tasks need to be performed:

1) Define the model and implement a corresponding chro-
mosome along with suitable mutation and crossover
operations

2) Define the fitness function

The framework will then run the evolutionary optimiza-
tion autonomously. The framework comes with predefined
selection single- and multi-criteria strategies. However, the
selection strategy can be modified if necessary as well.

The core algorithm of the framework performs mutation,
crossover and selection in each epoch. Large parts of the
algorithm can automatically be parallelized to achieve higher
performance on multi-processor systems. The framework is
implemented in C#.Net and is compatible to Mono3 and can
thus be used an various platforms including Windows, Linux
and MacOS.

V. RESULTS

To evaluate our approach, we performed systematic tests of
our algorithm using a simple, a medium and a complex sce-
nario. We evaluate the impact of parameters such as population
size, mutation rate and number of epochs on the performance
of the evolutionary algorithm. We further study the runtime
of our algorithm, explore the tradeoff between surveillance
quality and resource utilization and compare the predicted
resource of the assigned tasks with the measured resource
consumption on the target platform. Finally, we evaluate the
integration of the PTZ optimization.

A. Scenarios

1) Simple scenario:Our first scenario is the example setup
from Section III (see Figure 1). This simple scenario consistis
of five cameras and four observation points on a 100×100
meter area. The requirements of the observation points can be
seen in Table I. The algorithms used in the task assignment
are shown in Table III (these apply to all scenarios).

For this simple scenario, a single optimal solution for sensor
selection and sensor configuration exists (if all processing

3http://www.go-mono.org
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Sensor res fps activity

s1 SQCIF 8 change detection
s2 QCIF 4 change detection
s3 QVGA 18 object tracking
s4 off off off
s5 VGA 8 object detection

TABLE II
THE OPTIMAL SOLUTION FOR THE SIMPLE SCENARIO ASSUMING NO

PREVIOUSLY ALLOCATED RESOURCES ON THE NODES.

Fig. 4. The randomly scenario with 100 cameras and 20 observation points.

tasks have an equal quality assigned): assuming that all nodes
have 100% free resources and at most one activity per sensor,
s4 is switched off and object tracking is assigned tos3. This is
becauses3 is closer tot3 and can thus cover this observation
point at lower resolution. The optimal configuration for this
scenario is shown in Table II. The total global data volume is
at about 5.6% of the maximum global data volume.

If the amount of free resources ofs3 is reduced to 10%
of the available resource, the task of object tracking can only
be assigned tos4 and s3 should be switched off. We tested
multiple such allocations to ensure that the task allocation
eliminates solutions which would use more resources than
available.

2) Complex scenario:We tested our approach in a more
complex scenario of 100 sensors and 20 observation points in
an area of 250×250 meters (see Figure 4). The observation
points require between 10 and 30 pixels on target.

3) PTZ scenario:We demonstrate the combination of our
approach with the PTZ coverage optimization in a medium
sized scenario with eight cameras and five observation points
on an area of 100×80 meters. Wefirst perform the expectation-
maximization algorithm to find the optimal PTZ-parameters of
each sensor. Then, we run our evolutionary algorithm to find
the optimal sensor configuration and task allocation.

4) Impact of increasing number of solutions:We further
evaluate the behavior of our algorithm in scenarios that are
within the same level of complexity but which have different

Fig. 6. The relation between number of epochs and the rate of finding
optimal and feasible results (success rate), respectively.

number of possible solutions. In a basic scenario of seven
observation points we vary the number of covering sensors.
Every additional covering sensor increases the number of
solutions. This impacts the runtime and the final result. Our
basic scenario has five cameras placed such that every point
is covered by exactly one camera. We then add cameras to
achieve degrees of overlap of two, three and five. Addition-
ally, we constructed two scenarios that have additional non-
covering cameras. The scenarios are shown in Figure 5.

For these scenarios we show multi-criteria approximation
including the quality ratings of algorithms. We manually
assigned a quality rating to each algorithm for our second
algorithm stage (see Table III).

Algorithm Quality

Simple Frame Differencing 0.5
Double Frame Differencing 0.8

Mixture of Gaussians 1
Blobfinder 1

Kalman Tracker 2
CCCR Tracker (openCV) 0.6

TABLE III
QUALITY RATING FOR ALGORITHMS.

B. Evaluation of the evolutionary approximation

1) Number of epochs:Typically, in evolutionary algo-
rithms, the results improve with increasing number of epochs.
It can easily be seen that an increased population size will also
require increasing the number of epochs to achieve the same
results at the same mutation rate.

In Figure 6 we show the change in number of feasible and
optimal results with increased number of epochs. By choosing
a suitable population size, a predictable rate of feasible results
can be achieved. Depending on the complexity of the task, a
larger number of epochs may be required.

2) Population size: The population size represents the
number of different permutations present at a certain point
in time. A larger population size increases the probabilitythat
the population contains good individuals.

For our algorithm, it is necessary to increase the population
size with increasing complexity of the scenario. As our results
show, a population size of 5000 individuals is sufficient to
achieve good results even for the complex scenario. For less
complex tasks, population sizes of between 100 and 1000 are
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Fig. 5. Scenarios with a degree of overlap of a) one, b) two, c)two with noncovering sensors, d) three, e) three with noncovering sensors and f) five.

Fig. 7. Relation between population size and the rate of finding feasible results (success rate) for a) Simple b) Medium and c) Complex scenario.

sufficient. ¡ Figure 7 shows the impact of larger population
sizes on the resulting rate of finding feasible solutions. Itcan
be seen that the solution quality of complex scenarios can be
improved by increasing the population size.

3) Mutation rate: Since the mutation rate determines how
many chromosomes are altered per epoch, it greatly influences
the number of epochs needed to find good results.

Figure 8 shows the influence of mutation rate on the
achieved rate of feasible solutions. It can be seen that larger
mutation rates not necessarily yield higher success rates.Thus,
the mutation rate must be chosen carefully.

C. Algorithm runtime

Evlolutionary algorithms typically have a very large search
space which causes long runtimes. We show that our algorithm
has a linear runtime w.r.t. population size (Figure 9a), number
of epochs (Figure 9b) and mutation rate (Figure 9c).Note that
the runtime values shown are independent of the scenario

complexity, i.e., to run 1000 epochs at 0.5 mutation rate and
population size 1000 takes the same amount of time for the
complex and the simple scenario, respectively.

We performed the tests on a standard PC equipped with an
Intel Core2Duo processor with 2.5 GHz. For each scenario we
ran at least 1500 test runs at different combinations of mutation
rate and population size and took dumps of the algorithm state
at certain epochs.

Runtimes for scenarios with increasing degree of FOV
overlap are shown in Figure 10. It can be seen that an
increasing number of solutions has a small impact on the
runtime (whereas this also means that feasible solutions might
be found earlier). Increasing the scenario complexity by adding
non-covering cameras however, has almost no impact on the
runtime.

D. Surveillance Quality

By assigning quality ratings to algorithms, we can explore
the tradeoff between surveillance quality and resource utiliza-
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Fig. 8. The relation between mutation rate and the rate of finding feasible results (success rate) for a) Simple b) Medium and c) Complex scenario.

Fig. 9. Runtime with respect to population size, number of epochs and mutation rate for a) Simple b) Medium and c) Complex scenario..

Fig. 10. The runtimes for our overlap scenarios.

tion. Figure 11a shows the Pareto front for the scenario of
medium complexity for an elite size of 20 (i.e., we choose 20
non-dominated solutions from the pareto front).

Figure 11b shows an example Pareto front for the scenario
with five overlapping cameras per observation point. We used
an elite size of 100 for this experiment. This shows that there is
a large number of possible solutions that our algorithm is able
to find. All those solutions must be regarded as equally good
tradeoffs between quality and resource usage. From those,
possible solution one has to be selected. This may be done
according to a predefined weighting of quality versus resource
usage or by any other metric or selection function.

E. Measurements of resource usage

The result of our evolutionary algorithm is a feasible camera
configuration and a task allocation along with a prediction of
the resource usage. To evaluate the accuracy of the resource
prediction, we experimentally tested the resource usage ofthe
assigned tasks on a real platform. Based on the hardware
platform used in our tests (see below), we constructed the
mapping r̃ from measuring algorithm performance on this
hardware. We did this by running the algorithms with videos
of different resolutions as inputs while measuring resource and

Node Tasks
1 SingleGaussian
2 FrameDoublediff
3 FrameDoublediff, Blobfinder, Kalman
4 off
5 FrameDoublediff, Blobfinder

TABLE IV
THE RESULT OF THE TASK ALLOCATION FOR THE SIMPLE SCENARIO.

energy usage.
We can then usẽr as a lookup table in the algorithm

to predict the resource usage of a certain combination of
algorithms. We implemented the application according to the
task assignment in Table IV and measured the CPU load
and power usage. For these tests, the application read images
from a video file of the calculated resolution and executes the
assigned tasks.

We use Atom-based embedded boards as target platforms.
We tested all algorithms on pITX-SP 1.6 plus board manufac-
tured by Kontron4. The board is shown in Figure 12 and serves
as processing platform for our camera nodes. It is equipped
with a 1,6 GHz Atom Z530 and 2GB RAM.

As it can be seen from Table V, our predictions match with
the measured results.

F. Integration of PTZ configuration

In PTZ scenarios we want toi) find feasible configurations
and task allocations andii) to select the subset of sensors
which is required to cover the observation points. The sensors
which are not required, can then be commanded to basic
coverage while the other sensors can focus on detection and
tracking at the observation points.

4http://www.kontron.com
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Fig. 11. Pareto fronts for a) medium scneario and b) scenariowith 5 overlapping cameras. The resource optimization goalis Global minimum energy usage

Fig. 14. Scenario evolution. First row shows the evolution of the environment by introducing trajectory clusters TR1, TR2, TR3, TR4, TR5. Second row
show the evolution of the activity map as consequence of the evolution of the environment represented in the image above.Third row as for first row but for
introducing clusters TR6, TR7, TR8, TR9, TR10. Fourth row asfor second row but concerning the evolution presented in thethird row.

Fig. 12. The pITX-SP hardware platform used in our tests.

Node CPUp[%] Powerp[W] CPUm[%] Powerm[W]
1 4.32 0.09 3.6 0.1
2 0.34 0.01 0.21 0.01
3 17.55 0.35 16.2 0.3
5 12.28 0.25 11.6 0.2

TABLE V
THE PREDICTED AND MEASURED RESOURCE USAGE FOR NODES IN THE

SIMPLE SCENARIO.CPUp AND Powerp ARE PREDICTED VALUES,
CPUm AND Powerm ARE MEASURED VALUES.

1) PTZ optimization:To test the automatic configuration of
the pan, tilt and zoom parameters of the proposed PTZ network
a map representing the university area has been selected. On
such a map eight different cameras have been deployed to
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Fig. 13. Deployment of the cameras (black circles) on the monitored
environment. Each camera is placed at height 14m.

Scenario EM Coverage
Evolution Iterations

Empty 174 97, 5%

TR1 67 98, 5%

TR2 93 98, 4%

TR3 83 99%

TR4 46 98.5%

TR5 66 97.9%

TR6 109 98.3%

TR7 64 97.8%

TR8 49 87.7%

TR9 73 99.8%

ALL 98 97.2%

TABLE VI
EM BASED RECONFIGURATION PERFORMANCE. THE TABLE SHOWS THE

REQUIRED ITERATIONS TO CONVERGE TO THE OPTIMAL SOLUTION AND

THE COVERAGE ACHIEVED BY THE SOLUTION.

cover the entire environment. In Figure 13 a representationof
the testbed area together with the deployment configurationof
the PTZ network is presented.

Initially, a camera configuration has been achieved by run-
ning the EM based network configuration on a homogeneous
activity map (e.g., each cell of the map has the same activity
density). Then, ten different trajectory clusters have been
defined as shown in Figure 14.

As clusters have been added to the scenarios, the EM based
reconfiguration has been executed on the new data. Hence,
while the scenario evolves by considering new trajectories,
thus new activities occurred inside the monitored environment,
the PTZ network adapts its parameters to focus on the areas
with higher probability of activity. In Table VI, the numberof
iterations required by each camera to compute its parameters
together with the final coverage of the monitored area are
presented in relation to the inclusion of the trajectory clusters.
It is worth noticing, that the number of iteration is quite low
(around100) and that the coverage of the area is always kept as
close as possible to100%. This means that the reconfiguration
can be done distributedly on each camera with lower compu-
tational requirements and that the new configuration betterfits
the activity probability without reducing the area coverage.

Fig. 16. Input for the sensor selection and resource allocation optimizer.

The PTZ network reconfiguration process on the adopted
data achieved the configuration presented in Figure 15. Table
VII presents the PTZ parameters for the initial configuration
achieved on an empty map and for the final configuration. It
is interesting to notice how all the parameters have changed
significantly, i.e., the FOV of the cameras for the final config-
uration is much narrower than that for the initial configuration.
The FOVs of the cameras have been narrowed of about45%
on average. This means that the magnification of each camera
has been increased thus the resolution with which the objects
of interest moving inside the areas of activity is increasedas
well.

Camera Pan Pan Tilt Tilt FOV FVV
Initial Final Initial Final Initial Final

1 35.02 8.868 77.820 80.859 35.516 27.6258
2 -21.28 -22.370 80.170 80.967 44.7594 35.2792
3 14.93 37.427 79.223 82.467 38.4954 38.8806
4 111.50 94.758 78.845 81.499 41.8634 31.0868
5 138.57 148.612 80.868 82.202 34.1896 12.4892
6 -75.38 -133.639 80.619 81.615 37.2104 14.9248
7 -78.34 -97.754 81.414 80.794 45.5406 11.0936
8 178.30 174.446 79.416 82.220 36.8536 24.3778

TABLE VII
PTZ PARAMETERS OF THE CAMERAS AFTER THE INITIALIZATION AND

THE LAST CONFIGURATION. THE FIELD OF VIEW (FOV) IS EXPRESSED IN

DEGREES AND IT DESCRIBES THE ANGLE OF THE MINIMUM CONIC FIELD
OF VIEW THAT INSCRIBES THE REAL CAMERA FIELD OF VIEW.

2) Sensor selection and resource allocation:Taking the
result of the PTZ optimization as input, we have run the sensor
selection and resource allocation optimizer. In the areas of high
activity, we have placed observation points requiring object
detection or object tracking. The resulting input for algorithm
is shown in Figure 16.

Table VIII shows the results for the sensor selection and
sensor configuration. Table IX shows a resulting task alloca-
tion. The resulting Pareto front for the task allocation is shown
in Figure 11a.
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Fig. 15. Configuration of the eight cameras (one to eight fromleft to right top to bottom) after the EM based reconfiguration algorithm on the final activity
map.

Sensor res fps activitiy

1 SQCIF 4 object detection
2 VGA 18 object tracking
4 QVGA 4 object detection
7 SQCIF 12.5 object tracking
8 QCIF 2 object detection

TABLE VIII
THE RESULT FOR SENSOR SELECTION AND SENSOR CONFIGURATION.

SENSORS3, 5, 6 ARE OFF.

Sensor Tasks CPU [%] Mem. [MB] Power [W]
1 FDD, BF 0.24 0.77 0.005
2 FDD, BF, K 70.22 18 1.4
4 FDD, BF 1.65 1.49 0.03
7 FDD, BF, K 2.03 0.73 0.04
8 FDD, BF 1.01 1.49 0.02

TABLE IX
THE RESULTING TASK ALLOCATION. FDD: FRAME DOUBLE DIFF. BF:

BLOBFINDER. K: K ALMAN . SENSORS3, 5, 6 ARE OFF.

VI. CONCLUSION

In this paper we have presented a formulation and an
approximation method for the camera selection and task
assignment problem for visual sensor networks. We have
analyzed our approximation method on different scenarios and
compared the predicted results with measurements on real
implementations on a VSN platform. The tradeoff between
surveillance quality and resource utilization has furtherbeen
demonstrated with our multi-criteria approximation algorithm
which achieves a Pareto-front of non-dominating results. We
have finally combined our approximation method with an
expectation-maximization algorithm for optimizing the cover-
age and resource allocation in VSN with Pan-Tilt-Zoom (PTZ)
camera nodes.

Our results demonstrate that feasible and near-optimal solu-
tions can be found within few seconds even for our complex
test scenario. Furthermore, the predicted resource utilization
matches very well with the measured resource utilization. For
our five camera scenario, the deviation for the CPU utilization

was less than 1.3 %, and the deviation for the power consump-
tion was less than 0.05 W. Our PTZ camera scenario shows
that our method can be used to find camera configurations
for complex monitoring activities, i.e., to select PTZ cameras
which can best cover specific observation points and cameras
which can cover wider areas. As with our standard method,
the combined method also approximates the task assignment
for all cameras.

There are several possibilities for improving our approach.
Thus, future work includes (i) the improved modeling of the
VSN resources such as communication bandwidth and delay,
(ii) further evaluations using both manually generated test
data and scenarios from actually deployed VSNs, and (iii) the
integration in an VSN application. Further, we will present
a distributed solution for this problem as part of our future
work. It will also be able to dynamically update the network
according to changed environmental parameters like moving
objects or changed PTZ configurations.
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