
A Middleware Framework for Dynamic Reconfiguration and
Component Composition in Embedded Smart Cameras

ANDREAS DOBLANDER, BERNHARD RINNER,
NORBERT TRENKWALDER
Graz University of Technology

Institute for Technical Informatics
Inffeldgasse 16/1, 8010 Graz

AUSTRIA
{doblander, rinner, trenkwalder}@iti.tugraz.at

ANDREAS ZOUFAL
Austrian Research Centers Seibersdorf

Video and Safety Technology
Forschungszentrum, 2444 Seibersdorf

AUSTRIA
andreas.zoufal@arcs.ac.at

Abstract: Distributed embedded multi-processor smart cameras are central components in future intelligent video
surveillance systems. Due to the complexity of video surveillance applications and the limited resources of the
embedded smart cameras the set of employed analysis tasks has to be reconfigurable at runtime. In order to sup-
port dynamic reconfiguration in the resource-limited cameras a light-weight middleware for flexible algorithm
communication and dynamic component composition is presented in this work. Based on a publisher-subscriber
model the middleware aims at imposing only minimum communication overhead while providing adequate ab-
stractions from algorithm interconnections. To further ease dynamic reconfiguration algorithms are provided as
binary components complying with a special component model. A surveillance application can, therefore, be
built by plumbing together several algorithm components. Permanent monitoring of all algorithm’s resource and
performance metrics allows the framework to detect possible resource overloading. By gracefully degrading the
Quality-of-Service overloading can be prevented and system dependability is increased.

Key–Words: distributed multi-DSP, video surveillance, publisher-subscriber, dynamic reconfiguration, component
composition

1 Introduction
Networks of distributed smart cameras are an emerg-
ing technology for a broad range of important appli-
cations, including smart rooms, surveillance, tracking
and motion analysis. Smart cameras [1] are equipped
with high-performance on-board computing and com-
munication devices. They combine video sensing,
processing and communication within a single em-
bedded device.

We have designed a smart camera—we call it
the SmartCam—as a fully embedded system. The
SmartCam is realized as a scalable, embedded high-
performance multi-processor platform consisting of a
network processor and a variable number of digital
signal processors (DSP) [2].

Several requirements have to be met by the sys-
tem software to employ this flexible high-performance
platform in real distributed (surveillance) applica-
tions: (i) Flexibility in algorithm configurations, i.e.,
how tasks are composed to build the application, (ii)
scalability concerning the number and the different
types of employed surveillance tasks, (iii) low re-
source consumption so that resources are spared for

surveillance tasks and image buffers, (iv) low per-
formance overhead to allow real-time operation of
surveillance tasks, and (v) real-time operation to meet
requirements of surveillance tasks.

To meet the above requirements we have imple-
mented a multi-layer heterogeneous software frame-
work for our smart cameras. Since our smart cam-
eras comprise a network processor and several DSPs
the framework is divided into two parts. First, the
SmartCam-Framework (SC-FW) running on the net-
work processor. Second, the DSP-Framework (DSP-
FW) is based on a publisher-subscriber middleware
approach and is running on the DSPs.

This middleware allows to dynamically change
the camera’s functionality, i.e., various tasks can be
loaded and unloaded at runtime or their Quality-
of-Service (QoS) level can be adapted dynamically.
Based on this reconfiguration capabilities our smart
cameras can be combined to a distributed embedded
(surveillance) system and support cooperation and
communication among the individual cameras. Actual
analysis algorithms are binary components comply-
ing to a dedicated DSP algorithm component model
that can be dynamically composed to build and adapt

a surveillance applications, respectively. The frame-
work constantly monitors all component’s resource
and performance data to identify resource bottlenecks.
In case of expected resource overloading a graceful
degradation of QoS is undertaken to retain system in-
tegrity. Therefore, overall system dependability is in-
creased.

The remainder of this paper is organized as fol-
lows. In the next section important related work is
presented. A brief overview of the system architecture
of our smart camera is provided in Section 3. Then
Section 4 discusses our software framework based
on the publish-subscribe inter-process communication
model for local inter-DSP services. Dynamic compo-
nent composition and the DSP algorithm component
model together with the component monitoring mech-
anisms are presented in Section 5. An experimental
evaluation of the described approach is presented in
Section 6. Finally, Section 7 concludes the paper.

2 Related work
Middleware for distributed and embedded systems is a
very active research field. A lot of work has been done
to support transparent communication and to ease dis-
tributed application development. Component-based
middleware technologies from general purpose com-
puting, such as, Microsoft DCOM [3], Java RMI [4]
and OMG CORBA [5] are not suitable for very re-
source limited devices [6]. To adapt the CORBA
technology to resource constrained real-time systems
the Real-Time CORBA (RT-CORBA) and Minimum
CORBA specifications [7, 8] have been introduced.
Schmidt et al. [9] invented “TAO” as an implementa-
tion of the RT-CORBA specification. It is an object re-
quest broker especially developed for distributed real-
time and embedded systems. Their CIAO framework
[10] extends TAO to also include a component model
for distributed real-time and embedded systems that
enables easy component composition. All these ap-
proaches are quite large and, therefore, not suitable
for our multi-DSP platform.

There are also other interesting component-
based architectures for embedded platforms like, e.g.,
SaveCCM [11] and PECOS [12]. However, they are
tailored for special operating systems or require an
object-request broker (ORB). In our DSP-based plat-
form we need only little of the functionality that an
ORB provides and our focus is on a light-weight com-
munication system with minimum overhead.

In [13] the authors present their BASE middle-
ware for pervasive computing. This work aims at a
scalable and efficient middleware that serves all pos-
sible computing architectures for pervasive comput-
ing. BASE is based on a micro-broker that only imple-
ments very basic functionality. All other features can

Ethernet
 WLAN

Serial
 GPRS

Communication

Cam Control

µC

Interfaces

I
n

t

e

r

f
a

c

e

Sensing

(Infrared
 -
)

Flash

PTZ / Dome

Interface

PCI

RAM (EMIF
-
A)

Processing

.

.

.

RAM (EMIF
-
B)

CMOS
-

Sensor

RAM (EMIF
-
A)

RAM (EMIF
-
B)

C6415

I
R

I

S

C6415

Figure 1: The scalable hardware architecture of the smart camera.

be added as plug-ins as needed. The “BASE” middle-
ware was implemented in Java which is not appropri-
ate for our DSPs.

A popular inter process communication
model for embedded systems is the real-time
publisher/subscriber model (RT-PS) [14]. It supports
loose coupling of tasks by message-oriented com-
munication. As the registration of data sources and
sinks can be done at runtime the RT-PS approach was
chosen as the basis for our software framework.

3 SmartCam Platform Overview
Our smart camera has been designed as a low-power,
high-performance embedded system.

It comprises of a CMOS image sensor that de-
livers images with VGA resolution, a processing unit
that can be equipped with up to ten TMS320C64x
DSPs from Texas Instruments, and an Intel IXP425
network processor. The computing performance of
this scalable architecture can be adapted to the re-
quirements of the real-time video analysis and com-
pression tasks intended for the application.

The DSPs are coupled via a local PCI bus which
also serves as the connection to the network processor.
The network processor also provides IP-based exter-
nal communication via Ethernet and GSM/GPRS. A
block diagram of our smart camera is shown in Fig. 1.

To ease application development for this platform
of heterogeneous processors an abstract programming
model is used. The DSPs are viewed as computing
power providers and the network processor hosts the
actual application logic where each algorithm is rep-
resented as an object. These algorithm objects carry a
DSP binary that can be downloaded (on demand) to a
DSP and performs the actual video processing.

4 Real-Time Publisher-Subscriber
Architecture for DSP Algorithms

Applications for the SmartCam are organized as dif-
ferent algorithms. These algorithms are intercon-
nected depending on the data flow required by the
surveillance application. Each algorithm is running in
its own task. For communication between algorithms
buffered messaging via mailboxes is employed.

In video applications a large amount of data has
to be handled. To use the limited memory of the DSPs
efficiently image data is not copied when sent between
algorithms on the same DSP. Only references to ac-
tual data are exchanged. Small messages like system
commands or monitored performance information are
directly posted to mailboxes.

4.1 Algorithms on a single DSP
Fig. 2 depicts the situation for two algorithms residing
on the same DSP. The first algorithm provides a data
service X that the second uses for further processing.

The core of our publisher-subscriber architecture
is realized as an efficient object-oriented implemen-
tation. In the following the different objects of our
publisher-subscriber middleware (PS-MW) are briefly
described.

The publisher-subscriber manager (PSM) is the
authority where algorithms can register as data
providers or data consumers. That is, they register a
publication or a subscription, respectively. A PSM is
running on each DSP and on the XScale. Registra-
tion is available through a simple interface. When an
algorithm wants to register a service it first instanti-
ates a publisher or subscriber depending on whether
a publication or subscription is needed. This object
then registers itself with the PSM. The newly regis-
tered service is added to the directory service where
it can be looked up based on its unique identification
number or its properties. As algorithms can reside on
different DSPs within a SmartCam it is also neces-
sary that each PSM can discover services that have
registered with a different PSM. Therefore, the net-
work processor also hosts a PSM that relays service
requests between PSMs on different DSPs.

Properties (PrO) are used to describe published
data and subscriptions as well. Each publisher and
subscriber owns a PrO that identifies the details of
provided and subscribed data services, respectively.
Therefore, a PrO represents the QoS configuration of
a data service. Examples for typical properties in-
clude image resolution and frame rate. In the service
discovery process the PrOs are used to match sub-
scribers to appropriate publishers by comparing their
properties. By using a description in terms of prop-
erties it is possible to let an algorithm decide whether

an available service meets its requirements or not. If
there are several similar services available algorithms
make their decision based on the information offered
through PrOs. It is the responsibility of every algo-
rithm to provide the necessary information for offered
(data) services when the service is registered with the
PSM.

Every task that provides data services instantiates
a publisher (PO) for each message type it wants to
publish to other tasks. On instantiation the PO then
handles the registration with the PSM. Every pub-
lisher keeps a PrO that contains a description of the
provided service. When data is ready for transmission
from the algorithm the PO posts a reference to this
data as a message to the mailboxes of all subscribers
registered for this service. If there are subscribers re-
siding on different DSPs an intermediate subscriber is
used.

A task that requires a data service of another al-
gorithm instantiates a subscriber (SO). The SO in turn
registers with the PSM. In order to receive data a mail-
box is created. To define the required data quality each
SO owns a PrO. In the registration process the PSM
looks up the appropriate service using the directory
service DS. If a fitting service, i.e., a PO with a match-
ing PrO, is discovered then the discovered publisher
stores a reference to the mailbox of the requesting SO.
Messages are then transferred through this mailbox.

4.2 Algorithms residing on different DSPs
In case of algorithms residing on different DSPs, i.e.,
a so-called remote subscription, an extension to the
plain architecture described above is needed. A spe-
cial object for abstracting from the communication
medium is used to establish the connection. This
medium abstraction object (MAO) is part of the mid-
dleware layer and is present on every processor of the
platform. That is, a MAO is available on each DSP
and the network processor (XScale). In general it is
possible to use it for different communication me-
dia. But currently it is only used for providing ab-
stract communication over the local PCI bus of the
SmartCam. Fig. 3 illustrates the case of two algo-
rithms residing on two different DSPs in more detail.
A remote subscription scenario is very similar to the
single DSP case. It can be seen from Fig. 3 that the sit-
uation on the involved DSPs is the same as it is in the
single DSP case (cf. Fig. 2). But now the MAO takes
the role of the local SO and PO on the involved DSPs,
respectively. That is, on the DSP with the data source
(task A on DSP 1) the MAO instantiates a proxy SO
and on the DSP with the data sink (task B on DSP 2)
a proxy PO is created. These proxy objects behave
like normal publishers and subscribers, respectively.

Algorithm 1
(provides service X)

Publisher
Object
(PO)

Service X

Subscriber
Object
(SO)

Service X

Properties
Object
(PrO)

Service X

Properties
Object
(PrO)

Service X

Algorithm 2
(requires service X)

Mailbox

Directory
Service

(DS)

Publisher-
Subscriber
Manager
(PSM)

Registration Registration

Look-up /
Add Item

Data

Data

Creates Creates

Data

Task A Task B

Data Source Data Sink

Figure 2: Principle relations between objects of the publisher-subscriber architecture.

They exchange data by means of posting messages to
the SO mailboxes. As previously described, in case of
large data, i.e., video frames, only references to local
buffers are transferred. In contrast to that the MAO
objects transfer the actual data through the medium
they are bound to. Currently, that is the local PCI bus.

4.3 Directory Service and Service Discovery
For a convenient service discovery the DSP middle-
ware, i.e., the DSP-FW, provides a directory service
(DS) where all published services are listed together
with their properties. Currently, the search algorithm
of the DS uses only a simple description to find ap-
propriate publishers for registering subscribers. That
is, only a message type and important QoS parameters
are used to choose the best matching data service. To
support applications that need more control over the
selection of publishers and subscribers, respectively,
it is also possible that a list of similar services is re-
turned. It is then the application’s responsibility to
choose one. The DS is organized as a collection of
simple lists because of the relatively small number of
entries. Each entry has an identification number that is
a system-wide unique key identifying publishers and
subscribers. These keys are created on instantiation of
a publisher or subscriber. If there is no matching PO
or SO for a registering SO or PO, respectively, then a
remote service discovery process is initiated by the lo-
cal PSM. In a remote lookup the local PSM queries the
PSM residing on the XScale that in turn keeps records
of PSMs of all other DSPs. The PSMs use their asso-
ciated directory services to look up the requested ser-
vice. Therefore, all available services in the system
are taken into account in this search.

5 Dynamic Reconfiguration and Algo-
rithm Composition

A prerequisite for dynamic reconfiguration of algo-
rithm compositions is a facility for dynamic loading

and linking. In our software framework the Dynamic
Loader (DL) from Texas Instruments is used to dy-
namically load and link DSP algorithm binaries at
runtime. Of course, the DL can also be used to un-
load algorithms, i.e., components, when they are not
needed any more.

On load a uniform entry point is called from the
DL. In this entry function the algorithm creates its
own task and allocates needed resources by using a
dedicated interface to the software framework. Fur-
thermore, POs and SOs are created in order to register
published services and subscriptions with the PS-MW
(cf. Sec. 4). Note that each algorithm also registers
a SO for receiving algorithm control commands from
the framework or other algorithms. Public algorithm
attributes are configured through this command inter-
face. After this initialization phase the actual DSP
algorithm contained in the newly loaded component
starts its computations.

5.1 DSP Algorithm Component Model
To support the dynamic reconfiguration of algorithms,
i.e, their composition and change of attributes, in our
surveillance applications it is necessary for each algo-
rithm to comply with a special component model—
the DSP Algorithm Component Model (DACM)—as
indicated by Fig. 4. The DACM defines the neces-
sary interfaces and algorithm descriptions that are re-
quired by the framework to load an algorithm, i.e., a
component, at runtime. Only algorithms following the
DACM can be dynamically composed at runtime.

The DACM is the basis for a safe composition of
video analysis algorithms at runtime. As mentioned
earlier each algorithm in our system is a component
following the DACM. That is, each algorithm pro-
vides well defined interfaces and descriptions of its
resource requirements and average performance rat-
ings for each of its QoS levels. Algorithm charac-
teristics that have to be exhibited by each algorithm

Algorithm 1
(provides service X)

Publisher
Object
(PO)

Service X

Subscriber
Object
(SO)

Service X

Properties
Object
(PrO)

Service X

Properties
Object
(PrO)

Service X

Algorithm 2
(requires service X)

Mailbox

Directory
Service

(DS)

Publisher-
Subscriber
Manager
(PSM)

Registration

Data

Creates Creates

Data

Task A Task B

Data Source Data Sink

Publisher-
Subscriber
Manager
(PSM)

Directory
Service

(DS)

Medium
Abstraction

Object
(MAO)

Publisher
Object
(PO)

Service X

Properties
Object
(PrO)

Service X

Subscriber
Object
(SO)

Service X

Properties
Object
(PrO)

Service X

Mailbox

Medium
Abstraction

Object
(MAO)

Publisher-
Subscriber
Manager
(PSM)

on the XScale

D
at

a

D
at

a

Look-up /
Add Item

Look-up /
Add Item

Registration

In
iti

at
e

cr
ea

tio
n

of
 in

te
rm

ed
ia

te
 S

ub
sc

rib
er

 O
bj

ec
t

In
iti

at
e

cr
ea

tio
n

of
 in

te
rm

ed
ia

te
 P

ub
lis

he
r O

bj
ec

t

Creates
Creates

R
egistration

Get remote
registration
information

Get remote
registration
information

R
eg

is
tra

tio
n

DSP 1 DSP 2

XScale

Processor boundaries

Figure 3: Extended publisher-subscriber architecture to connect algorithms running on different DSPs.

Resource
management

interface

Alive-
messaging
interface

Algorithm
control

interface

DSP binary

Resource
requirements /

performance ratings

. .
 .

.

Data
outputs

. . . .

Data
inputs

DSP Algorithm
component

Entry
for dynamic

loading
Reconfigurable

algorithm attributes

Figure 4: Principle structure of a DACM component.

component are collected in Table 1. In the framework
the resource manager module keeps track of already
allocated resources and available resources. Based
on this information and the algorithm characteristics
the framework can decide whether a component can
be (dynamically) integrated into the system. Note
that the enhanced direct memory access controller
(EDMA) of the DSPs is a critical resource as image
analysis is very memory intensive and data is mostly
copied by EDMA to keep CPU load as low as possi-
ble.

Required Services from other components
QoS levels
Resource requirements

EDMA channels and their priorities
EDMA tables
EDMA interrupts

Performance Ratings
CPU utilization for each QoS level
Transfer frequency of each EDMA channel
Transfer length of each EDMA channel

Table 1: Algorithm information as provided by the DACM.

5.2 Dynamic Component Composition and
Monitoring

Countable resource metrics like the number of used
EDMA channels, EDMA tables, and EDMA trans-
fer complete interrupts are quite easy to determine
for each algorithm. In the software framework this is
achieved by a EDMA manager that is the only author-
ity to request EDMA related resources. Therefore, it
is also easy to check whether a component’s resource
requirements can be met by a simple comparison of
available and demanded resources. Only if enough
resources are available the component is loaded and
started. The actual composition is then simply real-
ized by the PS-MW. All required data services are

looked up and connected adequately as described in
Section 4.

On the other hand it is quite hard to provide exact
characteristics of more complicated resource metrics
like CPU utilization, PCI bus utilization, and EDMA
controller utilization—they are also subject to con-
stant fluctuations which makes accurate a priori char-
acterization impossible. However, these metrics are
typically critical in terms of real-time operation of the
system. As they are dynamically changing it is nec-
essary for the framework to observe them constantly.
If limits are going to be violated the framework initi-
ates a graceful degradation in QoS of less important
algorithms. That is, the QoS levels of low priority
algorithms are reduced. Prioritization of algorithms is
defined by the application. An implicit assumption for
this procedure is that a lower QoS level results in re-
duced resource utilization. In case that QoS reduction
does not yield enough resources for the most impor-
tant algorithms to run the least important algorithms
are removed from the system until the remaining al-
gorithms are runnable. This procedure ensures that as
many algorithms as possible remain functional. How-
ever, if high priority tasks have to be degraded in their
QoS too much or they have to be removed the appli-
cation’s requirements cannot be met any more and a
system failure notice is generated.

Execution times are constantly measured by
hooks in the PS-MW at the inputs and the outputs of
all algorithms. That is, a system counter is captured
each time a hook function is called. By this mecha-
nism current computation time in CPU cycles is deter-
mined as the difference TAi,exec = |TAi,out − TAi,in|,
where TAi,in represents the counter value at the time
when all inputs of algorithm Ai were ready. TAi,out

stands for the counter value when all outputs of algo-
rithm Ai were ready.

Information about PCI bus utilization is not part
of an algorithm description. As algorithms are com-
posed at runtime it cannot be determined a priori by
the algorithm designer whether local mailbox commu-
nication or remote PCI communication will be used at
algorithm deployment. However, for system stability
it is important not to overload the PCI bus. Therefore,
PCI utilization is monitored by the resource manager
on the network processor. To do so it collects mea-
surements of the traffic through the MAOs of all DSPs
and the network processor. This is possible because
the MAO is the unit on each processor where all traf-
fic to other processors is routed through.

Utilization of the EDMA resources on the DSPs
is a critical metric for overall system performance be-
cause image data is mostly transferred by EDMA. If
the EDMA subsystem is overloaded the timely oper-
ation of all algorithms is at risk. To improve the reli-

Middleware Value
Component (in bytes)
Publisher-Subscriber
Manager (PSM) 472
Directory Service (DS) 256
Publisher Object (PO) 192
Subscriber Object (SO) 96
Properties Object (PrO) 34-72

Table 2: Memory requirements of middleware objects.

ability of the system especially with respect to time-
liness it is necessary to avoid resource overloading.
EDMA utilization is estimated from the algorithm
characteristics provided by the DACM. It can be noted
as UEDMA =

∑
UEDMA,l, where l = 1, . . . , L are the

L hardware priority queues of the EDMA controller
and

UEDMA,l =
K∑

c=1

length(c, l) freq(c, l) (1)

denotes the transfer bandwidth of priority queue l tak-
ing into account all of the K channels c. The function
length(c, l) yields the number of bytes transferred on
channel c iff channel c is assigned priority l. It re-
turns zero for all other values of l. Similarly, freq(c, l)
yields the number of transfers issued per second on
channel c iff c is assigned priority l.

6 Experimental Evaluation
The SmartCam prototype has been used as the eval-
uation platform. It is based on an Intel IXDP425
development board comprising an Intel IXP425 XS-
cale network processor running at 533 MHz. It is
equipped with 16 MB of flash memory and 256 MB
of SDRAM. Two to four ATEME NVDK PCI boards
each comprising a Texas Instruments TMS320C6415
DSP running at 600 MHz are plugged into the base
board. Each NVDK is equipped with 264 MB of
SDRAM. The XScale is operated by a LINUX kernel
version 2.6.x and the DSPs run the Texas Instruments
DSP/BIOS real-time operating system kernel as pro-
vided with the Code Composer Studio 3.0 develop-
ment environment.

An important requirement for the task communi-
cation framework on the DSPs of the SmartCam is to
use only little memory to save it for the analysis algo-
rithms. Although our middleware was implemented
in C++ the memory footprint is only 15.78 KB. It can
be seen from Table 2 that the runtime memory con-
sumption is also low.

As the PS-MW adds some management overhead
to the system we measured the times spent in the ini-

Initialization
Component time (µs)
Publisher-Subscriber
Manager (PSM) 4.68
Directory Service (DS) 9.90
Creation/Registration
Publisher Object (PO) 10.17
Creation/Registration
Subscriber Object (SO) 11.01

Table 3: Initialization times of PS-MW components.

Transfer Mode Value (µs)
Mailbox only 1.04
With PS-MW 1.21

Table 4: Message transfer times for plain mailbox communica-
tion and for a transfer using our publisher-subscriber middleware.

tialization phase of the PS-MW at system start-up, i.e.,
initialization of the PSM and the DS. Additionally,
PO and SO creation and registration times were ex-
amined. The results for the different PS-MW objects
are collected in Table 3. Initialization of the PSM and
the DS is performed once at system startup. Creation
and registration is performed whenever an according
object is instantiated.

Message transfer overhead of the PS-MW com-
pared to direct mailbox communication was measured
to be 16.35%. In this experiment the time spent from
sending the message at the publisher until it was re-
ceived at the subscriber was measured and compared
to simple mailbox transfers (cf. Table 4). Note that in
this scenario one publisher with exactly one connected
subscriber on the same DSP was examined.

In another scenario we examined the multicast
communication scheme, i.e., one publisher with sev-
eral subscribers connected to it. The significant time
measure in this case is the overall time needed to
transfer the published message to all subscribed tasks.
Again, only tasks on the same DSP were considered.
It can be seen from Fig. 5 that transfer time increases
almost linearly with the number of subscribers.

Note also that due to the scheduler of the
DSP/BIOS real-time operating system message trans-
fer times depend on the task priorities of publisher and
subscriber tasks. Fig. 5 illustrates that transfer time is
almost equal when the publisher and the subscriber
have the same priority or the publisher has the highest
priority. When the subscribers have the highest prior-
ity the transfer time increases significantly.

There are slight fluctuations depending on the
number of overall tasks running on the DSP and their

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10

Ti
m

e
[u

s]

Number of subscribers

Pri(Pub)>Pri(Subs)
Pri(Pub)=Pri(Subs)
Pri(Pub)<Pri(Subs)

Figure 5: Transfer time increases depending on the number
of subscribers and the priorities of PO and SO tasks (denoted
“Pri(Pub)” and “Pri(Subs)”).

Number Transfer overhead (µs)
of SOs 2 DSPs 3 DSPs 4 DSPs

1 3.49 - - - -
2 4.69 5.24 - -
3 5.91 6.44 7.49

Table 5: Message transfer overhead time compared to direct PCI
transfers.

according priorities. That is due to internal manage-
ment structures of the DSP/BIOS scheduler. Fortu-
nately, the message transfer time per subscriber is rel-
atively constant with respect to the number of sub-
scribers and the task priorities.

In another experiment the transfer times between
tasks on different DSPs have been analyzed (cf. Ta-
ble 5). Overhead in this case stems from the indirec-
tion in the involved MAOs and the proxy PO as well
as the proxy SOs. It can be seen from the table that
multiple subscribers on the same remote DSP yield
less overhead than if they all reside on different DSPs.
This is due to less management overhead in the tar-
get MAO. Also note that data is transferred only once
to each DSP even if there are multiple subscribers for
that data on the DSP.

7 Conclusion
There is a strong trend towards intelligent infrastruc-
tures to ease everyday live. In traffic surveillance, e.g.,
networks of embedded smart cameras are introduced
that provide on-site video analysis. In previous work
[15, 2] we developed the SmartCam that is a hetero-
geneous multi-processor prototype of an embedded
smart camera. It comprises a network processor and
several DSPs.

In this work a real-time publisher-subscriber mid-
dleware (PS-MW) for the SmartCam platform is pre-

sented. It is a very light-weight architecture that sup-
ports loose coupling of tasks in the given dynamic ap-
plication environment. By introducing minimal indi-
rection it also provides little transfer time overhead.
Transparent communication within a single DSP and
between different DSPs via the local PCI bus is sup-
ported. To abstract from the PCI bus a special proxy
mechanism is used.

Furthermore, a DSP algorithm component model
is presented that allows for dynamic component com-
position. Algorithms are provided as binary compo-
nents that have to provide the framework with well de-
fined interfaces for reconfiguration and resource allo-
cation. They also have to provide the framework with
information on their typical performance metrics and
their resource requirements. The software framework
constantly monitors all algorithms to detect possible
resource overloading which would compromise sys-
tem integrity. In case of resource overloading grace-
ful degradation of Quality-of-Service is undertaken to
prevent system failure. Therefore, overall system de-
pendability is increased.

An experimental evaluation on the SmartCam
prototype shows that our PS-MW has a memory foot-
print of as little as 15.78 KB. Transfer time overhead
in case of communication between tasks on the same
DSP is only 16.35%. In a multicast scenario the PS-
MW scales well in that the transfer time per subscriber
is almost constant with respect to the number of sub-
scribers. Due to the efficient abstraction mechanism
the message transfer time overhead compared to a di-
rect PCI transfer is in the order of several microsec-
onds.

References:

[1] Wolf W., Ozer B., and Lv T. Smart Cameras as
Embedded Systems. IEEE Computer, vol. 35(9),
Sep. 2002, pp. 48–53.

[2] Bramberger M., Doblander A., Maier A., Rin-
ner B., and Schwabach H. Distributed Embed-
ded Smart Cameras for Surveillance Applica-
tions. IEEE Computer, vol. 39(2), Feb. 2006,
pp. 40–47.

[3] COM and DCOM: Microsoft’s Vision for Dis-
tributed Objects. John Wiley & Sons, 1997.

[4] Java.rmi: The Remote Method Invocation
Guide. Addison Wesley, Jun. 2001.

[5] The Corba Reference Guide: Understanding
the Common Oject Request Broker Architecture.
Addison Wesley, Jan. 1998.

[6] Mascolo C., Capra L., and Emmerich W. Mobile
Computing Middleware. In Gregori E., Anastasi
G., and Basagni S. (eds.), Advanced Lectures
on Networking: NETWORKING 2002 Tutorials,
vol. 2497 of Lecture Notes in Computer Science.
Springer, 2002.

[7] Object Management Group. Real-Time CORBA
2.0. http://www.omg.org, Sep. 2001.

[8] Object Management Group. Minimum CORBA
1.0. http://www.omg.org, 2002.

[9] Schmidt D.C. Middleware for Real-Time and
Embedded Systems. Communications of the
ACM, vol. 45(6), Jun. 2002, pp. 43–48.

[10] Balasubramanian K., Wang N., Gill C., and
Schmidt D.C. Towards Composable Distributed
Real-Time and Embedded Software. In Pro-
ceedings of the 8th IEEE International Work-
shop on Object-Oriented Real-Time Dependable
Systems (WORDS 2003). Guadalajara, Mexico,
Jan. 2003.

[11] Hansson H., Åkerholm M., Crnkovic I., and
Törngren M. SaveCCM—a component model
for safety-critical real-time systems. In Pro-
ceedings of the 30th EUROMICRO Conference,
2004.

[12] Winter M., Genßler T., Christoph A., Nierstrasz
O., Ducasse S., Wuyts R., Arévalo G., Müller
P., Stich C., and Schönhage B. Components for
Embedded Software—The PECOS Approach.
In Proceedings of the 2002 International Con-
ference on Compilers, Architecture, and Synthe-
sis for Embedded Systems. ACM, 2002.

[13] Becker C., Schiele G., Gubbles H., and Rother-
mel K. BASE—A Micro-broker-based Middle-
ware For Pervaisve Computing. In Proceed-
ings of the First IEEE International Conference
on Pervasive Computing and Communications
(PerCom’03). IEEE, Mar. 2003.

[14] Rajkumar R., Gagliardi M., and Sha L. The
Real-Time Publisher/Subscriber Inter-Process
Communication Model for Distributed Real-
Time Systems: Design and Implementation. In
Proceedings of the Real-Time Technology and
Applications Symposium. IEEE, May 1995.

[15] Bramberger M., Brunner J., Rinner B., and
Schwabach H. Real-Time Video Analysis on
an Embedded Smart Camera for Traffic Surveil-
lance. In Proceedings of the 10th IEEE Real-
Time and Embedded Technology and Applica-
tions Symposium, 2004.

