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Abstract—Vehicle classification is an important task for
various traffic monitoring applications. This paper investigates
the capabilities of acoustic feature generation for vehicle classi-
fication. Six temporal and spectral features are extracted from
the audio recordings and six different classification algorithms
are compared using the extracted features. We focus on a
single sensor setting to keep the computational effort low and
evaluate its classification accuracy and realtime performance.
The experimental evaluation is performed on our embedded
platform using recorded data of about 150 vehicles. The results
are applied in our ongoing research on fusing video, laser and
acoustic data for realtime traffic monitoring.

Keywords-acoustic feature extraction; signal processing; ve-
hicle classification; embedded sensor fusion;

I. INTRODUCTION

Multisensor data fusion (MSDF) techniques are found in

various applications to combine homogeneous and heteroge-

neous sensor information. The main objective of MSDF is to

exploit multiple source sensor data to increase the robustness

and confidence as well as extend the spatial and temporal

coverage [1], [2]. In time-critical applications, such as traffic

monitoring, it is essential to achieve robust and accurate

results within limited periods of time. There is a huge pool of

various fusion algorithms ranging from estimation methods

to different types of classification and inference techniques.

However, due to resource requirements not all of them are

applicable to embedded realtime fusion.

In our ongoing research project Autonomous Traffic Mon-

itoring by Embedded Vision (EVis) we apply MSDF tech-

niques to fuse heterogeneous data originating from various

sources such as audio, visual and laser sensors. MSDF is

performed on a network of embedded devices with the

ultimate objective to improve vehicle classification [3].

In this paper, however, we focus on a single acoustic

sensor setting in order to investigate the capabilities of

acoustic feature generation for vehicle classification (similar

setup found in [4]). We evaluate its classification accuracy

and realtime performance. In more detail, we present six

temporal and spectral acoustic features that have discrimi-

native characteristics concerning vehicle classes such as cars

and trucks. This feature vector serves then as input for six

different classifiers. The feature extraction and classification

algorithms are evaluated using real world test data of about

150 vehicles from highway traffic. All processing is executed

on an embedded platform, and the realtime deadline for the

complete classification is given as 1000 ms. Our approach

achieves classification rates between 93 % and 97 % within

this deadline. However, our approach has some limitations

in multi-lane separation.

There are several examples for related work. In [5] data

fusion of acoustic and visual data is applied to vehicle track-

ing. Different to our single acoustic sensor setup, they use an

audio beamforming array of four microphones to determine

the direction and location of vehicles. In [6] the classification

of moving vehicles using acoustic signatures and data fusion

is investigated. Acoustic vehicle classification is investigated

as well in [7]. They apply a Gaussian mixture model which

is motivated by the ability of modeling arbitrary distributions

for varying operation modes and engines of motor vehicles.

[8] uses two sets of features. The first set consists of several

harmonic components characterizing the noise of the engine

and the second set consists of key frequency components for

characterizing such as the friction noise of tires.

The remainder of the paper is structured as follows: Sec-

tion II describes the acoustic feature extraction algorithms in

detail. Section III gives a rough description of several feature

fusion algorithms that are used for evaluation purpose to

show the discriminative characteristics of the acoustic fea-

tures. Experimental studies, evaluation and description of

the data and study location are presented in Section IV. The

paper concludes with a brief summary.

II. FEATURE EXTRACTION

A typical classification system consists of the following

components: sensor data acquisition, preprocessing, feature

extraction, classification and postprocessing.

The data acquisition task is done with our embedded

multisensor data fusion platform interfacing acoustic, visual

and laser sensors. For a detailed description of our embedded

platform, the structure of our sensor network and the three-

layered hierarchical fusion architecture see [9].

Next we have the preprocessing task which in our case

downsamples the input audio sample (more details in Section
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IV-A). After preprocessing features are extracted. If the fea-

ture extraction results in highly class-discriminative features,

it can make the classification task trivial. But, however,

dealing especially with acoustic data it is to point out that

it is very difficult to end up with robust acoustic features,

because of the non-stationarity of the acoustic signals and

the inference due to environmental noise (e.g., vehicles on

neighboring lanes on a freeway). Hence, the quality of

features in terms of robustness is highly domain-specific.

We implemented and evaluated several acoustic features

in different representational domains, i.e., time, spectral and

cepstral domain. Time domain features are zero-crossing rate

and short time energy (ste). Spectral features are spectral

centroid, spectral bandwidth (spbw), spectral roll-off point

(spro), spectral flux and band energy ratio values (ber).

Additionally, a cepstral analysis (cep) is performed as well.

Based on previous evaluation results [10], considering the

degree of class-separability of each individual feature, we

take ste, spbw, spro and two values of ber coefficients and

the cep coefficient for our feature fusion task. These features

additionally allow for embedded processing as well (see

Section IV-B).

In the following we list and explain the different features

from time and frequency domain that we use in the complete

classification process.

A. Time domain feature

As mentioned above, the short time energy value is

an acoustic feature in time domain. It is discriminative

between different types of vehicles and not computationally

expensive. The definition of this feature is given in eq. 1.

Single energy values represent local information (short time

characteristics). In order to extract features over longer time

scales statistical moments are to be computed. Since this

feature is sensitive to noise because of taking the amplitude

of the signal into consideration, we further use spectral and

cepstral features for the classification task.

Et =
1

N

N−1
∑

n=0

|xt(n)|2, (1)

where Et is the energy of the tth input block, N the total

number of samples in a block and xt(n) the tth input energy

value of the audio sample.

B. Frequency domain features

Vehicles emit acoustic sounds at various frequencies.

Therefore the spectrum of a signal that is generated typically

by applying a Fourier transform is a powerful feature. In our

feature extraction process we extract the spectral bandwidth,

spectral roll-off and band energy ratio values.

The spectral bandwidth value measures the spread of fre-

quencies around the spectral centroid. We use the following

definition (eq. 2) for implementing the feature extraction

algorithm on our embedded platform:

spbw =

√

√

√

√

∑N−1

n=0
(n − spctt)2 · |Xt(n)|2
∑N−1

n=0
|Xt(n)|2

, (2)

where spct is the spectral centroid of the tth input block

and Xt(n) the FFT of the tth input signal frame.

The spectral roll-off point is an additional feature in

frequency domain and is defined by eq. 3. It is a measure

indicating up to what frequency α percent of the spectrum

is summed up, i.e., a higher roll-off value corresponds with

more intense or higher frequencies. In other words, the sum

of the spectrum up to the roll-off frequency approximates α
percent of the total spectrum.

Rt−1
∑

n=0

|Xt(n)|2 =
α

100

N−1
∑

n=0

|Xt(n)|2, (3)

where α is typically 85 (as in [11]) and Rt −1 represents

the roll-off value.

The last feature in frequency domain we use is the band

energy ratio values (eq. 4) which describe the ratio of energy

in certain frequency bands to the total signal energy.

bert,i =

∑

n∈Si
|Xt(n)|2

∑N−1

n=0
|Xt(n)|2

, (4)

where bert,i is the band energy ratio of the ith subband

and Si the set of Fourier transform coefficients that belong

to the ith subband. We only used the 6th and 7th subband,

i.e., S6 = [N/4, N/2] and S7 = [N/2, N ].
In addition to time and spectral features we performed a

cepstral analysis as well. This is a convenient way to model

spectral energy distributions. The definition of a cepstrum

of a signal is defined as (see eq. 5)

cep(t) = F−1{log(|F{xt}|)}, (5)

where F−1 is the inverse of the Fourier transform.

III. FEATURE FUSION

After extracting discriminative acoustic features to de-

scribe the characteristics of the two classes of vehicles (cars

and trucks), we pool these features into a single feature

vector x consisting of six features in total, i.e., ste, spbw,

spro, cep and two coefficients of ber. This vector x is

used for the classification task. In our experiments we have

implemented several well-known feature fusion algorithms

to perform the classification task. These algorithms are

feedforward neural network, support vector machine, naive

Bayes approach, linear and quadratic discriminant analysis

and k-nearest neighbor.
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A. Feedforward Neural Network

The general structure of the artificial neural network

(ANN) is shown in Fig. 1.

Figure 1. A feedforward neural network

Most of the parameters of the ANN are determined

based on several heuristics, e.g., choosing the number of

hidden layers and neurons. Our ANN consists of an input,

a hidden and an output layer. Three layers are sufficient

to approximate any function in an arbitrary accuracy. The

number of input neurons is determined by the number of

features that originate from a single sensor node. There

is a single output neuron which represents the decision

(car, truck). The number of hidden neurons is specified

by the following heuristics: H = ⌊(N + M) · d⌋ and

H = ⌊(N + M) · d⌋ + 1, where N is the number of input

neurons, M the number of output neurons, d a constant

with d ∈ (0, 1]. As we are interested in embedded realtime

processing (fusion), the training of the ANN is performed

offline. Training a ANN can be computationally expensive

as well as time consuming. The training time spent depends

on several parameters like number of layers, neurons and

epoches, the type of activation functions and the training

algorithm itself.

For our case studies in Section IV-B the parameters of

the ANN are set as follows: N = 6, M = 1, H as given

by heuristics with d = 2/3. Hence, the input feature vector

to the ANN is x = (x1, x2, x3, x4, x5, x6)
T , where x1 =

ste, x2 = spbw, x3 = spro, x4 = cep and x5, x6 are the

two band energy ratio coefficients (ber). Additionally, fixed

parameters are the number of training epoches which is set

to 105 and the activation function set to a Gaussian.

B. Support Vector Machine

In addition to a ANN, we implement a support vector

machine (SVM). In literature SVMs are widely used in

classification systems and applied to data fusion applications

as well [10]. Basically, SVM tries to obtain an optimal

(maximum) margin, i.e., a maximum margin width, between

the classes of interest, hence resulting into a maximum

separating (hyper)plane.

Especially in our case studies we use the following

parameters for the SVM: cost parameter = 1, tolerance of

termination criterion = 10−3 and the kernel type is either a

radial basis or linear function. Hence, the degree in kernel

function can be neglected as we do not apply a polynomial

kernel.

C. Naive Bayes Approach

The naive Bayes approach has several advantages like

its simplicity and transparency. In contrast to Bayesian

networks (a naive Bayes classifier is the simplest form of

a Bayesian network [12]) with naive Bayes classification

conditional independence of the feature values xi of x is

assumed. Accordingly, the probability of x given a certain

group gi is calculated by multiplying the probabilities of

each xi. It is important to see that the posterior probability

is proportional to a certain group prior pi multiplied by

the product of the appropriate (independent) likelihoods

conditioned on gi. We choose to implement a Gaussian

for each group with estimated parameters (µ̂, σ̂2) from

the training set. Finally, we apply a maximum-a-posteriori

(map) rule to obtain the final decision D̂(x), i.e., the group

label (see eq. 6).

D̂(x) = arg max
i

p(gi|x) (6)

In case the product of likelihoods is very small or con-

verge to zero, we compute the product with logarithms

(log posteriors). Even though in many applications the

conditional independence is not given, classification based

on naive Bayes gives reasonable results [13] (see Section

IV-B).

D. Discriminant Analysis

The classical approach of linear discriminant analysis

(LDA) is to find an optimal projection of features by

minimizing the within-class and maximizing the between-

class distance. Quadratic discriminant analysis (QDA) is

quite similar to LDA, but it allows for quadratic decision

boundaries between classes. Thus, the classification rule

is quite intuitive, namely classify x in that class under

which the discriminant function gives the largest value. The

estimated discriminant functions d̂g(x) for LDA and QDA

are explained in [9] in detail. We only show the classification

rule as given in eq. 7. It is the same for both LDA and QDA,

respectively. The class label D̂(x) equals g∗ iff g makes the

discriminant function d̂k(x) a maximum.

D̂(x) = g∗ :⇔ g∗ = arg max
g

d̂g(x) (7)
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E. k-Nearest Neighbor

Due to the plausible fact that for any number of classes

(groups) it may be generalized that half of the total infor-

mation needed for the classification task is contained in

the nearest neighbor(s) [14], we implemented a k-Nearest

Neighbor classifier (KNN) with k chosen as 20% of the

training data. Although we have already shown that KNN is

not applicable to embedded realtime feature fusion [9], we

want to show that from a classification error rate point of

view KNN keeps reasonably pace with more sophisticated

feature fusion algorithms like those mentioned above. For

future work, in order to keep the training time small and

expand KNN for realtime classification, a Voronoi-based

KNN approach might be implemented [15].

A detailed experimental evaluation of the algorithms

described above on other datasets for embedded realtime

feature-based fusion on our embedded platform can be found

in our previous work [9], [3].

IV. EXPERIMENTAL STUDIES AND EVALUATION

A. Data and Study Location

The acoustic feature extraction and feature fusion algo-

rithms as described in Section II and III are applied to

real-world datasets that have been recorded on a freeway

bridgeover. A rough draft of the experimental setup is

depicted in Fig. 2. The freeway has two lanes in both

directions. A directional microphone was placed on the

bridgeover (mounted on the embedded prototype platform

represented by the black circle) and directed to the center

of the outer lane (approximately 10 meters to the highway

lane). The classification process is done for this outer lane

exclusively. The intention was to record acoustic data from

cars and trucks under environmental noise (due to vehicles

on neighboring lanes in the same and opposite direction).

The audio recording was performed with a sampling rate of

44, 1 kHz in mono format with 16 bit resolution. The final

audio input of the feature extraction algorithms is defined

as follows: sampling rate: 8 kHz (downsampling performed

in the preprocessing task, see Section II), resolution: 16 bit,

channels: mono and the maximum audio sample duration is

limited to 4 seconds. The vehicles of interest are cars and

trucks.

B. Results

In Table I the individual extraction time statistics (mean

and standard deviation) for both cars and trucks are sum-

marized. µe,car and σe,car represent the mean extraction

time and the standard deviation for cars (µe,truck,σe, truck,

analogously for trucks). The high standard deviation can be

observed due to the varying duration of the different audio

samples (as already mentioned, with a maximum duration

set to 4 seconds). Trucks are typically driving slower than

cars and hence are located in the recording region for a

longer period of time.

Figure 2. Experimental Setup

Therefore, the mean extraction time of cars and trucks differ

since the recording time of trucks (duration of audio samples

of trucks) is longer than it is with cars.

Table I
INDIVIDUAL EXTRACTION TIME STATISTICS [IN MS]

Extraction Algorithm µe,car σe,car µe,truck σe,truck

ste 14.62 2.4 18.87 3.74

ber 149.09 25.38 189.82 37.3

spbw 149.76 25.36 192.08 38.01

spro 151.57 25.64 193.18 38.16

cep 281.6 47.86 362.17 74.87

As we are interested in the total time spent for the whole

classification process including feature extraction, we sepa-

rately evaluated the time that is needed to classify a feature

vector consisting of the six acoustic features presented in

Section II. The results can be seen in Table II, where µc is

the mean classification time and σc the standard deviation.

SVM and ANN slightly outperforms QDA, LDA and NBC.

KNN is computationally more expensive approximately by

a multiplying factor of 7.4. As shown in [9] KNN is not

suitable for embedded realtime fusion if the number of

training data and the size of the feature vector is large. But,

however, in the case of a feature vector of size = 6 and

a relatively small training set (smaller than 1000 samples),

KNN does meet realtime constraints very well as the values

in Table II indicate.

Comparing extraction and classification time it is worth

mentioning that the major percentage of the total time of the

feature-based fusion process is used for feature extraction.

The percentage of the classification task does not exceed

0.07%, except KNN with an upper bound of 0.4%. Hence,

the classification task for a feature vector of six entries is

of no consequence regarding the complete processing time.

Table III summarizes the time used for feature extraction

and feature-based fusion for each individual classification

algorithm. The second column represents mean processing
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Table II
INDIVIDUAL CLASSIFICATION TIME STATISTICS [IN MS]

Classification Algorithm µc σc

SVM 0.3089 0.0425

ANN 0.3094 0.0376

QDA 0.4302 0.0528

LDA 0.4318 0.0540

NBC 0.4613 0.0485

KNN 2.9598 0.1175

time for cars and the third column the one for trucks (all

times given in ms).

Table III
TOTAL EXTRACTION AND CLASSIFICATION TIME STATISTICS [IN MS]

Classification Algorithm µe,car + µc µe,truck + µc

SVM 746.95 956.43

ANN 747.95 957.43

QDA 749.07 958.55

LDA 750.07 960.58

NBC 751.10 960.58

KNN 754.59 964.07

A further objective of the experimental study is to evaluate

and discuss the combination of the six acoustic features

concerning the discriminability between cars and trucks. As

mentioned before this is done in terms of classification error

rates and confusion matrices for the individual algorithms.

The classification error rates represent the proportion of false

positives and false negatives to the total number of samples

of particular test sets. In order to derive meaningful clas-

sification error rates we perform a 5-times cross-validation.

The results of the cross-validation are depicted in Fig. 3.

We achieved a notable classification rate of 96.6% with

the actificial neural network (ANN). Furthermore, even

though the conditional independence assumption does not

hold for our acoustic features, the naive Bayes classifier

(NBC) works very well. With a classification rate of 95.9%
(LDA with 95.2% as well) it outperforms even more so-

phisticated algorithms like SVM (94.5%). Moreover, the k-

nearest neighbor approach is also able to compete with these

algorithms. Even though it constructs a very intuitive and

simple separation between classes, it reaches a classification

rate up to 93.1%. QDA is not satisfyingly applicable to our

acoustic data (under 90%).

C. Limitations

Although the classification based on acoustic features is

very promising, there are some limitations on the use of

single audio sources. The first challenge in using single

audio source is depicted in Fig. 4(a) and (b). In our case the

classification is performed exclusively for vehicles driving

on the outer lane. If the vehicle is driving (a) at the inner lane

Figure 3. Classification error rates (true positives + true negatives)

Table IV
CONFUSION MATRICES

ANN 19 1 LDA 19 2

1 9 1 8

SVM 19 3 QDA 18 1

NBC 1 7 2 9

LDA 19 3 KNN 18 2

1 7 2 8

or (b) two vehicles are driving in parallel, we cannot reliably

determine if the signal originates from vehicles driving on

the inner or outer lane. Therefore we use an additional laser

sensor that functions as a trigger for the audio recordings

for a specific lane and as a plausibility check that a vehicle

is driving on that lane.

If cars and trucks are driving in parallel (as shown in

Fig. 4(c)), it is very hard to classify cars as cars due

to the fact that trucks are typically producing dominantly

much louder sounds than cars. To the contrary, if cars and

trucks change lanes, there are no problems to classify trucks

correctly, because the sound of the car is of insignificant

consequence concerning inferences.

Additionally, there are also limitations concerning the

computational performance of the algorithms and the un-

derlying embedded platform (physical limitations). As pre-

sented in Section IV-B the maximum execution time for

extraction and classification for cars is ranging from 747ms
to 755ms and for trucks from 957ms to 965ms (see

Table III). If vehicles are driving too closely in succession

exceeding the physical time spent to extract and classify one

particular vehicle, it is physically not possible to acquire data

from all successive vehicles (Fig. 4(d)).

Currently we perform the complete extraction and clas-

sification tasks after a particular recording time duration.

This obviously affects the realtime behavior of the system.

An improvement would be to combine the capturing and
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(a) (b)

(c) (d)

Figure 4. Problematic test cases for lane accurate vehicle classification
using single acoustic sensor

processing tasks performing the extraction block by block

in parallel with the audio recordings.

V. CONCLUSION

As part of our ongoing work on embedded realtime

fusion of heterogeneous sensor data for vehicle classifica-

tion applied to traffic monitoring, this paper investigates

the capabilities of acoustic feature generation for vehicle

classification. A total of six temporal and spectral features

are extracted from the audio recordings. The extraction

algorithms are described in detailed. Standard classification

algorithms are compared using these features. Based on

previous work the classification algorithms chosen are a

neural network, a support vector machine, a naive Bayes

classifier, a k-nearest neighbor approach and a linear as well

as quadratic discriminant analysis.

We focus on evaluating the classification accuracy (clas-

sification rates and confusion matrices) as well as realtime

performance (extraction and classification execution time)

of the single sensor setting approach on our embedded

platform. The results concerning both classification accuracy

and realtime performance of the algorithms are very promis-

ing. Due to these results we apply them in our ongoing

research on fusing acoustic with visual and laser data.
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