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Abstract: This paper presents a model-based monitoring system which is based
on imprecise models where the structure is known and the parameters may be
imprecisely specified by numerical intervals. This monitoring approach is applied
to hybrid systems and is now able (i) to follow a known sequence of imprecisely
modeled modes, (ii) to detect unknown transitions and (iii) to refine the time
uncertainty of the transitions as well as the imprecision of mode models. The
implemented system is demonstrated by online monitoring of a non-trivial heating

system.
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1. INTRODUCTION

The primary objective of a monitoring system is to
detect abnormal behaviors of a supervised system
as soon as possible to avoid possible shutdown
or damage. A particularly important and widely-
applied approach is model-based monitoring which
relies on a comparison of the predicted behavior
of a model with the observed behavior of the
supervised system. The monitoring system MOSES
(Rinner and Weiss, 2002¢; Rinner and Weiss,
2002b) is based on imprecise models in order to
express and reason with incomplete knowledge
about the supervised system. To keep the overall
uncertainty during monitoring small MOSES re-
peatedly partitions the uncertainty space of the
imprecise models and checks the derived model’s
state for consistency with the measurements. In-
consistent partitions are then refuted resulting in
a smaller uncertainty space and a faster failure
detection.

* This work has been partially supported by the Austrian
Science Fund under grant number P14233-INF.

This paper extends the online monitoring system
MOSES to hybrid systems (Branicky, 1995). In a
hybrid system, isolated regions of rapid change
are abstracted to instantaneous discontinuities
separating regions of continuous behaviors. The
continuous segment of the system’s behavior is
referred to as mode of operation and a discontinu-
ous change is referred to as transitions. The basic
idea of the extension to hybrid systems is to map
the time uncertainty about the transition into an
uncertainty of the new mode’s initial state. MOSES
is now able (i) to follow a known sequence of im-
precisely modeled modes, (ii) to detect unknown
transitions and (iii) to refine the time uncertainty
of the transitions as well as the imprecision of
mode models.

The remainder of this paper is organized as fol-
lows. Section 2 briefly introduces the monitoring
approach. Section 3 presents the extensions of
MosEs to monitoring hybrid systems. Section 4
demonstrates the performance of MOSES for hy-
brid systems by monitoring a complex heating
system. A discussion and a summary of related
work conclude this paper.



2. MONITORING CONTINUOUS MODES
2.1 Overview

In MOSES a continuous mode is represented by
a differential equation model. Imprecision is in-
troduced by specifying model parameters as nu-
merical intervals which span the uncertainty space
of the model. Only bounds on the trajectory,
i.e., envelopes, can be derived from this imprecise
model and a possibly imprecisely specified initial
state. The key step in our approach is to parti-
tion the uncertainty space of the model into sev-
eral subspaces. The trajectories derived from each
subspace are then checked for consistency with
the measurements. Each inconsistent subspace is
refuted and excluded from further investigations.
Partitioning and consistency checking are contin-
ued resulting in a smaller uncertainty space of the
model. When all subspaces are refuted, a discrep-
ancy between model prediction and observation
has been recognized and a fault has been detected.

2.2 Imprecise Modeling and Subspace Partitioning

In more detail, a technical system is modeled as a
linear differential equation of order n

x(t) = A(p)x(t) + B(p)u(?) (1)
y(t) = C(p)x(t) + D(p)u(t)

where x(t) is the state vector at time ¢, u(t) is
the input vector at time ¢, p(t) is the parameter
vector at time ¢, y(t) is the output vector at
time ¢, and A, B, C, and D are matrixes with
appropriate dimensions and functions of p. In an
exact model, p(t) is a vector of real numbers.
However, in a model with uncertain parameters,
p(t) is replaced by a vector of intervals p(t) =
[(1_7171_)1)’ (1_92@2); T (BKJ_?K)]T; where K is the
number of uncertain parameters.! A model with
uncertain parameters, i.e., an imprecise model,
can therefore be described as:

X(t) = A(B)X(t) + B(D)u(t) 2)
y(t) = C()x(t) + D(p)u(t)

Equation 2 is the starting point of our approach.
It defines an imprecise model of the supervised
system with K uncertain parameters. Thus, this
model has a K-dimensional uncertainty space. A
partition is defined as

Ej.(t) = [(Q1>q1)7 (quz); T (gK7qK)]T (3)

with @ C p. Thus, a partition divides the uncer-
tainty space into smaller regions. A complete par-

1 In our approach we assume that the parameters do not
vary over time.

titioning into M partitions must satisfy the follow-
ing condition: |J,, @™ = p wherem =1,..., M.
A model based on a partition of the uncertainty
space is referred to as subspace model. The state
of a subspace model m is formally defined as:

™) = ABT)E™ (1) + BE™)u() (o
(1) = CE™)X™ (O + DE™ul)

To apply imprecise models in MOSES, we must
compute their trajectories. A simple but in-
tractable method to derive the trajectories is to
repeat a numerical integration starting from any
point within the uncertainty space.? However, if
we assume monotonicity it is sufficient to focus
only on few points of the uncertainty space.

2.8 Consistency Checking

With the monotonicity assumption of x(¢) and
y(t) with regard to the parameters p(t) over the
range of the intervals, the (uncertain) state of a
subspace model can be represented by the (exact)
state at extremal points, i.e., corner points, of a
subspace. The corner points of a subspace are
defined as all combinations of upper and lower
bounds of a partition q(t). Note that an uncer-
tainty space of dimension K results in 2% corner
points.

In order to test the consistency between predic-
tion and observation, MOSES checks whether the
measurements at time ¢ lie within the trajectory
space derived from the corner points (Rinner and
Weiss, 20024). Since the trajectory space is de-
rived from exact corner states, standard numerical
methods for computing the solution of differential
equations can be used. In MOSES the measure-
ments may also be bound by numerical intervals
in order to account for measurement noise. This
requires an extension of the consistency check
which is described in (Rinner and Weiss, 2002a).

2.4 Dynamic Partitioning

A large number of subspace models may be de-
tected as inconsistent during monitoring. To in-
crease the fault detection performance of MOSES
the uncertainty space of consistent subspace mod-
els can be partitioned dynamically according to
Equation 3. This dynamic partitioning results in
smaller subspace models that potentially describe
the supervised system more precisely. There is

2 Note that for deriving the trajectories of imprecise
models it is also sufficient to focus on points belonging
to the external surface of the uncertainty space (Bonarini
and Bontempi, 1994). However, the number of trajectories
to be computed is still infinite, even if it is of a lower order.



clearly a trade-off between the number of (active)
subspace models and the computational load in
MoOSES. Dynamic partitioning allows to adjust on-
line the computational load as well as the degree
of uncertainty of individual subspace.

3. MONITORING MULTIPLE MODES

In order to extend MOSES to hybrid systems the
monitoring process must be able to follow a se-
quence of modes. MOSES must, therefore, identify
a mode change, perform the transition by instan-
taneous changing the input and/or the model, and
continue monitoring the new mode. It is impor-
tant to know when and what kind of transitions
occurs. Since we assume to know the (nominal)
sequence of modes the supervised system exhibits
the remaining problem is to determine the time of
the transition. In general, there are three different
cases to consider.

(1) The exact time instant of the transition is
known.

(2) Only bounds on the time instant of the
transition can be specified.

(3) No information about the transition time is
known a priori.

Information about the time instant of the transi-
tion may be delivered by an auxiliary signal such
as an input to an actuator or by identifying abrupt
changes in the observations (Basseville and Niki-
forov, 1993). Note that MOSES currently requires
to detect all mode changes. If a mode change is
missed, e.g., due to an autonomous transition,
Mosks may deliver a false alarm.

A failure in the supervised system may be mani-
fested by a deviation within the mode or a tran-
sition to an unknown mode. In both cases MOSES
may eventually detect the failure by identifying
a discrepancy in the current or preceeding modes
when the degree of model uncertainty and mea-
surement noise is sufficiently small.

3.1 Transitions at known time instants

Transitions with known exact time instants can
be directly handled by MOSES. At the transition,
MOSES is initiated with the imprecise model of
the new mode, and the final state of the previous
mode is mapped to the initial state of the new
mode. Since the final state is imprecisely specified
this mapping will result in an imprecise initial
state of the new mode.

3.2 Transitions with time bounds

When the time instant of the transition is not
exactly known, MOSES has to manage an addi-

tional uncertain parameter — the time uncertainty
of the transition. Introducing a new uncertain pa-
rameter at each transition would result in an ever
increasing uncertainty space. In order to overcome
this problem we transform the time uncertainty of
the transition into an (additional) uncertainty of
the initial state of the new mode. This keeps the
dimension of the uncertainty space constant.

This transformation is achieved by adding the
time uncertainty to the set of uncertain parame-
ters as long as the monitoring process is within the
time uncertainty of the transition. More formally,
the monitoring process of MOSES is extended by
the following steps. Note that the initial time
bound is given by the interval [t1, t2].

(1) At ty the time uncertainty is added as an ad-
ditional uncertain parameter pr1 = [t1, t2]-

(2) As long as the monitoring process is not in
the new mode monitoring is continued with
K + 1 uncertain parameters.

(3) When the new mode has been genuinely
reached — either by detecting a discrepancy
or by exceeding t» — the resulting state space
x(p) is mapped to the initial state space of
the new mode, and the time uncertainty is
removed from the set of uncertain parame-
ters.

3.8 Transitions without time information

If no information about the time of the transition
is available in advance, MOSES may eventually
detect the inconsistency of the old mode’s pre-
diction with the observed data. This time serves
then as an initial upper bound of the transition.
In order to compute a lower bound we have to
backtrack, i.e., we have to compute the state of
the new mode starting from previous sampling
points and check for consistency with the observed
data. This backtracking is continued, i.e., starting
from earlier sampling points, until the predicted
envelopes are inconsistent with the data. Then
a lower bound of the time uncertainty has been
identified, and M OSES can continue monitoring by
mapping the time uncertainty to an initial state
uncertainty of the new mode (cp. Section 3.2).

Fig. 1 illustrates the computation of the bounds
on the time uncertainty. The key steps can be
summarized as follows:

(1) initialize
Set the immediate predecessor sampling time
after the discrepancy has been detected as
the new starting time ¢; of the backtracking.
(2) determine upper bound
Start backtracking at ¢; and compute the
state of the new mode until the time point the
discrepancy has originally detected. Check
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Fig. 1. Computing time bounds of a transition. In both graphs, the measurements including a noise
interval as well as the predicted envelops of the previous and new modes are plotted. The transition
is detected at ty because the measurement lies outside the predicted envelopes of the previous
mode. As depicted in graph (a) backtracking is initially started at ¢; (inconsistent). Backtracking
terminates at t5 (also inconsistent) as depicted in graph (b) resulting in a time uncertainty of (¢s,%1).

the consistency of the derived envelopes with
the data samples after ¢;. If the data is con-
sistent, ¢; is an upper bound of the time un-
certainty then goto (3). Otherwise, decrease
t; (t; « ti—1) and start backtracking at the
new time point.
(3) determine lower bound

Same backtracking procedure as in (2). How-
ever, if the data is inconsistent, t; is a lower
bound of the time uncertainty then termi-
nate. Otherwise, decrease t; (t; «+ t;_1) and
start backtracking at the new time point.

Note that for the computation of the bounds a
history of the input values and the state values are
needed. In order to restrict the memory require-
ments (and the computation time) backtracking
is only applied for a limited time period.

3.4 Refining the time uncertainty

Time uncertainty on a transition affects the entire
correspondence between prediction and observa-
tion in the following mode, resulting in propa-
gating uncertainty. Thus, keeping the time uncer-
tainty as small as possible is important for the
overall failure recognition performance of MOSES.

When more observations become available in the
new mode the initial time uncertainty of the
transition may be refined. For this refinement
the same algorithm as described in the previous
section can be applied. Since there are more data
samples available for the consistency check more
backtracking steps may result in an inconsistency
resulting in a smaller time uncertainty.

3.5 Refuting subspace models

MoOsSES partitions the uncertainty space and inde-
pendently computes the trajectories of each sub-

space model. If a subspace model becomes incon-
sistent, the subspace is refuted and excluded from
further investigation. However, if a transition with
time uncertainty is given then simply refuting
any inconsistent subspace model is false. This is
because a subspace model detected as inconsistent
within the time uncertainty of a transition may be
consistent in the new mode.

In order to avoid premature refutation of subspace
models we have to store all inconsistent subspaces
until a discrepancy has been detected and the
time uncertainty of a possible transition has been
computed. All subspace models that have been de-
tected as inconsistent within the time uncertainty
must be included in the new mode. To store a
subspace model it is sufficient to save the last state
of that subspace model before the inconsistency
has been detected.

4. EXPERIMENTAL RESULTS

We demonstrate the performance of MOSES on
a “real” technical system which is comprised of
three heating components mounted on a ther-
mal conductive plate. A process control computer
(B&R 2003) controls the heating elements and
transfers the measured samples as well as the
control actions issued to MOSES via a RS 232 in-
terface. MOSES has been completely implemented
on a standard PC running Linux.

We model the heating system as a linear differ-
ential equation (Rinner and Weiss, 20024). The
temperatures T; of the components represent the
state vector of this system. Two temperatures T}
and T are measured. The noise interval of the
sensors are given as 0.2. The individual thermal
masses and the thermal conductivities across the
components are imprecisely specified resulting in
a total of 8 uncertain parameters.
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Fig. 2. Scenario #1 with a total of six transitions.
The temperatures 77 and T> as well as the
control signal Ho are depicted in the graph.
H> is not transferred to MOSES.

Transition | new mode lower upper 1SS
time (Hz) bound | bound
5.5 heat 5.0 8.4 5.057
149.9 idle 148.1 154.0 | 6.838
206.3 heat 205.9 209.9 | 6.413
538.5 idle 536.6 543.3 | 7.819
1260.5 heat 1260.1 | 1263.8 | 5.336
1448.9 idle 1446.9 | 1453.2 | 7.278

Table 1. Computed bounds on the time
uncertainty and the initial state space
(ISS) of the new mode for scenario #1.

In our experiments we distinguish two modes, heat
and idle, whether the central heating element is
switched on or off. We use three different scenarios
in our experiments. No a priori time information
about the transitions is available is made available
to MOSES in all scenarios. The sampling period is
given as 0.1 sec.

4.1 Scenario #1

Scenario #1 corresponds to a simple sequence
of six transitions between heat and idle modes
(Fig. 2). MOSES is able to follow all mode changes
of this scenario, i.e., it detects the transitions,
computes the time uncertainties and maps the
time uncertainty to the initial state space (ISS)
which is defined as the product of the interval size
of all state variables.

Tab. 1 presents the computed bounds on the
transition time and the size of the ISS. The real
transition time (left column) lies always between
the computed bounds. Note that the ISS does not
increase with the number of transitions. Fig. 3
depicts the situation at the second transition.
MoSES detects a inconsistency 4.1 sec after the
transition.

4.2 Scenario #2

Scenario #2 is similar to the first scenario. How-
ever, a failure has been introduced by switching
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Fig. 3. The transition at t = 8 in scenario #1. The
envelopes (solid lines) and the measurement
(points) are plotted in the graph.
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Fig. 4. Scenario #2. A failure is introduced by
switching on Hj.
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Fig. 5. Recognition of the failure in scenario #2.

on the heater H; of an adjacent component for a
short period of time during the second idle mode
(Fig. 4). MOSES detects a discrepancy within this
idle mode after 4.8 sec the failure has been intro-
duced. It switches then to the known but wrong
heat mode. However, after 2 more seconds this
mode is also detected as inconsistent and the
failure has eventually been detected (Fig. 5).

4.8 Scenario #3

In this experiment MOSES has been tested whether
it is able to follow rapid mode changes. Sce-
nario #3 is generated by a discrete controller
on the process control computer. This controller
stabilizes the temperature of component 2 to a
given set point (Fig. 6).

Tab. 2 shows the result of MOSES following the
transitions. The ISS does not increase over time.
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Fig. 6. Scenario #3. H, is controlled by the
process control computer to stabilize T5.

Transition | new mode | lower | upper 1SS
time (H2) bound | bound
1.6 heat 1.2 4.2 3.303
115.4 idle 113.9 119.4 5.66
119.5 heat 119.5 124.4 6.551
127.6 idle 126.1 131.7 4.576
131.8 heat 131.8 137.0 6.364
138.5 idle 137.1 142.8 5.439
143.0 heat 142.9 148.2 6.102
148.6 idle 148.3 153.5 6.346
153.6 heat 153.6 158.8 6.205
Table 2. Time bounds and ISS for sce-

nario #3.

5. DISCUSSION

We have presented an extension of MOSES to
monitoring dynamical systems that exhibit both
discrete and continuous behaviors. MOSES is now
able to monitor hybrid systems by transform-
ing time uncertainties of the transitions into ini-
tial state uncertainties of the following modes.
This work expands ideas from semi-quantitative
system identification (Kay et al, 2000) and
semi-quantitative reasoning (Rinner and Kuipers,
1999) to monitoring hybrid systems.

There is a clear tradeoff between model uncer-
tainty including the initial state space and the
fault detection performance of MOSES. A smaller
uncertainty space results in a faster fault detec-
tion and is also important to follow rapid mode
changes. Note that the number of uncertain pa-
rameters strongly affects the computational load
of MOSES. Thus, for online monitoring it is impor-
tant to keep the number of uncertain parameters
small.

Related work includes Biswas et al. (Manders et
al., 2000; Narasimhan et al., 2002) who apply
numerical and qualitative techniques to monitor
hybrid systems. A hybrid observer is used to
track a continuous mode and determine whether
a mode change has occurred. Model disturbances
and measurement noise are accounted for by
Kalman filters. Diagnosis of hybrid systems based
on probabilistic models are presented in (Hofbaur
and Williams, 2002; Benazera et al., 2002) where

the mode transitions are represented by extended
hidden Markov models. Tornil et al. (Tornil et
al., 2000) apply interval models to fault detection.
The envelopes of these models are derived using
interval prediction or interval simulation.

MoOSES currently assumes to know the (nominal)
sequence of modes in advance. It is natural to
include a mode selection functionality during the
monitoring process by incorporating ideas from
the above mentioned work. Another direction for
further work is to expand MOSES to a complete
fault diagnosis system.
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