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Abstract — I-SENSE demonstrates the potential of combining the scientific re-
search areas multi-sensor data fusion and pervasive embedded computing. The main
idea is to provide a generic architecture which supports a distributed online data
fusion on an embedded system. Due to their high onboard processing and commu-
nication power our proposed architecture is designed to perform sophisticated data
fusion tasks in realtime. Another goal of I-SENSE is to dynamically change the con-
figuration, thus, to be able able to react to changes in the systems environment.
This paper describes ongoing work in developing necessary hard- and software com-
ponents in order to perform realtime multi-level data fusion. We present the dis-
tributed I-SENSE platform and introduce our multi-level fusion framework. First
experimental results on embedded image fusion demonstrates the feasibility of our
approach.

Keywords: sensor data fusion; multi-level fusion; distributed embedded systems;
pervasive computing; traffic surveillance

1 Introduction

Currently there is a strong trend towards integration of sensor, computing and commu-
nication technology into everydays life. The ultimate goal here is to provide as much
support as possible while concealing the computing devices from the users. This trend is
reflected in areas such as embedded computing, pervasive computing, intelligent infras-
tructures, smart sensors and ambient intelligence.

In this project we develop an intelligent multi-sensor fusion framework (I-SENSE) for
embedded online data fusion. This multi-sensor fusion framework is targeted at various
applications, such as intelligent infrastructures, pervasive computing and monitoring. The
I-SENSE project, however, is applied to traffic surveillance as case study.

Fusing data from various sensors helps to improve the robustness and confidence, to
extend the spatial and temporal coverage as well as to reduce ambiguity and uncertainty
of the processed sensor data. In the I-SENSE project we exploit these characteristics
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to improve the quality of traffic surveillance. Since current traffic surveillance systems
are primarily based on video, integration of data from audio, infrared, supersonic and
inductive loop sensors, helps to improve various parameters such as recognition rates,
detection times, robustness and quality of service [1, 2, 3].

The major goal of this research is to investigate and develop a scalable and embedded
architecture for various multi-sensor applications. Therefore, the I-SENSE framework
is based on embedded intelligent sensor nodes with sufficient computing and commu-
nication performance and a suitable embedded architecture, which allows to distribute
SW tasks among geographically distinct sensor nodes. The research is focused on (i) the
development of the distributed embedded scalable architecture to allow dynamic reconfig-
uration as well as effective online optimization (ii) and the development of a SW frame-
work to allow that high-performance sensor nodes perform sensory data fusion among
geographically distinct sensor nodes.

By delegating the CPU-expensive data fusion tasks into the sensor nodes, the require-
ments concerning the communication bandwidth can be reduced compared to a central-
ized data fusion architecture. This makes widespread data-fusion applications more feasi-
ble. A light-weight middleware supports data-oriented communication services such that
fusion tasks can easily communicate regardless of their mapping - either on the same, on
a different CPU or even on a different sensor node. This framework maintains a global
clock which can be accessed easily by all nodes in the system.

Multi-level data fusion is accomplished among three different levels of detail accord-
ing to the amount of information they provide [4, 5]. The most basic level involves the
fusion of multi-sensor data to determine the position, velocity, and identity of a tracking
object. At this level, however, only raw, uncorrelated data is provided to the user, and
therefore this level is called “raw-data fusion”. In comparison, level two data fusion pro-
vides a higher level of inference and delivers additional interpretive meaning suggested
from the raw data and data will be fused on feature level. Therefore, this level is called
“feature-level fusion”. Level three data fusion is designed to make assessments and pro-
vide recommendations to the user or human observer, much as occurs in model-based
expert systems and is therefore called “decision fusion”.

The remainder of this paper is organized as follows: Section 2 sketches related and
preliminary work. Section 3 presents the hardware and software of our I-SENSE ap-
proach. Section 3.1 discusses the two level architecture and the overall functionality of
the I-SENSE project. Section 3.2 describes the HW/SW architecture as well as its con-
figuration and reconfiguration capabilities. Section 3.3 presents the SW framework to
perform distributed multi-level multi-data fusion. Section 4 shows the current status of
our work in HW/SW implementation and traffic surveillance case study. Section 5 con-
cludes the paper with a summary and an outlook on future work.

2 Related Work

A lot of research has been conducted over the last decades in sensor fusion and there-
fore data fusion has been given much attention in the engineering literature. Several data
fusion algorithms have been developed and applied, individually and in combination, pro-
viding users with various levels of informational detail.

The key scientific problems can be assigned to the three fusion levels as shown below:
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Raw-data fusion: The key problems which have to be solved at this level of data ab-
straction can be referred to (i) data association and (ii) positional estimation. Data
association is a general method of combining multi-sensor data by correlation of one
sensor observation set with another set of observation [6, 7, 5]. Common techniques
for solving the positional estimation problem are focused on Kalman filtering and
Bayesian methods and are discussed in [8, 9, 10].

Feature fusion: These approaches are typically addressed by (i) Bayesian Theory and
(ii) Dempster-Shafer Theory. Bayesian Theory is used to generate a probabilistic
model of uncertain system states by consolidating and interpreting overlapping data
provided by several sensors [11, 12, 13, 14]. It also determines conditional prob-
abilities from a priori evidence; these revised probabilities are called “a posteriori
probabilities”. Bayesian theory is limited in its ability to handle uncertainty in sen-
sor data. This can hinder the application of this data fusion technique because sensor
data are by nature highly uncertain. Therefore, Dempster-Shafer theory is a general-
ization of Bayes reasoning that offers a way to combine uncertain information from
disparate sensor sources. Further information can be found in [15, 16, 17].

Decision fusion: Fusion at the decision level combines the decisions of independent sen-
sor detection/classification paths by Boolean operators or by a heuristic score (e.g.,
M-of-N, maximum vote or weighted sum). The two basic methods for making clas-
sification decisions are hard decisions (single, optimum choice) and soft decision in
which decision uncertainty in each sensor chain is maintained and combined with a
composite measure of uncertainty. There are a few studies published of level three
data fusion in [18, 19, 20].

“Project Correlation”, funded by the U.S. Air Force, was the first approach to step back
from the many application-specific and system-specific solutions and developed a set of
generic/reusable engineering guidelines for an effective data fusion-problem solution. A
methodology for fusion software development, based on the C4ISR architecture [21] is
given. However, this architecture has too much overhead and is, therefore, not suitable
for embedded systems.

A project that has on first sight quite many similarities with our project is called DFuse
[22]. This research focuses on challenges of data fusion applications in wireless ad hoc
sensor networks. DFuse is designed to be used on “motes” [23]. Available motes are
not yet powerful enough to support DFuse, so iPaqs have been used instead. Both, the
communication range and the communication bandwidth, is very limited between fusion-
nodes. Furthermore, this framework suffers from lacking of “intelligent” sensors and is
not providing approaches for multi-level fusion.

Over the last years our institute has designed and implemented high-performance em-
bedded cameras that combine video sensing, video processing and communication within
a single embedded device. Our smart cameras [24, 25, 26] are designed as reconfigurable
and flexible processing nodes with the capability to perform high-level tasks onboard.
Networks of distributed smart cameras are an emerging technology for a broad range of
applications, including smart rooms, intelligent infrastructure, tracking and motion anal-
ysis.
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3 The I-SENSE Approach

In this section we describe the I-SENSE project in more detail. The description is orga-
nized in the following three parts: (i) the distributed embedded platform, (ii) the HW/SW
architecture, and (iii) the multi-level fusion framework.

3.1 I-SENSE: Distributed Embedded Platform

Observer/Admin

V1 V2

N1
A1

R1S1 V3 V4

A2

N2 N3

Communication Medium

Figure 1: The I-SENSE platform as a scalable, distributed embedded system. (N1 . . . N3:
Sensor nodes, V1 . . . V4: Video interfaces, A1 . . . A2: Audio ports, R1: Radar interface
and S1: Spectral imaging interface)

The I-SENSE platform consists of a two-level architecture which is derived from our
SmartCam architecture (cp. Section 2). The top-level is composed of a network of geo-
graphically distributed sensor nodes which are connected via a common communication
medium (cp. Figure 1). We use primarily standard wired Ethernet as communication
medium but also wireless communication such as GPRS or wireless LAN is supported.

The sensor nodes themselves represent the bottom-level of our I-SENSE platform and
are the main processing components of our I-SENSE platform, e.g., all sensor fusion
processing and system management takes place on these components.

The scalability is supported in several ways. First, the number and type of sensors can
be adapted at the individual sensor nodes. Second, the processing and communication
performance of each sensor node can be easily modified. Third, the number of sensor
nodes can be easily adapted in our I-SENSE architecture.

The prototype of the I-SENSE sensor node uses components-off-the-shelf hardware in
order to test and evaluate the distributed fusion system (cp. Figure 2). This prototype
serves as feasibility demonstration of our approach. It provides the required computing
and communication performance. More details are shown in Section 4.
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Figure 2: The structure of the sensor node

3.2 I-SENSE: HW/SW Architecture

In order to develop a generic HW/SW architecture for embedded data fusion we’ve identi-
fied the following challenges: (i) simple and expressive specification of the configuration
problem, (ii) effective online optimization, (iii) lightweight runtime environment on the
distributed embedded platform supporting efficient synthesis, and (iv) synchronization of
intra- and inter-node sensor data. The first three challenges are general for distributed
embedded systems whereas the last one is specific for distributed data fusion.

Two models are maintained for the specification of the configuration problem: The
“hardware model” and the “software model”. Figure 3 shows our online configuration
method of the proposed fusion architecture and includes examples for the two models.
The structural functional blocks are described in the following:

Fusion Model: The Fusion Model specifies the functionality of the fusion application.
It defines all sensor nodes, fusion nodes and their interaction among each other in
form of a fusion tree. Three different types of nodes are possible:

Sensor Interfaces (S1 . . . S7) always build the bottom layer of the fusion tree, since
they acquire the data from the environment directly and independently from other
nodes. Each sensor node basically consists of a hardware interface and a driver
to support the device at the operating system level. Data is acquired and converted
into a suitable format, timestamped correctly and transferred to the connected fusion
nodes.

Fusion Nodes (F1, F2, F9, F10, F11, F12) in contrast fully depend on data from
other fusion nodes or sensor nodes to produce an output. Their main task is to wait
until new input data becomes available, ensure the temporal alignment, calculate the
output vector and distribute it to all connected nodes.

Filter Nodes (F3, F4, F5, F6, F7) are functional identical with fusion nodes except
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Figure 3: The Configuration method

they have only one input channel. Therefore, they do not have to care about temporal
alignment. Splitting up a complex fusion node into many smaller fusion- and filter
nodes is quite often a good idea, since smaller nodes can be placed better on the
distributed embedded system and can be executed potentially parallel on different
processors.

The proposed architecture requires for each fusion-, filter- and sensor-node an im-
plementation in form of a relocatable library for at least one processor type in use.
Additionally to the implementation, the worst case requirements of hardware (CPU
cycles, internal and external memory, DMA channels, . . . ) as well as the commu-
nication bandwidth of each node in the fusion model must be specified for every
implementation.

Hardware Model: The Hardware Model describes the distributed embedded system where
the fusion application should run. It basically consists of a set of connected hard-
ware nodes (N1 . . . N3) with specific parameters (computing power, size of memory,
different sensors). We provide a module which explores the embedded system au-
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tomatically. This has two advantages: (i) faulty or missing hardware nodes can be
found during start up and (ii) the “hardware model” can be parameterized during the
initialization process.

Optimizer: Both models are used as input to an Optimizer which computes the opti-
mal mapping of the real-time fusion tasks onto the sensor nodes, subjected to some
constraints. Various optimization goals can be specified such as minimizing power
consumption or minimizing the communication. Constraints help to enforce the
mapping of a individual fusion tasks onto a dedicated processor. We plan to utilize
a genetic algorithm for this optimization.

Configuration Synthesizer: The Configuration Synthesizer integrates the fusion tasks
into the runtime environment of the distributed embedded platform. This involves
three major steps: First, the dynamic link libraries for the fusion nodes have to be
loaded on the specified hardware node. In the second step the defined communica-
tion channels have to be established between the fusion tasks. In the last step the
initialization routine of all sensor- and fusion nodes are called. They are expected to
initialize the fusion tasks and their required hardware.

Task Monitor: The Task Monitor runs on every sensor node of the embedded system.
It checks periodically the health of its processor, the communication links and the
utilization of the resources under its administration. If tasks use more resources than
the programmer declared in advance, the reconfigurator is notified. On the other
hand, resources that are claimed by a task but never used are reported too.

(Re)Configurator: The (Re)Configurator is responsible for maintaining the fusion- and
hardware-model. Either the user or the system itself can request a change in one of
those models. The user specifies rather the large scale functionality by selecting one
of many available fusion trees doing different jobs. In the hardware model the user
might disable or add a node.
Optimization and (re-)allocation may not only be triggered at start time but also
during runtime. There are three reasons why the reconfigurator is invoked au-
tonomously from the system: The most likely scenario is that a rather high fusion
node detects a relevant event and decides to adapt the fusion tree to better moni-
tor this event. Other less likely scenarios requesting a reconfiguration are hardware
faults and suspicious software tasks. In case of hardware faults, the faulty device is
removed from the hardware model and the optimizer is called again. If it is some-
how possible, the optimizer will find an alternative mapping without the faulty node
and the fusion application will continue to work unrestricted. If the faulty node is
irreplaceable, the system can continue its work only in a restricted manner. If a soft-
ware task allocates more resources than it was declared before, the framework will
tolerate this as long as the resources are available and update the “fusion model” to
the real requirements to prevent future conflicts.

Another very important requirement for our generic framework is the synchronization
of the data delivered by different sensors. We plan to implement common methods for
clock synchronization in the framework as described in [27, 28]. The fusion algorithms
can then perform temporal alignment on data packets either from the same or distinct
sensor nodes.
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3.3 I-SENSE: Multi-Level Fusion Framework

As the name multi-senor data fusion implies, it is a technique by which data from several
sensors are combined through a data processor to provide comprehensive and accurate in-
formation. Although the provision of a single data stream from multiple inputs is advan-
tageous, the powerful potential of this technology stems from its ability to track changing
conditions and anticipate impacts more consistently than could traditionally be done with
a single data source. Thus, our multi-sensor data fusion framework makes it possible to
create a synergistic process in which the consolidation of individual data creates a com-
bined resource with a productive value greater than the sum of its parts.

To achieve this aim our approach to perform multi-level data fusion is to combine data
from the different sensors at two stages, as shown in Figure 1. First, intra-node fusion
takes place at a single sensor node where raw sensor data or abstracted features are com-
bined. Second, inter-node fusion combines abstracted data from various geographically
distinct sensor nodes. This leads to an aggregation of the advantages of individual ab-
straction levels. Each jump between data fusion levels represents a corresponding leap in
technological complexity to produce increasingly valuable informational detail.
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Figure 4: The multi-level Data Fusion framework

The multi-level data fusion framework is presented in Figure 4. The three fusion meth-
ods (i) raw-data fusion, (ii) feature-level fusion and (iii) decision fusion are the heart of
this SW framework. The output of these fusion methods are then combined to derive
the current state of the fusion node. Typical methods for deriving this state are filtering,
classification and situation detection. The state of the fusion node is sent to other sen-
sor nodes or a visualization node via the communication interface. As indicated in this
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figure, most of the required computation takes place on the fusion nodes; only prepro-
cessing, simple object tracking and raw data based situation detection is assigned to the
smart sensors. The two bottom level fusion methods combine data from sensor directly
attached to the fusion node; the top level method uses state information from remote fu-
sion nodes. In order to realize a flexible solution our multi-level fusion is based on the
following functionalities:

Raw-Data Level Fusion: Each sensor performs a single-source positional estimate in
the sensor state space. These estimates are then combined to an aggregate estimate.
Since raw-data fusion is performed in the raw data space of the sensor, it can only
be applied for similar sensor types (e.g. visual sensor & infrared visual sensor).

Feature Level Fusion: Each sensor performs a single-source positional estimation, pro-
ducing a state vector from each sensor. This means, each sensor provides an estimate
of the position and velocity of an object (cars, cargo, persons, etc.) or an observed
situation, based only on its own single source data. These estimates of position and
velocity or observed situations are input to a data fusion process to achieve a joint
state vector estimate based on multiple sensors. The functions of data alignment
and association/correlation are still performed at the state vector level. In addition,
the association/correlation process is conceptually easier than performed for raw
data level fusion. To meet this need we will use adapted and enhanced “Dempster-
Shafer” data fusion process.

Decision Fusion: At this level the derived states of different sensor nodes are combined.
A state of a sensor node corresponds to a high-level assessment of the sensor’s ob-
served area. Examples for such an assessment in traffic surveillance include the
detection of a traffic jam, the identification a specific vehicle, or the detection of
lost cargo. Both, the assessment of states as well as their combination requires an
interpretation of the lower level fusion outputs and a lot of domain knowledge. In
our research project we investigate two methods for combining the states. In the first
method, the procedure for combining states is specified by domain-dependent rules.
In the second method, we apply a classifier based on neural nets which is trained
with previously recorded and classified traffic sequences.

In order to fulfill the constraint for an generic fusion framework, we will provide the
basic fusion functionalities as mentioned above. A system administrator is initializing the
framework by describing each sensor and the corresponding feature extraction algorithms.
Therefore a GUI will be provided. During our research we will evaluate how generic
feature extraction algorithms can be designed for a particular set of sensors and a defined
application. The information about sensors and corresponding algorithms will be stored in
a knowledge database. Fusing potentially conflicting results at the individual fusion levels
is a key challenge. We will therefore evaluate different robust data abstraction methods
and a synchronization model among the different fusion levels.

4 Implementation

Current work of the I-SENSE project is focused on integrating image calibration, regis-
tration and fusion into the I-SENSE platform to perform raw-data fusion of visual data.
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Currently, a case study is conducted to evaluate the possibilities of integration high per-
formance audio cards to our proposed system. This audio data is applied to traffic surveil-
lance tasks. Feature extraction algorithms are designed and integrated into our system
next.

A sensor node of our I-SENSE architecture, as shown in Figure 2, has been imple-
mented with standard high-performance components. Therefore, the ePCI-101 Kontron
board, together with a PCI backplane, serves as I-SENSE multisensor platform. This
baseboard is equipped with an Intel Pentium M processor with passive heat sink running
up to 1,6 GHz, 512 MB external memory and the current backplane offers four PCI slots.
The ePCI-101 board provides two 100 MBit/sec Ethernet ports, two serial ports, several
USB-ports, a VGA connector and IDE connectors. The on-board CF slot is well suited to
store the operating system, the fusion software framework and the initial configuration on
a affordable 256 MB flash card.

Network Video Development Kits (NVDK) from ATEME serve as the DSP platform,
equipped with Texas Instruments TMS320C6416 DSPs running at 600 MHz and with
a total of 264 MB of memory. The CMOS sensor KAC-9628 from Kodak, is used to
capture color images. This image sensor provides a high-dynamic range of up to 110 dB
at VGA resolution. To extend the visible spectrum a infrared camera with night-vision
features is connected to the NVDK. A professional audio card (Audiophile 2496 from
M-Audio) allows the system to capture audio signals with up to 96 kHz sampling rate and
24 bit resolution. Further sensors like inductive loop sensor or radar equipment will be
connected via PCI or USB to our I-SENSE platform.

The performance of the I-SENSE architecture will be demonstrated and evaluated in a
traffic surveillance case study. The case study is organized in two steps. First, we will
setup an I-SENSE prototype in our lab and demonstrate the feasibility of our approach
to traffic surveillance. For this demonstration we must emulate the sensor input to the I-
SENSE prototype. This emulation can be realized either by play back previously recorded
multimedia data from traffic scenarios or by integrating the “expected” sensor readings
into the sensor nodes. Second, we will deploy the prototype in a real-world traffic surveil-
lance application. We plan to integrate the I-SENSE platform in a monitoring station of
highway or tunnel.

5 Conclusion

Our I-SENSE prototype is a major step towards the development of a fully embedded
distributed realtime data fusion system. Instead of performing the computation on a cen-
tral server we propose to delegate the functionality to our intelligent embedded sensor
nodes. The system architecture becomes more flexible and scalable, the overall com-
munication bandwidth is reduced and the entire multi-level data fusion system is able to
autonomously and dynamically react to detected events. This novel architecture poses,
however, strong requirements on the systems hard- and software. Recent technological
advances support this trend towards embedded systems with powerful microprocessor ar-
chitectures. Surveillance systems become more “sensitive” by combining visual, acoustic,
tactile or location-based information. This leads to more accurate results and a extended
spatial and temporal coverage as well as a increased robustness and confidence. As a key
benefit for the user this will lead to increasing “positive detection rates” and decreasing
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“false positive rates” in case of traffic surveillance.
From the perspective of potential users or application developers our architecture aims

at (i) simplifying the specification and synthesis of data fusion applications, (ii) check-
ing the feasibility whether the available hardware resources are sufficient for data fusion
application, (iii) providing a generic architecture for data fusion.

Developing this I-SENSE prototype will give us insight that may be interesting for
many other distributed embedded fusion applications as well. Our design is not special-
ized for a specific scope of application; the traffic surveillance application mentioned
above is just an example. It could be used in a wide field of application, like robotics,
medical systems, chemical processes. Robots usually have multiple sensors to navigate
in their environment. In medical diagnosis systems it is often required to combine many
independently created models of the body (X-Ray image, supersonic images, CAT, etc)
to recognize a disease or an injury.

Further work will include (i) the implementation of advanced feature extraction algo-
rithm based on multi-spectral video and audio data as well as inductive loop and light
barriers, (ii) the implementation of our MATLAB based image calibration and registra-
tion for our I-SENSE platform, (iii) the upgrading of our current image-fusion into a real-
time video-fusion, (iv) the implementation of our proposed multi-level fusion framework,
(v) the evaluation of existing synchronization mechanisms and porting to the I-SENSE
platform and (vi) the determination of a feasible allocation algorithm for the “Optimizer”.
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