Evaluating clustering in

Bernhard Dieber*
*Video and Security Technology
Austrian Institute of Technology, Vienna
Email: bernhard.dieber @uni-klu.ac.at

Abstract—Clustering is an important concept for structuring
large networks of cameras. In this research we investigate the
various trade offs of clustering in networks of smart cameras.
Major research questions in this context are (i) how to model
clustering, (ii) how to deal with the heterogeneity in large camera
networks, and (iii) how to integrate clustering in real-world
networks. We have developed a flexible and scalable software
suite that supports clustering in camera networks. We present
first results in a multi-camera person tracking case study.

I. INTRODUCTION

Many surveillance networks consist of a large number of
cameras—some of them with more than thousand cameras.
Recent surveillance systems not only capture and record visual
data, they abstract and fuse data from the individual cameras
to obtain a compact global view of the monitored area [1].
This data abstraction and fusion can be performed centralized
by a dedicated node, fully distributed in the network or within
clusters of cameras.

Clustering lies somehow in between the other two ap-
proaches wrt. the degree of distribution. It is a very natural
approach for multi-camera applications because (i) the under-
lying network is often hierarchically structured, (ii) processing
data in small groups of cameras is typically sufficient to detect
specific activities in the monitored area and (iii) it offers a
good trade off between scalability and flexibility.

Figure 1 depicts an example for clustering in a camera
network. Clustering can be performed hierarchical at the level
of rooms, floors or buildings. Within each cluster, a dedicated
node fuses the data streams from the cluster cameras and
generates an abstracted output potentially delivered to other
clusters.

II. RESEARCH QUESTIONS

There are various ways how cameras can be organized into
clusters. For example, clustering can be based on the network
topology, the cameras’ field of view or their locations. Clusters
can have different properties such as the number of cameras,
the processing performed within the cluster and the delivered
output. In this research project, we are interested in evaluating
clustering in smart camera networks [2], i.e., we investigate
different the methods and provide tools for rapid prototyping
and monitoring of clustered camera networks. We address the
following research questions.

smart camera networks

Bernhard Rinner! (Advisor)
fInstitute of Networked and Embedded Systems
Klagenfurt University, Austria
Email: bernhard.rinner @uni-klu.ac.at

Second floor

& o

Room 3

First floor

Fig. 1: Clustering a set of cameras (C) using cluster nodes
(CN).

Modeling Cluster-based Networks: For modeling cluster-
based camera networks we adopt a data-flow approach. A
cluster node merges the output from a set of smart cameras,
processes this data and generates an abstracted output. Various
parameters of this simple model can change from cluster to
cluster or over time. Examples of these parameters include the
number and type of inputs, the processing within the cluster
node and the number and type of generated outputs. Thus, an
important question is how to model individual clusters as well
as the overall camera network at a sufficient level of detail.

Flexible and Scalable Cluster Processing: In many
surveillance systems the individual cameras have different
capabilities. Some cameras can simply capture images and
transfer the raw data to the cluster node. Other (smart) cameras
can perform advanced image analysis onboard and deliver
high-level results. Naturally, the heterogeneity of the cameras
effects the processing within the cluster. Thus, we want to
exploit this heterogeneity and evaluate the trade off between
local processing at smart cameras and centralized processing
at the cluster node. The scalability of clusters is another
important aspect of this research.

Prototyping and Case Studies: An important goal is to
apply, demonstrate and evaluate clustering in real camera
networks. This requires a flexible software tool for the cluster
nodes. This tool includes a plug-in mechanism for easy
integration of various SW modules, a composable processing
pipeline for the cluster node and support for SW deployment.
Performance monitoring is required for the evaluation.

III. A SOFTWARE SUITE FOR CLUSTER NODES

To evaluate different clustering scenarios we have imple-
mented a special software suite which can run on all cluster
nodes in the network. As briefly discussed above the main

Input

Input 1

Core Framework

Output

- Output 1

Input 2

Processing

Output 2

Input 3

Input n

8] [¢] []

» Output m

Fig. 2: Data-flow oriented structure of a cluster node

requirements for this software suite include flexibility, com-
posability, as well as support for deployment and monitoring.

The design is based on a plug-in based structure which
enables quick exchange of individual SW modules to adapt the
processing pipeline to the current requirements of the cluster
node (cp. Figure 2). We support multiple parallel input and
output plug-ins as well as a sequential chain of processing
plug-ins. With this design we also aim for high code reuse.
When deploying software to cluster nodes the effort for
reconfiguration and recompilation must be minimized. There-
fore, we generate the software configuration using modules.
Modules for common tasks such as data input or background
subtraction can be easily reused in different applications.

Another important requirement is the automation and sim-
plification of common tasks during development and eval-
vation of new algorithms. Testing an application in a real
network of cameras and processing nodes usually means a
lot of effort on deployment and configuration of all network
nodes. Therefore, we provide facilities to remotely deploy
software to all cluster nodes.

A prototype of our software suite has been implemented
in C# under Windows .NET; a C++ version for improved
performance is currently under development.

IV. CASE STUDY AND PRELIMINARY RESULTS

In a first case study, we have tested our software suite on
multi-camera person tracking. The goal of this case study is
to demonstrate the feasibility of our software suite in a single
cluster. The cluster cameras have an overlapping FOV and
are calibrated on the common ground plane. We deploy both
standard cameras streaming raw data as well as smart cameras
performing onboard analysis such as background subtraction
and blob detection. To increase the robustness of the person
detector the inputs of the overlapping cameras are used to gen-
erate a joint occupancy map [3]. The main processing modules
for this case study are: background subtraction ([BG]), object
detection ([OD]) and multi-view person tracking ([MV]).
We have tested our software suite with a different set of
overlapping cameras (1 to 4) as well as different types of
cameras. In this paper, we briefly compare three settings.

Centralized Processing: This setting represents a tradi-
tional multi-camera network where all cameras stream their
raw data to the central (cluster) node. The entire processing

pipeline ({[BG] — [OD] — [MV])) is executed on the cluster
node. Each camera requires a communication bandwidth of
XXX MB/s; the central cluster node was able to process at
most 2 input stream in real-time.

Smart Cameras with BG: In this setting background
subtraction is performed on each smart camera and lower
resolution differential images are transferred. Thus, only
({[OD] — [MVY])) is performed at the cluster node. The
communication bandwidth for each camera was reduced to
XXX MBY/s; the cluster node performance was XXX.

Smart Cameras with BG and OD: In the third setting
[BG] and [OD] is performed at the smart cameras, and
only the bounding boxes of detected objects are transferred
to the cluster node. The communication bandwidth for each
camera was further reduced to XXX MBY/s; the cluster node
performance was XXX.

These three settings exploit the capabilities of smart cameras
in different ways. By using our software suite the different
settings were easy to deploy and to evaluate. Important per-
formance parameters such as bandwidth, memory consumption
and computing performance were automatically measured by
the software suite.

Further work include ...

ACKNOWLEDGMENTS

This research is funded by the Austrian Institute of Tech-
nology.

REFERENCES

[1] Henry Detmold, Anton van den Hengel, Anthony Dick, Alex Cichowski,
Rhys Hill, Ekim Kocadag, Katrina Falkner, and David S. Munro.
Topology Estimation for Thousand-Camera Surveillance Networks. In
Proceedings of the ACM/IEEE Conference on Distributed Smart Cameras,
Vienna, Austria, 2007.

[2] Bernhard Rinner and Wayne Wolf. Introduction to Distributed Smart
Cameras. Proceedings of the IEEE, 96(10):1565-1575, October 2008.

[3] Francois Fleuret, Jerome Berclaz, Richard Lengagne, and Pascal Fua.
Multicamera people tracking with a probabilistic occupancy map. IEEE
Transactions and Pattern Analysis and Machine Intelligence, 30(2):267—
282, 2008.

