
Embedded Realtime Feature Fusion

based on ANN, SVM and NBC

Andreas Starzacher and Bernhard Rinner

Institute of Networked and Embedded Systems

Klagenfurt University

Lakeside Park B02b, Austria.

[andreas.starzacher, bernhard.rinner]@uni-klu.ac.at

Abstract – Artificial neural networks (ANNs), support

vector machines (SVMs) and naive Bayes classifiers (NBCs)

are common tools for multisensor data fusion applications.

In this paper ANN, SVM and NBC are applied to embed-

ded realtime feature fusion and compared to different algo-

rithms concerning classification execution time as well as

classification rate. These algorithms are implemented on

our three-layered multisensor data fusion architecture and

applied to traffic monitoring where we are focusing on fus-

ing data originating from distributed acoustic, image and

laser sensors for vehicle classification and tracking.

The evaluation of the algorithms is performed on our em-

bedded platform and has shown promising results concern-

ing realtime classification execution time and classification

rate.

Keywords: Realtime feature fusion, neural network, sup-

port vector machine, naive Bayes, embedded system

1 Introduction
Multisensor Data Fusion (MSDF) comprises well-known

methods to combine homogeneous and heterogeneous sen-

sor information. One of the main objectives of MSDF is

to achieve significant advantages over single source sensor

data in order to increase the robustness and confidence of

sensor applications [1, 2, 3]. Furthermore, MSDF is used to

extend spatial and temporal coverage and to reduce ambi-

guities and uncertainties of the sensor measurements. Espe-

cially in time-critical applications, such as traffic monitoring

applications, it is crucial to be able to trust in robust esti-

mates of the phenomenon within a certain region of interest.

In literature there is a large number of various fusion algo-

rithms ranging from estimation methods, e.g., (Kalman) fil-

ters, to different kinds of classification and inference meth-

ods, e.g. support vector machines [4], artificial neural net-

works [5, 6], Bayesian statistics [7, 8], Dempster-Shafer the-

ory of evidence [9, 10].

Sensor fusion is typically performed at three levels of ab-

straction [11], i.e., raw-data fusion, feature fusion and high-

level (decision) fusion. Raw-data fusion is used to combine

data from different sensors which measure the same physical

parameters (e.g., pixel-fusion in image processing). Fusion

at feature level combines extracted features from the raw

data of the individual sensors and finally, high-level fusion

integrates preliminary fusion results derived from lower-

level fusion. High-level fusion provides a final estimate of

the observed scene, e.g., identity of an observed entity. For

the sake of completeness, fusion may be also categorized

into complementary, competitive and cooperative fusion. A

detailed explanation of these categories can be found in [9].

There are two major architectural methodologies to

MSDF. First, the fusion system consists only of a central

fusion unit (centralized approach). The second approach

allows sensor data to be combined locally on each sensor

node. The partially fused data is then sent to a distinguished

node in the sensor network to perform the final fusion (de-

centralized fusion approach).

In this paper, however, we focus on embedded, realtime

MSDF within a decentralized three-layered fusion architec-

ture [12]. The major challenges that arise here are limited re-

sources on the embedded processing node and strict timing

requirements on the fusion methods in order to keep pace

with the permanent incoming data stream. Therefore, we

show the feasibility of applying SVM, ANN and NBC for

embedded realtime feature fusion and thus evaluate the clas-

sification performance concerning classification execution

time for single feature vectors (samples) and classification

rate (in terms of true positives) on different datasets on our

embedded platform. Furthermore, we analyze the degree of

scalability with increasing number of features and the max-

imal number of samples that can be classified per second.

In [12] we have already shown that linear and quadratic dis-

criminant analysis (LDA and QDA, respectively) are suit-

able for embedded feature fusion under realtime constraints.

Standard k-nearest neighbor was rejected due to its unac-

ceptable time needed for classification, i.e., not satisfying

our realtime constraints especially if large numbers of fea-

tures are being processed. Therefore, this paper also extends

the evaluation of our previous work by comparing the clas-

sification time as well as classification rate of discriminant

Figure 1: Overview of the sensor network structure

analysis with a support vector machine and an artificial neu-

ral network as well as a naive Bayes approach implementa-

tion on our embedded platform.

The remainder of the paper is as follows: Section 2 briefly

describes our sensor network structure and three-layered

multisensor data fusion architecture approach. Section 3 de-

scribes the selected algorithms applied to embedded feature

fusion and the features used in our application scenario, i.e.,

traffic monitoring. Experimental results of ANN, SVM and

NBC in comparison to LDA and QDA on different datasets

are presented in section 4. The evaluation is done exclu-

sively on our embedded platform. A summary and an out-

look conclude this paper.

2 Systems Architecture

Our sensor network structure is shown in Fig. 1. It con-

sists of the following components: several sensor nodes

(SNi), a single center node (CE) and a so-called ”fusion

backbone to center” node (FBC) which is a dedicated sen-

sor node sending the final decision to the CE. Moreover, the

FBC is responsible for the final fusion processing, i.e., de-

riving the final decision about a specific task which in our

case is object classification and tracking information.

Each of the different sensor nodes has several attributes

andmethods that define its state and functionality. Attributes

are for example an ID for unique identification, internal de-

scription and timestamps (logging functionality). SN meth-

ods are e.g., send, receive, fusion methods and methods in-

terfacing external devices (e.g., stop lights in traffic moni-

toring environments).

In our sensor network the sensor nodes are organized

in clusters (PFCi, see beneath) performing different fusion

tasks on specific regions of interest (ROIs) such as intersec-

tion areas, urban roads, etc. The assignment of sensor nodes

to specific clusters is done a-priori considering several con-

straints (e.g., vicinity, adjacency, ROIs, etc.).

Our MSDF architecture consists of three layers [12]. We

chose a layered architecture approach in order to easily ab-

Figure 2: Feature and decision fusion with reference to fu-

sion cluster c (PFC), where Si represents sensor node i, xi,j

the jth feature value of sensor i and yi the ith local partial
decision generated by FFUi.

stract and encapsulate the various processing steps into in-

dependently working processing units. Each fusion layer

performs a specific task in order to contribute to the whole

fusion process. In brief, layer 1 is responsible for record-
ing and if necessary normalizing raw sensor readings (data

acquisition and alignment). Layer 2 performs intra-cluster
fusion and finally layer 3 fuses the decisions from the sec-
ond layer to generate the final decision (inter-cluster fusion).

A more detailed description of our MSDF architecture and

its different layers is given in our previous work [12]. In

literature a lot of different fusion modeling approaches exist

[13, 11, 14, 15]. The essential objective of our approach is to

keep the overall structure light-weighted (embedded design)

and to develop autonomous modules (layers) which can be

developed separately and substituted if required (module-

based approach).

The sensor readings acquired by layer 1 are processed
(fused) in layer 2. After the data fusion in layer 2 is done,
layer 3 creates the final decision. Layer 2 and 3 make use of
two fusion methodologies to perform the fusion tasks (as de-

picted in Fig. 2 and Fig. 3) depending on the internal sensor

network structure. Fig. 2 shows the combination of feature

and decision fusion. We apply this approach to large sensor

networks where the partial fusion clusters (PFCs) consist of

lots of sensor nodes (SNs) and the overall bandwidth be-

tween (adjacent) sensors is low or costly (sending decisions

costs much less than sending lots of features).

Let, for example, the number of sensor nodes within a

PFC c in a sensor network be n (within layer 2). These n
SNs locally extract features and perform feature fusion re-

sulting in local partial decisions (yi). These yi are sent to a

chosen SN h (SN head) which performs local partial deci-
sion fusion within PFC c resulting in yfinal,c. Thus, layer

2 has to send n final partial decisions to layer 3 which is
then performing decision fusion. If the network bandwidth

between SNs in a PFC c is high, then another approach de-

Figure 3: Feature fusion based on augmented feature vec-

tor with reference to fusion cluster c (PFC), where Si and

xi,j are the same as in Fig. 2 but with a single FFUfinal

combining all features of AFV .

picted in Fig. 3 is used. After receiving data from layer 1,
one of the sensor nodes is selected as head h (within layer
2) and each SN within the same PFC sends its features (ho-
mogeneous and heterogeneous) to h. Finally, the SN head h
performs feature fusion based on the augmented feature vec-

tor (AFVc) without using a decision fusion unit DFUfinal,c.

In both cases the output of the two approaches is a final par-

tial decision (yfinal,c). The n final partial decisions of each
PFC are sent to layer 3 where high-level fusion results into
a final decision.

3 Feature Fusion Algorithms

To perform embedded feature fusion under realtime con-

straints we decided to implement a layered artificial neu-

ral network, a support vector machine and a naive Bayes

approach. Even though some parameters of artificial neu-

ral networks are still based on heuristics, e.g., choosing the

number of hidden units and neurons, ANNs are tools often

applied to MSDF problems [5, 6, 16, 17]. The general struc-

ture of an ANN is shown in Fig. 4.

Furthermore, support vector machines are a widely used

classification technique and applied to sensor fusion appli-

cations, too [15, 18, 19, 20]. A basic geometrical representa-

tion of the SVM problem formulation is given in Fig. 5. The

basic idea (challenge) behind SVMs is to obtain an optimal

margin by minimizing ||w|| in order to maximize 2 ||w||−1
,

i.e., the margin width.

Naive Bayes classifiers, the simplest kind of Bayesian

networks [21], are also a powerful tool for feature-based

decision modeling. Under the fundamental assumption of

conditional independence of the features, it is possible to

perform the fusion task efficiently with respect to process-

ing power and memory consumption.

The following three sections give a description of the al-

gorithms that are used for embedded realtime feature fu-

Figure 4: A three-layered feed-forward ANN representing a

FFUi with respect to cluster c

sion and the evaluation (see section 4). Section 3.4 gives

an overview of the laser-based, acoustic and visual features

that we are using in our application scenario in order to clas-

sify vehicles.

3.1 Three-layered Neural Network

Instead of using a simple perceptron, we chose to imple-

ment a feed-forward artificial neural network model (multi-

layer perceptron) for embedded feature fusion, because in

general our data is not linearly separable. Due to the prop-

erty of universal approximation [22], we implemented a

three-layered perceptron consisting of an input, a hidden and

an output layer (three layers are sufficient for approximating

any function in an arbitrary accuracy). The number of input

neurons results from the number of features originating ei-

ther from a single sensor node SNi or the augmented feature

vector AFVc. There is a single output neuron defining the

(partial) decision. The number of hidden neurons is speci-

fied by using the following heuristics: LetN be the number
of input and M the number of output neurons. The num-

ber of hidden layers H is defined as the sum of number of
input and output neurons multiplied by a constant d with
d ∈ (0, 1] (eq. 1). We evaluated the neural network with
several d ∈ {2/3, 1/2, 1} (see section 4).

H = ⌊(N + M) · d⌋ (1)

In Fig. 4 the three-layered feed-forward neural network

represents one of the feature fusion units FFUi with respect

to cluster c (within layer 2 of our fusion architecture). The
output of the FFUi is either yi or yfinal,c (as depicted in

Fig. 2 and 3). After each cluster has computed its own partial

decision yfinal,c, the high-level fusion process takes place in

layer 3 of our MSDF architecture.
In general, training an artificial neural network is very

time-consuming depending on several parameters like num-

ber of layers, neurons, epoches, type of activation func-

tions and the training algorithm (backpropagation and its en-

Figure 5: SVM problem formulation: maximizing margin is

equivalent to minimizing ||w|| (max margin⇔ min ||w||)

hancements [23, 24]). In order to meet realtime constraints

and assure realtime fusion the training is done on an exter-

nal computer and only trained ANN models are used on the

embedded platform to perform the fusion task.

3.2 Support Vector Machines

In the experiments we use a standard support vector ma-

chine implemented on our embedded platform. Fig. 5 shows

the standard SVM problem geometrically. Generally, a

SVM is a so-called maximum margin classifier. The objec-

tive of the SVM optimization problem is to obtain certain

parameters in order to define a separating hyperplane that

has an optimal class separability (optimal in terms of maxi-

mum margin that is defined by the support vectors). In real-

world scenarios it often happens that features are close to the

hyperplane or cannot be separated properly. Therefore so-

called slack variables are introduced (soft side constraints).

These allow for a certain amount of misclassified features.

Especially in our case of fusing acoustic features the intro-

duction of slack variables turned out to be absolutely essen-

tial due to the high sensitivity to noise in the acoustic sensor

readings.

If the data is not linearly separable, the so-called kernel-

trick comes into play. There are different kinds of kernels

such as polynomial kernel, (Gaussian) radial basis and sig-

moid functions. Kernels transform the original data into a

higher dimensional feature space. Even if the original data

are nonlinear, the transformed data is separable by a hyper-

plane in feature space.

3.3 Naive Bayes Approach

In addition to a neural network and support vector ma-

chine, we implemented a naive Bayes approach which has a

lot of advantages. One of these are its simplicity and trans-

parency. Assuming conditional independence of the feature

values xi within a feature vector x the probability of x given

a certain group gi is the result of multiplying the probabili-

ties of each xi in x (eq. 2).

p(x|gi) =
∏

k

p(xk|gi) (2)

Thus, the posterior probability is proportional to the prod-

uct of the prior of group gi and the independent likelihoods

as shown in eq. 3.

p(gi|x) ∝ p(gi)
∏

k

p(xk|gi) (3)

Under our assumption, each of the likelihood functions

for each group gi follows a Gaussian distribution with µi =
µ̂i and σ2

i = σ̂i
2 (µ̂i and σ̂i

2 are the standard estimates of

the mean and variance of the group gi).

By computing the posterior for each group gi, we can

apply the argumentum maximi rule to infer a final decision

D̂(x), i.e., a maximum-a-posteriori-estimate (MAP, eq. 4).

D̂(x) = arg max
i

p(gi|x) (4)

If lots of (small) probabilites are multiplied, the final (pos-

terior) probability is enormously small and often converges

to zero. In order to get around this problem, instead of tak-

ing probabilities, we take the logarithm of probabilities (log-

prob modeling). This is possible due to the monotonic char-

acteristic of the log function. In addition to a MAP decision
rule, we implemented a Maximum Likelihood (ML) rule to

evaluate the importance and influence of prior probabilities

used inMAP.

In many applications the conditional independence as-

sumption does not hold, because the features originating

from different sensor nodes often correlate, e.g., if the same

ROI is observed. But it is worth mentioning that even though

in general the independence assumption does not hold, naive

Bayes feature fusion gives reasonable fusion results [25].

Therefore, it can indeed compete with more sofisticated al-

gorithms such as ANN and SVM if the correlation among

features is not too strong.

Furthermore, especially in case of embedded fusion ap-

plications it is computationally too expensive to infer poste-

riors without assuming conditional independence, i.e., com-

puting the joint probability models with all successive con-

ditional probabilities (these conditional probabilities are of-

ten difficult to obtain).

3.4 Heterogeneous Features

Currently, we have implemented eight acoustic feature

extraction algorithms in time as well as frequency domain.

These algorithms extract 14 acoustic features. The acous-
tic features in time domain are computationally afford-

able. Time domain features are short time energy and zero-

crossing rate. Spectral features are spectral centroid, band-

width, flux, roll-off point and band energy ratio. Further-

more, cepstral coefficients extracted by cepstral analysis are

used as feature values. As we are working on embedded re-

altime MSDF algorithms, we cannot implement arbitrarily

complex feature extraction algorithms that might extract fea-

tures that have a higher degree of class separability. There-

fore, we base upon light-weighted acoustic feature fusion

algorithms that can be applied to realtime fusion applica-

tions. In order to enhance the classification results (pre-

sented in section 4.2) we perform feature fusion based on

acoustic features (1) and decision fusion (2) based on re-
sults from (1) and decisions originating from visual feature
classification. Our preliminary work concerning the evalu-

ation of classification performance based on visual features

on our embedded platform is found in [26]. Features orig-

inating from laser sensors might be height values (for al-

titude profile generation) and velocity. At the moment the

laser sensors primarily function as triggers within our traffic

monitoring scenario.

4 Evaluation
With the evaluation presented in this section we discuss

several performance tests and results. The focus of our ex-

periments is to show that ANN, SVM and NBC are efficient

algorithms for embedded realtime feature fusion. The eval-

uation of those algorithms has shown very promising results

with respect to realtime classification execution time and

classification rate (true positives), i.e., each algorithm can be

used in our practical system. In order to validate our results,

we compared them with linear and quadratic discriminant

analysis algorithms that we have already implemented and

evaluated in our previous work [12].

In the following section we describe our embedded test

platform on which we performed the tests with simulated

data (evaluation of scalability concerning number of fea-

tures), real-world test datasets that are freely available on-

line (performance comparison of the algorithms) and with a

dataset containing acoustic features (evaluating acoustic fea-

tures that are extracted from several audio samples by using

our acoustic feature extraction algorithms).

4.1 Embedded Test Platform

Our test and evaluation platform is a MICROSPACE EBX

(MSEBX945) embedded computer board from DigitalLogic

AG that serves as a MSDF platform (see [12]). Its com-

pact EBX single-board construction (146mm × 203mm)
has several interfaces such as RS-232 (for laser sensors),

LAN 100MB (for networking), FireWire IEEE 1394 over

MiniPCI (for interfacing cameras) and USB (serving as a

soundcard interface). The CPU module, a SMX945-L7400,

makes use of Intel Core 2 Duo technology with 2 × 1500
MHz and a 667 MHz FSB.

Some of the main characteristics of the board are 2048MB

DRAM, USB 2.0, RS232C, COM-Interface, 10/100BASE-

T, 1GB-LAN PCIe, MiniPCI slot and PS/2 interface. The

MSEBX945 board has a total power consumption of about

12 to 15 W. The operating system is a Linux derivate called

Linux from Scratch (LFS) provided by our industrial partner.

We successfully interfaced the following sensors: Nop-

tel CM3-30 (single-beam laser for distance measurements

Figure 6: Classification time for increasing number of fea-

tures with datasets of 1000 samples

and altitude profile generation), acoustic sensors (for

mono/stereo audio recordings), Baumer FWX14-K08 cam-

eras (for single shots and continuous recordings) and ELV

ST-2232 (an environmental sensor for recoring light inten-

sity, temperature and sound level) for additional environ-

mental information about specific regions of interest (cur-

rently not used within the fusion task).

The communication with the embedded platform is pri-

marily done via remote interface.

4.2 Performance Evaluation

As already mentioned, the main objective of the evalua-

tion is to present results concerning classification execution

time (in milliseconds) as well as classification rates (in %) of

our embedded feature fusion algorithms. The evaluation of

the classification execution time is performed on simulated

datasets and the analyses of the classification rates are done

on four different real-world datasets.

First, we measured the time needed for executing the al-

gorithms to classify a single feature vector x (i.e., to fuse

the features) consisting of different numbers of simulated

features (scalability). The number of measurements is 1000
(constant). The results are shown in Fig. 6. Even in case of a

feature vector containing 400 features, the mean classifica-
tion time spent is quite short, hence there are plausible rea-

sons to apply SVM, ANN and NBC to embedded realtime

MSDF problems. As can be seen in Fig. 6, SVM outper-

forms ANN and NBC. Furthermore, an interesting observa-

tion particularly with regard to scalability is that the mean

classification time of SVM lies in a quite constant classi-

fication time interval concerning the different numbers of

features of a feature vector x. It lies in the open interval

(0.3, 0.4) in units ofms. This is not the case with the neural
network and naive Bayes approach and neither with LDA

nor QDA. The mean classification time difference of SVM

and ANN is rather small whereas the difference between

SVM (ANN) and NBC is significantly larger. For example,

Table 1: Classification Time (inms)
Algorithm tµ tσ ttotal

SVM 0.35893 0.2344 366.23

ANN 0.442294 0.0844162 444.894

NBC 1.12886 0.355382 1153.96

LDA 37.8508 2.22199 37850.8

QDA 28.8196 1.25372 28819.6

if the number of features of x is set to 400, the difference is
about 0.769ms (0.686ms). This difference is obviously re-
flected in the number of classification tasks per second (see

Fig. 7).

SVM, ANN and NBC have a much shorter mean classifi-

cation time tµ, smaller standard deviation tσ as well as total

classification time ttotal than LDA and QDA, respectively.

This can be seen in Table 1 where the feature vector x con-

sists of 400 features and the number of samples processed is
set constant to 1000.
If the total CPU performance is used exclusively for the

classification task, a huge amount of feature vectors can

be classified per second. In Fig. 7 the clustered histogram

shows the average number of feature vectors (samples) that

can be classified within one second of time (nmax). Ad-

ditionally, the results show that our algorithm implementa-

tions are light-weighted and hence definitively suitable for

and applicable to embedded MSDF). Again, SVM, ANN

and NBC extremely outperform the discriminant analysis

approach concerning nmax.

Second, we evaluated the classification rates of the indi-

vidual algorithms for four different datasets. The character-

istics of the datasets are found in Table 2.

Table 2: Datasets
Number Dataset #(train) #(test) #(features)

1 australian 681 9 14

2 svmguide1 3089 31 4

3 heart 258 12 13

4 own dataset 444 17 14

The tests are structured as follows: for each dataset one

parameter setting (session) for both LDA and QDA, two ses-

sions for SVM and NBC and three sessions for ANN are

applied to obtain the classification rates under specific pa-

rameter settings. We have unchanged (default) as well as

altering parameters for each algorithm. The default param-

eter settings for SVM, ANN and NBC are summarized in

Table 3, whereas LDA and QDA are executed with default

parameters specified in [12].

For SVM we evaluated the algorithm with two different

kernel types. We chose to take a sigmoidal kernel and a

kernel based on a radial basis function (rbf). In our case we

applied a Gaussian rbf. As the datasets, especially the one

containing acoustic features, are not linearly separable, we

neglected to apply a linear kernel.

The three-layered ANN is evaluated with different num-

bers of hidden neurons (altering d of eq. 1). It is obvious

Figure 7: Maximal number of samples that can be classified

per second

that the number of input neurons results from the number

of features in a feature vector x. As we model the fusion

task based on features as a classification model, where the

desired output is a single class label of high confidence, the

number of output neurons is one (the estimated class label).

As described in section 3.1 we apply several heuristics to

obtain a robust number of hidden neurons within the hidden

layer of the neural network. The heuristics we used depend

on the single parameter d (see eq. 1). Some tests showed
that it is also reasonable to choose a slightly, but decisive

modified version of eq. 1, i.e., H = ⌊(N + M) · d⌋ − 1.
We applied this rule to dataset 4 in an additional session and
gained an increased true positives rate of 76.47%.

Table 3: Parameter Settings (unchanged)
Algorithm Unchanged Parameters

Degree in kernel function deg = 3

SVM Cost parameter C = 1

Tolerance of termination criterion γ = 0.001

#(Input Neurons) = #(Features)

ANN #(OutputNeurons) = 1

#(Neural Network Layers) = 3

#(Training Epoches) = 10
5

Gaussian Activation function

Priors estimated from training data

NBC Means estimated from training data

Variances estimated from training data

Gaussian distribution assumed

Concerning NBC we substituted the classification rule

with log Maximum Likelihood (LogML) and log Maximum
a posteriori (LogMAP) likewise. Using prior probabilities

does not necessarily imply an increase of the classification

rate (as it is with datasets 1 and 3). With dataset 2 (by
0.8%) and 4 it does incease, especially with dataset 4 (by
23.5294%). The parameters priors, means and variances
are estimated from the training datasets. The underlying

distribution for each class in the datasets are assumed to be

Gaussian defined by the estimated class parameters.

A summary of the altered parameters within the sessions

is depicted in Table 4. The minus sign (-) indicates that there

is no parameter setting in the appropriate session.

Table 4: Parameter Settings (sessions)
Algorithm Session 1 Session 2 Session 3

SVM sigmoid kernel rbf kernel -

ANN d = 2/3 d = 1/2 d = 1

NBC LogML rule LogMAP rule -

Fig. 8 shows a clustered histogram with the appropriate

classification rates of each algorithm according to the ses-

sions (for all datasets). A zero classification rate (no bar for

a certain session) in the histogram indicates that there is no

parameter setting in this session (noted as a - in Table 4). In

Fig. 8(a) SVM can be significantly improved by applying a

suitable kernel for dataset 1. By applying a rbf kernel, the
classification rate increases from 22.22% to a 77.78% per-
centage. With ANN there is also an increase observed by

changing parameters. A 100% classification rate is achieved
by using d = 1. This shows the influence of d in choosing a
reasonable number of hidden neurons. With dataset 1 priors
have no influence on the classification rates (same rates with

LogML and LogMAP). With dataset 1 SVM is outperformed
by the all other algorithms. In Fig. 8(b) SVM and ANN give

the highest classification rates. SVM again implements a rbf

kernel and ANN uses d = 1 (also d = 2/3 and d = 1/2 give
rates above 95%). LDA and QDA are outperformed with
rates under 90%. In subfigure (c) SVM reaches a 91.67%
rate with a rbf kernel. The other algorithms give rates under

90% for each session. Dataset 4 is our created dataset con-
taining 14 acoustic features per sample (Fig. 8(d)). These
acoustic features are extracted by means of our acoustic fea-

ture extraction algorithms. Tests give classification rates un-

der 80% for each algorithm (highest rate 76.47%). As de-
scribed in section 3.4 feature and decision fusion with het-

erogeneous features and decisions are to be applied in order

to increase the classification rates.

5 Conclusion
In this paper we evaluated the applicability of a support

vector machine, three-layered artificial neural network and a

naive Bayes approach to embedded realtime feature fusion.

The algorithms are implemented on our three-layered mul-

tisensor fusion architecture and evaluated concerning clas-

sification execution time and classification rate (true posi-

tives rate). The evaluation is exclusively performed on our

embedded test platform. It includes determining the clas-

sification execution time for a single feature vector, clas-

sification rate based on different datasets, degree of scala-

bility with increasing number of features and the maximal

number of feature vectors that can be classified per second.

Moreover, SVM, ANN and NBC are compared with linear

and quadratic discriminant analysis approaches concerning

those evaluation items addressed in this paper.

Figure 8: Classification rates of each fusion algorithm

In conclusion, the algorithms presented are applied to em-

bedded realtime feature fusion in our practical system.

Based on these algorithms, our next steps are towards ex-

tending our feature fusion with high-level fusion within the

third layer of our fusion architecture. Using additional high-

level fusion we want to exploit the partial feature fusion re-

sults (i.e., the partial decisions) of the individual algorithms

by fusing those partial decisions in order to improve the clas-

sification results in terms of less false positives.

Acknowledgment

A grant from the Austrian Research Promotion Agency

supported this work (under the FIT-IT[visual computing]

grant 813399).

References

[1] H. Ruser and F. Puente León. Informationsfusion -

Eine Übersicht. tm - Technische Messen, Oldenburg,

74(3):093–102, 2007.

[2] H. Hu and J. Q. Gan. Sensors and Data Fusion Algo-

rithms in Mobile Robotics. Technical Report: CSM-

422, Department of Computer Science, University of

Essex, Colchester CO4 3SQ, United Kingdom, 2005.

[3] D. Loebis, R. Sutton, and J. Chudley. Review of mul-

tisensor data fusion techniques and their application to

autonomous underwater vehicle navigation. Journal of

Marine Engineering and Technology, 1:3–14, 2002.

[4] Andreas Klausner, Christian Leistner, Allan. Tengg,

and B. Rinner. An audio-visual sensor fusion approach

for feature based vehicle identification. In Proceed-

ings of the 2007 IEEE International Conference on

Advanced Video and Signal based Surveillance (AVSS

2007), page 6, London, UK, 2007.

[5] N. Yadaiah, Lakshman Singh, Raju S. Bapi, V. Sesha-

giri Rao, B. L. Deekshatulu, and Atul Negi. Multi-

sensor Data Fusion Using Neural Networks. In Inter-

national Joint Conference on Neural Networks, pages

875–881, Vancouver, BC, Canada, 2006.

[6] Quan Liu and Xiaomei Zhang. An adaptive multisen-

sor data fusion system based on wavelet denoising and

neural network. Sensors for Harsh Environments II,

5998, 2005.

[7] S.K. Jayaweera. Optimal Bayesian data fusion and

low-complexity approximations for distributed DS-

CDMA wireless sensor networks in Rayleigh fading.

In International Conference on Intelligent Sensing and

Information Processing, pages 19–24, 2005.

[8] G. Wang, D. Zhang, and H. Zhao. An improved Bayes

fusion algorithm with the Parzen window method. In

Proceedings of the Fifth International Conference on

Information Fusion, pages 651–657, Annapolis, MD,

USA, 2002.

[9] K. Faceli, A.C.P.L.F. de Cavalho, and S.O. Rezende.

Combining intelligent techniques for sensor fusion.

Applied Intelligence, 20(3):199–213, 2004.

[10] D. Fasbender, V. Obsomer, J. Radoux, P. Bogaert, and

P. Defourny. Bayesian data fusion: spatial and tempo-

ral applications. In MultiTemp2007, pages 001–006,

Provinciehuis Leuven, Belgium, 2007.

[11] J. Llinas and D.L. Hall. An introduction to multi-

sensor data fusion. In ISCAS-2008, pages 537–540,

Monterey, CA, 1998.

[12] Andreas Starzacher and Bernhard Rinner. Evaluating

KNN, LDA and QDA Classification for embedded on-

line Feature Fusion. In Proceedings of the Fourth In-

ternational Conference on Intelligent Sensors, Sensor

Networks and Information Processing (ISSNIP-2008),

pages 85–90, Sydney, NSW, 2008.

[13] J. Esteban, A. Starr, R. Willetts, P. Hannah, and

P. Bryanston-Cross. A review of data fusion mod-

els and architectures: towards engineering guidelines.

Neural Computing and Applications, 14(4):273–281,

2005.

[14] M. Bedworth and J. O’Brien. The omnibus model: a

new model of data fusion? IEEE Aerospace and Elec-

tronic Systems Magazine, 15:030–036, 2000.

[15] Andreas Klausner, Allan Tengg, and Bernhard Rinner.

Distributed multilevel data fusion for networked em-

bedded systems. IEEE Journal on Selected Topics in

Signal Processing, 2(4):538–555, 2008.

[16] A. Kostrzewski, Dai Hyun Kim, Jeongdal Kim,

T. Jannson, and G. Savant. Fuzzified neural network

for similar/dissimilar sensor fusion. In IEEE Inter-

national Conference on Neural Networks, pages 938–

942, Washington, DC, USA, 1996.

[17] Joris W. M. Van Dam, Ben J. A. Kr, and Franciscus

C. A. Groen. Neural network applications in sensor

fusion for an autonomous mobile robot. In Proceed-

ings of the International Workshop on Reasoning with

Uncertainty in Robotics, pages 263–278, 1995.

[18] Xiaowu Liu, Huiqiang Wang, Jibo Lai, Ying Liang,

and Chunmei Yang. Multiclass Support Vector Ma-

chines Theory and Its Data Fusion Application in Net-

work Security Situation Awareness. In International

Conference on Wireless Communications, Networking

and Mobile Computing (WiCom2007), pages 6349–

6352, Shanghai, P.R. China, 2007.

[19] Jerome J. Braun. Sensor data fusion with Support Vec-

tor machine techniques. In Proceedings of Sensor Fu-

sion: Architectures, Algorithms, and Applications VI,

pages 98–109, Orlando, FL, USA, 2002.

[20] S. Challa, M. Palaniswarni, and A. Shilton. Distributed

data fusion using support vector machines. In Proceed-

ings of the Fifth International Conference on Informa-

tion Fusion, pages 881–885, Annapolis, USA, 2002.

[21] Dan Geiger, Moises Goldszmidt, G. Provan, P. Lang-

ley, and P. Smyth. Bayesian Network Classifiers. In

Machine Learning, pages 131–163, 1997.

[22] Domonkos Tikk, László T. Kóczy, and Tamás D.

Gedeon. A survey on universal approximation and

its limits in soft computing techniques. International

Journal of Approximate Reasoning 33 (2003), 2002.

[23] Yann LeCun, Leon Buttou, Genevieve B. Orr, and

Klaus-Robert Müller. Efficient BackProp. Neural net-

works: Tricks of the trade, 1998.

[24] Hui Hui, Dayou Liu, and Yafei Wang. Sequential

Back-Propagation. Journal of Computer Science and

Technology), 9, 1994.

[25] Jan-Nikolas Sulzmann, Johannes Fürnkranz, and Eyke

Hüllermeier. On Pairwise Naive Bayes Classifiers.

In Proceedings of the 18th European Conference on

Machine Learning, pages 371–381, Warsaw, Poland,

2007.

[26] Christian Leistner, Peter M. Roth, Helmut Grabner,

Horst Bischof, Andreas Starzacher, and Bernhard Rin-

ner. Visual On-line Learning in Distributed Camera

Networks. In Proceedings of the ACM/IEEE Inter-

national Conference on Distributed Smart Cameras

(ICDSC-08), pages 1–10, Stanford, USA, 2008.

