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Abstract
There is currently a strong trend towards the deployment

of advanced computer vision methods on embedded systems.
This deployment is very challenging since embedded plat-
forms often provide limited resources such as computing per-
formance, memory and power.

In this paper we present a decentralized solution for track-
ing objects across multiple embedded smart cameras. Smart
cameras combine video sensing, processing and communica-
tion on a single embedded device which is equipped with a
multi-processor computation and communication infrastruc-
ture. Tracking an object within the multi-camera system is
done by a single tracking instance which follows the target
by migrating to the camera which observes the object next.
Our multi-camera tracking approach focuses on a fully de-
centralized handover between adjacent cameras. Having no
central coordination results in an autonomous and scalable
tracking method.

We have fully implemented this novel multi-camera
tracking approach on our embedded smart cameras. Track-
ing is achieved by the well-known CamShift algorithm; the
handover procedure is realized using a mobile agent system
available on the smart camera network. For visualization,
the smart cameras send the observed scene and tracking re-
sults to a separate PC. Our approach has been successfully
evaluated on tracking people at our campus.
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tracking, mobile agent systems

1 Introduction
Surveillance systems tend towards automating the process

of observing the supervised area and identifying suspicious
events. Therefore, advanced computer vision methods are
required. A common approach is to integrate image acquisi-
tion and image processing in a single embedded device.

This paper reports on the development of computer vision
methods on a distributed embedded system, i.e., on tracking
objects across multiple smart cameras [1]. Smart cameras
are equipped with a high-performance on-board computing
and communication infrastructure and combine video sens-
ing, processing and communication in a single embedded de-
vice [2]. Networks of such smart cameras can potentially
support more complex vision applications than a single cam-
era by providing access to many views and by cooperation

among the cameras.
The basic idea of our multi-camera tracking solution is

to employ a single instance of a tracker which follows the
object of interest whereas the tracker resides on the camera
observing the object. This means that only a single camera
has to perform the tracking task while all other cameras are
not affected. A tracking instance consists of the tracking al-
gorithm which tracks the object in the video stream and a
mobile agent which is responsible for following the object
among the camera network. This means, the agent has to
migrate conjointly with the tracking algorithm to the camera
that should next observe the object when it is about to leave
the viewport of the current camera. In such a scenario, the
handover of the tracking agent from one camera to the next
is crucial. The concrete algorithm used for identifying the
object of interest and obtaining the position within a single
video stream is exchangeable and can be tuned for special
needs.

We have developed a fully decentralized handover proce-
dure where the handover is realized autonomously by adja-
cent cameras. The handover procedure uses a master/slave
approach whereas the master is the instance which observes
the object and during the handover, one or more slaves are
created on the neighboring cameras waiting for the object to
appear. Neighborhood relations are stored locally on each
camera, i.e., each camera knows the adjacent cameras in a
certain direction. Thus, our approach is scalable which is
a very important feature for distributed applications. Single
camera tracking is based on the well-known CamShift algo-
rithm [3]. We have completely implemented the presented
tracking method on our embedded smart cameras and tested
on tracking people at our campus. The position of the tracked
person can be visualized on a separate PC showing the cur-
rent scene and highlighting the tracked person.

2 Related Work
There exist several projects which also focus on the inte-

gration of image acquisition and image processing in a sin-
gle embedded device. In [4], Fleck and Straßer present a
particle filter algorithm for tracking objects in the field of
view of a single camera. They used a commercially available
camera which is comprised of a CCD image sensor, a Xilinx
FPGA for low-level image processing and a Motorola Pow-
erPC CPU. They also implemented a multi-camera track-
ing [5] using the particle filter tracking algorithm. However,



in this work, the handover between cameras is managed by a
central server node.

Velipasalar et al. describe in [6] a PC based decentral-
ized multi-camera system for multi-object tracking using a
peer-to-peer infrastructure. Each camera identifies moving
objects and follows their track. When a new object is iden-
tified, the camera issues a labeling request containing a de-
scription of the object. If the object is known by another
camera, it replies the label of the object, otherwise a new
label is assigned which results in a consistent labeling over
multiple cameras.

Rowe et al. [7] promote a low cost embedded vision sys-
tem. The aim of this project is the development of a small
camera with integrated image processing. Due to the lim-
ited memory and computing resources, only low-level image
processing like threshold and filtering are possible. The im-
age processing algorithm cannot be modified during runtime
because it is integrated into the processor’s firmware.

Agent systems have also been used as form of abstraction
in multi-camera applications. Remagnino et al. [8] describe
the usage of agents in visual surveillance systems. An agent-
based framework is used to accomplish scene understanding.
Abreu et al. present Monitorix [9], a video-based multi-agent
traffic surveillance system based on PCs. Agents are used as
representatives in different layers of abstraction.

3 The Smart Camera Platform
The smart cameras used in our work are composed of a

heterogeneous multiprocessor systems [2]. This approach
combines high processing power, dynamic reconfigruability
and flexible communication channels with low power con-
sumption.

3.1 Hardware Architecture
The hardware architecture of our smart cameras is de-

picted in figure 1. It shows the three main units, which are
(1) the sensing unit, (2) the processing unit, and (3) the com-
munication unit. Images are acquired by the sensing unit
which is comprised of a high-dynamic CMOS sensor. The
images are delivered to the processing unit via a FIFO mem-
ory. The processing unit utilizes multiple digital signal pro-
cessors (DSPs) for real-time image analysis and video com-
pression. The number of DSPs in the processing unit is scal-
able and basically limited by the communication unit. In
the default configuration the smart camera is equipped with
two DSPs. The DSPs are coupled via a PCI bus which also
connects them to the communication unit. The main compo-
nent of the communication unit is a general purpose network
processor. Its main tasks are: (1) managing the internal com-
munication between the DSPs as well as the communication
unit and the DSPs, and (2) providing communication chan-
nels to the outside world. These communication channels are
usually IP-based and include standard Ethernet and wireless
LAN.

3.2 Software Architecture
The software architecture is based on the abstraction, that

the application logic runs on the network processor and loads
and unloads the required image analysis tasks to the process-
ing unit as needed.
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Figure 1. The hardware architecture of the smart cam-
era.
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On the processing unit, the DSP framework provides an
environment for the video processing tasks and introduces a
layer of abstraction for the DSP applications. Its main tasks
are to (1) support dynamic loading and unloading of DSP ap-
plications, (2) manage the available resources, and (3) pro-
vide data services for the DSP applications which includes
data exchange between DSP applications as well as data ex-
change between DSP applications and applications executed
on the network processor [10].

The SmartCam framework is executed on the network
processor. It provides an abstracted view of the processing
unit for applications on the network processor and allows
them to load and unload executables to the processing unit.

3.3 Mobile Agent Framework
The mobile agent framework [11] is the highest level of

abstraction in our smart cameras. Each video processing task
is represented by an instance of a mobile agent. The agents
act autonomously and carry out the required actions in order
to fulfill their mission. Two different types of agents can be
identified: (1) DSP agents, and (2) SmartCam agents. Fig-
ure 2 shows an agency hosting both types of agents.

DSP agents are used to represent video processing tasks.
This type of agents has a tight relation to the DSPs as their
main mission – analyzing the video data – is executed on the
DSP. The agent contains the DSP executable and is responsi-



ble for starting, initializing and stopping the DSP application
as required. The agent also knows how to interact with the
DSP application in order to obtain the information required
for further actions. Exploiting mobility of agents allows to
easily migrate video processing tasks from one smart cam-
era to another. In contrast, SmartCam agents do not interact
with the DSPs. Usually they perform control and manage-
ment tasks.

The mobile agent framework is executed on the network
processor. Each smart camera hosts an agency which is the
environment for the mobile agents. The agency further hosts
a set of system agents which provide services for the DSP
agents and SmartCam agents. The DSPLibAgent for exam-
ple acts as an interface to the DSPs of the processing unit.
Thus, DSP agents can interact with their image processing
tasks in the same manner as with other agents. Further agents
contain information about the location and configuration of
the current smart camera as well as information about the
actual internal state.

Employing mobile agents allows to dynamically reconfig-
ure the entire surveillance system at run-time. This reconfig-
uration is usually performed autonomously by the agents and
helps to better utilize the available resources of the surveil-
lance system [12].
4 Multi-Camera Tracking

In this paper, we present an approach for autonomous
and decentralized object tracking. The foundation of our ap-
proach is a well-known tracking algorithm which is able to
track a single object within a scene. This tracking algorithm
is encapsulated by an agent which contains the application
logic for building a decentralized tracking environment.

The tracking algorithm is implemented as a dynamically
loadable DSP executable because the tracker has to process
the acquired images in real-time. Only abstract information
about the tracked object such as the current position and the
trajectory is reported to the agent. The agent in turn uses
this information to take further actions. If for example the
tracked object is about to leave the camera’s field of view,
the agent has to take care to track the object on the adjacent
cameras.
4.1 Tracker Requirements

Our approach for autonomous, decentralized tracking of
objects is basically independent of the concrete tracking al-
gorithm used. However, the presented method introduces
some requirements for the tracking algorithm which limit
the number of possible tracking algorithms. Most of these
requirements are a consequence of loading the tracking al-
gorithm dynamically as needed. The main issues are:
• Short initialization time. Because the tracking algo-

rithm is loaded only when needed, the algorithm must
not require a long initialization time (e.g., for generat-
ing a background model).

• Compact internal state of the tracker. When migrat-
ing the tracking agent from one camera to the next, the
current internal state of the tracker must be stored and
transferred as well. During setup on the new camera,
the tracking task must be able to initialize itself from a
previously saved state.

• Robustness. The tracking algorithm has to be robust
not only with respect to the position of an object in a
continuous video stream but also to the identification of
the same object on the next camera. The object may
appear differently due to the position and orientation of
the camera.

Taking these requirements into account, the CamShift al-
gorithm was chosen do demonstrate the feasibility of the pre-
sented tracking approach.

4.2 CamShift Algorithm
The Continuously Adaptive Mean-shift algorithm [3], or

CamShift, algorithm is a generalization of the Mean-shift al-
gorithm [13]. CamShift operates on a color probability dis-
tribution image produced from histogram back-projection. It
is designed for dynamically changing distributions which oc-
cur when objects in video sequences are being tracked and
the object moves so that the size and location of the probabil-
ity distribution changes over time. The CamShift algorithm
adjusts the search window size in the course of its operation.

For each video frame, the color probability distribution
image is tracked and the center and size of the color object
is found by the CamShift algorithm. The current size and
location of the tracked object are reported and used to set
the size and location of the search window in the next video
image.

The process is then repeated for continuous tracking. In-
stead of a fixed, or externally adapted window size, CamShift
relies on the zeroth moment information, extracted as part of
the internal workings of the algorithm, to continuously adapt
its windows within or over each video frame.

4.3 Handover Mechanism
The handover mechanism is the crucial part of the pre-

sented autonomous, decentralized tracking method. It ex-
tends a tracking algorithm designed for tracking an object
in a single video stream to a multi-camera tracking solution.
The handover procedure of a tracked object from one camera
to the next one requires the following basic steps:

1. Select the “next” camera(s)

2. Migrate the tracking agent to the next camera(s)

3. Initialize the tracking task

4. Discover the object of interest

5. Continue tracking
Identifying the potential next cameras for the handover

is done without a central point of coordination. Moreover,
we exploit neighborhood relations within the smart camera
network. Each camera has defined a set of migration regions
which are described by a polygon in the 2D image space
and a motion vector. Each migration region is assigned to
one or more neighboring cameras. The motion vectors help
to distinguish among several smart cameras assigned to the
same migration region.

The migration regions and their assigned cameras repre-
sent the spatial relationship among the cameras. All infor-
mation about the migration regions is managed locally by the
SceneInformationAgent, a new system agent on each smart
camera. When the tracked object enters a migration region
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Figure 3. Master/Slave handover strategy.

and the trajectory matches the motion vector of the migra-
tion region, the tracking agent initiates the handover to the
corresponding adjacent camera(s).

The next two steps of the handover process (migration and
initialization) are implicitly managed by our mobile agent
system. The internal state of the tracking algorithm is in-
cluded as local data to the tracking agent. In the case of the
CamShift tracking algorithm the internal state is the color
distribution of the tracked object. The (migrated) tracking
agent uses the local data for initialization on the new camera.
Object discovery and continuing tracking is then executed by
the migrated tracking algorithm.
Master/Slave Handover

The tracking agent may use different strategies for the
handover [14]. The approach presented in this paper fol-
lows the master/slave paradigm. Figure 3 shows the han-
dover procedure along with the instances of tracking agents
for a sample scenario of two consecutive cameras. During
the handover, there exist two instances of a tracking agent
dedicated to one object of interest. As master tracking agent
we denote the agent which currently tracks the object. When
the object enters a migration region, the master agent creates
a slave on the neighboring cameras. The master also queries
the current description of the object from the tracking algo-
rithm and transfers it to the slave. The slave in turn starts the
DSP application and initializes the tracking algorithm with
the information received from the master. The slave is now
waiting for the object to appear. When the object enters the
field of view of the slave, the roles of the tracking agents
change. The slave now becomes the master as it observes
and tracks the target now. The new master then notifies the
old master that the target is now in its field of view, where-
upon the old master terminates itself.

This approach is also feasible, if a camera has more than
one neighbor for the same migration region. In this case,

Figure 4. The SmartCam prototype.

the master creates a slave on all adjacent cameras. When
a slave notifies the master that it has discovered the target
object, the master instructs all other slaves to terminate as
well. The number of slaves created in a practical surveillance
system is limited. Even in a very dense surveillance system,
the number of created slaves will be in the range of three
when taking the motion vectors into account. This makes
our approach also applicable for large surveillance systems
where a single object should be tracked.

The information required for initializing the tracking al-
gorithm on the next camera heavily depends on the track-
ing algorithm itself. In the case of the CamShift algorithm,
the description of the object to track and the initial search
window are used for initialization. The description of the
object is obtained from the algorithm itself and contains the
color-histogram of the object. The initial search window is
obtained by the agent from the SceneInformationAgent.

5 Experimental Results
5.1 Evaluation Setup

To show the feasibility of our approach, we have installed
a test environment in our laboratory for tracking persons.
The experimental setup consists of two smart camera pro-
totypes as depicted in figure 4. Each camera consists of an
Intel IXDP425 Development Board which is equipped with
an Intel IXP425 network processor. Two Network Video
Development Kits (NVDK) from Ateme build the process-
ing unit. Each board is comprised of a TMS320C6416 DSP
from Texas Instruments running at 600 MHz with a total of
264 MB of on-board memory.

The smart cameras are operated by a standard GNU/Linux
system for embedded systems. The agent system is im-
plemented in Java and uses the Diet-Agents System (see
http://diet-agents.sf.net) as foundation. For the java
virtual machine JamVM version 1.3.0 (see http://jamvm.
sf.net) with GNU classpath 0.14 has been chosen because
it is rather small and thus suitable for use in an embedded
system. However, JamVM does not feature a just-in-time
compiler; it only interprets the Java bytecode which intro-
duces noticeable performance penalties compared to virtual
machines using just-in-time compilers.

The first part of the evaluation addresses the implemen-
tation of the CamShift tracking algorithm while the second



Code size: 15 kB
(dynamically loadable executable)
Memory: 300 kB
Internal state: 256 Bytes
Initialize color-histogram: < 10 ms per frame
Identify tracked object: < 1 ms per frame

Table 1. Characteristics of the CamShift algorithm.

A

B

Evaluation Setup

Figure 5. Camera setup for demonstrating the handover.

part focuses on the integration of the tracking algorithm in
the agent system as well as the handover procedure for multi-
camera tracking.

5.2 CamShift Implementation
The evaluation of the CamShift tracking algorithm fo-

cuses on the resource requirements and the achieved per-
formance of our implementation. Table 1 summarizes the
results.

The memory requirements of the tracking algorithm de-
pend on the resolution of the acquired images. In our ex-
perimental setup, we used images in CIF-resolution which
results in a memory usage of about 300 kB. The code-size
of the dynamic DSP executable is about 15 kB. The internal
state of the CamShift algorithm is the color histogram of the
tracked object which requires 256 Bytes of memory.

When initializing the algorithm to track a concrete ob-
ject, it requires less than 10 ms per frame for calculating the
color-histogram. In our implementation, the color-histogram
used for tracking the object is the average of five consecu-
tive frames. When tracking the object in a video stream, the
tracking algorithm requires less than 1 ms for obtaining the
new position of the object in an image.

5.3 Multi-Camera Tracking
The evaluation of the handover between two adjacent

cameras is done by tracking a person in our laboratory. Fig-
ure 5 sketches the setup of our configuration. The fields of
view of both cameras overlap, but this is due to spatial con-
straints and not a requirement of the tracker. Tracking a per-
son is started on camera A by creating a tracking instance.
The tracking algorithm on the processing unit first learns the
description of the target within a given initialization region
provided by the agent. When the person walks out of the
current field of view, i.e., it enters the migration region, the
tracking agent migrates to camera B and continues tracking
on this camera.

Figure 6 shows a screenshot of the visualizer displaying

Figure 6. Visualizing the position of the tracked object.

Loading dynamic executable: 0.18 s
Initializing tracking algorithm: 0.25 s
(5 frames @ 20 fps)
Creating slave on neighboring camera: 2.13 s
Reinitializing tracking algorithm on slave camera: 0.04 s
Total 2.57 s

Table 2. Evaluation of the handover time

the view of both cameras together with the agents on the
camera during the handover. The current position of the per-
son is indicated by the red square on the left camera (the
background image is refreshed less frequently and thus not
up to date). The master tracking agent is also on the left cam-
era since the person is still within the cameras field of view.
Because the person has already entered the migration region,
a slave has already been created on the right camera waiting
for the peson to appear.
Master/Slave Handover

The crucial part for multi-camera tracking is the handover
from one camera to the next. Therefore, the four major time
intervals during handover have been quantified. Table 2 en-
lists the obtained results.

Starting the tracking algorithm from a DSP agent requires
180 ms. This includes loading the dynamic executable to the
DSP, starting the tracking algorithm and reporting the agent
that the tracking algorithm is ready to run.

When the tracked object enters the migration region, it
takes about 2.5 s to create the slave agent on the next cam-
era and launch the tracking algorithm on the DSP. A large
portion of this time interval (about 2.3 s) is required for cre-
ating the slave agent. This time penalty is a consequence of
the Java virtual machine used which only interprets the byte-
code instead of using a just-in-time compiler. Creating a new
agent further uses Java reflections which has a negative im-
pact on the performance. Initializing the tracking algorithm
by the slave agent using the information obtained from the
master agent takes 40 ms which is negligible compared to
the time required for creating the slave agent.
Multiple neighboring cameras

In the above evaluation, only two consecutive cameras
have been used. To show the behaviour when a camera has
more than one neighbor we have extended the setup by two
additional PCs hosting an agent system. When the target
enters the migration region, additional slaves are created on



Number of neighbors Time to create slaves
1 2.52 s
2 3.03 s
3 3.51 s

Table 3. Handover with multiple neighboring cameras.

these PCs.
When a migration region directs to more than one neigh-

boring camera, the time required to create the slaves is lin-
early dependent on the number of slaves (cf. table 3). Hence
the slaves are created in parallel, the time required to create
all slaves equals the largest time interval for creating a sin-
gle slave. The linear factor is introduced by the limited per-
formance of the agent system initiating the creation of the
slaves.

6 Conclusion
In this paper we have presented our novel multi-camera

tracking approach implemented on embedded smart cam-
eras. Each object of interest has a corresponding tracking
instance which is represented by a mobile agent. The agent
follows the tracked object from camera to camera as the ob-
ject moves within the surveilled area. The handover from one
camera to the next one exploits the spatial relationship be-
tween cameras, expressed by the migration regions, is used
for a local handover between neighboring cameras. This re-
sults in a fully distributed handover process with no central
coordination which in turn is important for high autonomy
and scalability.

Our multi-camera tracking is implemented using a mobile
agent system. On the one hand, mobile agents ease the de-
velopment of distributed applications. On the other hand, the
java-based agent system requires substantial computing per-
formance on our embedded platform and limits the handover
times.

Future work includes (1) replacing the java-based agent
system by a more efficient (middleware) system providing
services for data and code migration, (2) deploying our track-
ing approach on larger networks of cameras, and (3) improv-
ing the visualization of the tracked object.
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