
Configuring Complex Multi-Sensor Test Bed Systems

 Dietmar Prisching Michael Paulweber Bernhard Rinner
 dietmar.prisching@avl.com michael.paulweber@avl.com rinner@iti.tu-graz.ac.at
 AVL List GmbH AVL List GmbH Institute for Technical Informatics
 Graz, AUSTRIA Graz, AUSTRIA TU Graz, AUSTRIA

Abstract – Test bed systems are important tools for
research and development. They are connected to the
physical system under test via numerous sensors and
actuators. Due to the ever increasing requirements in
performance and functionality automated support in the
configuration of the test bed’s hardware and software
components is desired. This paper presents our approach to
evaluate and predict the performance of highly-configurable
embedded software and presents a case study for a
configuration of the PUMA Open test bed system.

Keywords: Test bed systems; real-time; performance
estimation; PUMA Open; embedded system

I. INTRODUCTION

Test bed systems are nowadays essential tools for
research and development especially in the automotive
domain. Functionality and complexity of such tools have
been significantly raised over the last years in order to
fulfill the ever increasing requirements. A typical test bed
system is connected to the physical system under test via
numerous sensors and actuators and automatically
performs various measurements and test procedures. The
most challenging requirements for such a test bed system
are, therefore, the integration of various hardware and
software components, the real-time data processing and the
configuration of the overall system. Due to the complexity
of modern AS support in the configuration of the hardware
and software components is required. The determination
of performance characteristic is an important precondition
for a configuration support.

In this paper we present our approach to model,
evaluate and predict the performance of highly-
configurable embedded software (HCES) in an automotive
test bed system. The determination of performance
parameters such as computation time is important in order
to check whether the (real-time) requirements have been
satisfied. Our performance model is based on specific
scenarios (use cases) that are most relevant for a
performance evaluation. The timing properties of the
HCES are computed using response time analysis.
Performance data of the test bed system configuration is
acquired by measurement and stored in a database for
reuse.

We have evaluated our approach on the PUMA Open
test bed system. PUMA Open is targeted for the design
and test of engines, transmissions and power trains. As the
experimental results demonstrate we are able to model and
evaluate the performance of the numerous PUMA Open
configurations. This performance estimation is now used
in the design and implementation of new configurations
and helps to reduce their development time.

The remainder of this paper is organized as follows:
Section 2 introduces the PUMA Open automation system.
Section 3 briefly discusses related work. Section 4
presents our implemented performance evaluation and
prediction method. Section 5 presents results from a case
study and Section 6 concludes this paper.

II. PUMA OPEN AUTOMATION SYSTEM

PUMA Open is an automation system (AS) (Figure 1)

for the development and test of engines, transmissions and
power trains. PUMA Open has been designed as an open
platform in the sense that it is based on standardized
interfaces for data acquisition and communication as well
as modular hardware and software components. This
supports the extension and configuration of the AS.

Figure 1: The PUMA Open Instrumentation and Test
System for Engines, Transmissions and Power Trains

Figure 2 presents a part of the PUMA Open

instrumentation interface. It supports various bus systems
such as IEEE1394, CAN, Profibus, RS232, T-
Link(RS485) and Ethernet to connect sensors (multi sensor
system), actuators and several measurement devices with
the computer system. In a typical configuration about 50-

60 sensors and actors are attached to the engine under test.
 Sensor connected via at the IEEE1394 include: PT100,
several high temperature sensors NiCrNi, DMS
measurement, current, voltage, pressure and speed sensors.

More complex physical parameters are determined with
measurement devices such as:

• fuel consumption measurement
S733 (gravimetric), PLU (density, volume),
S735 (mass)

• oil consumption measurement
O403 (level)

• diesel measurement
S415 smokemeter
O439 Opacimeter
472 Smart Samples

• Emission measurement
CVS devices (Concentration)
Fast response devices

• Sensiflow air consumption measurement
• BlowBy compression bypass amount

Figure 2: Part of the PUMA Open instrumentation

interface

The PUMA Open is a complex object-oriented system

and it combines both real-time (RT) and non real-time
(NRT) computing on the same platform (PC solutions).
The NRT part is based on the operating system
Microsoft® Windows NT/2000 and the RT part is based
on the Windows real-time extension INtime. Its main
components are:

• PUMA Operating System
• Control and Automation Functions
• Data Acquisition and Storage
• Multi-Level Safety Monitoring

• Graphical User Interface

 The PUMA Open real-time computer system (RTCS)
is based on a layered architecture. At the bottom lies the
real-time operating system (RTOS) INtime. The next layer
is ARTE (AVL Real-Time Environment), and on top of
the architecture are the various PUMA sub-systems.
ARTE provides all real-time services that are required by
the other components. The ARTE services can be used via
a standardized interface. All real-time tasks have priority
over any non real-time processing in PUMA.

ARTE can also be seen as a wrapper over the INtime
RTOS. ARTE simplifies the development of real-time
software components for the developers by providing
customized real-time services as a library. Currently,
several processes of the real-time operating system INtime
realize ARTE. ARTE’s main features are:

• A task system with cyclic and acyclic tasks with up
to 256 priorities.

• Fast data transfer via system variables allocated in
shared memory.

• Non real-time access via ARTE system variables.
• Analysis and diagnosis functions to support the

development process.
 We distinguish between two types of configurations of

the PUMA Open AS. The PUMA Open AS can be
assembled using a (sub)set of all possible sub-systems and
interfaces. Since this set of components does not change
during operation of the AS, this is referred to as static
configuration. During operation of the AS, several
components may be activated and shut down, i.e., the AS
is operated in different modes of operation. This is
referred to dynamic configuration of the AS.

At a high-level view the PUMA Open AS has three
different modes of operation. In the monitoring mode, only
the PUMA operating system and the graphical user
interface are activated. In this mode, the system is
initialized, the system parameter are checked and loaded as
well as the I/O sub-systems are booted. In the manual
mode, the data acquisition and storage as well as the multi-
level safety monitoring sub-systems are also activated. In
this mode, the test and the engine (technical process)
parameter are checked and loaded; the engine monitoring,
the data acquisition, the limit monitoring and the post
processing are activated. Finally, in the automatic mode all
sub-systems are activated and an automatic test-run is
executed.

III. STATE OF THE ART

At the market multiple modeling techniques for
computer system exist. Since a modeling techniques must
reflect the properties of the modeled systems we
emphasize on two up-to-date approaches that apprehend
our requirements in the best case. These are the software
performance models from [SMI97] (SPE*ED) and from
[HIG01].

Both models are starting with an analytic performance
model. The analytic performance model from [SMI97] is
based on queuing network models [JAI91]. The analytic

RS
23

2

CA
N

Pr
of

ib
us

Et
he

rn
et

T-
Li

nk
 (R

S4
85

)

IE
EE

13
94

 (F
IR

E
W

IR
E)

A
K

-P
ro

t.

A
SA

P2

FD
L/

FM
S/

D
P

TC
P/

IP

A
V

L-
Pr

ot
.

A
V

L-
Pr

ot
.

Protokol

M
D

EC
U

/S
en

s/
A

ct
.

PL
C

/S
en

s./
A

ct
.

PL
C

FE
M

 (o
ld

)

FE
M

 (n
ew

)

Applications

Measuring Devices Sensors / ActuatorsSensors / Actuators

Se
ns

or
s

/
 A

ct
ua

to
rs

Se
ns

or
s

/
 A

ct
ua

to
rs

TCU

ECU

real time computer system

RS232
CAN
Profibus
Ethernet
T-Link(RS485)
IEEE1394(FIRE-WIRE)

AK-Prot.
ASAP2
FDL/FMS/DP
TCP/IP
AVL-Protokol

Measurement Device
ECU/Sensor/Actuator
PLC
FEM

Model

Model System behavior Performance Data

[SMI97]: Analytic / Simulation performance model
(queuing network models)
[HIG01]: Analytic performance model
(similar to queuing network models)

Approach: Response time analysis

[SMI97]: Identifymajor functional scenarios that
are important from a performance perspective
[HIG01]: Primary transactions are identified

Approach: Scenarios PUMA Open UML Model
(UseCases)

[SMI97]: User specify resource requirements
(Performance specialist)
[HIG01]: Performance test database
(measured data)

Approach: measured data, WCET analysis

performance model of [HIG01] contains process service
time, process dispatch time, queue waiting time for each
process and I/O as function of transaction rate.

In a second step it is necessary to model or describe
system specifics. In [SMI97] the users’ views of the
system model are scenarios. Software scenarios are
assigned to the facilities that execute the processing steps.
Performance data are provided from the user, which
specify software resource requirements for each processing
step. In order to determine the performance of the overall
system the following procedure can be used: First, the
major functional scenarios (focus scenarios), which are
important from a performance perspective, are identified.
Second, a model of a system workload is established using
several focus scenarios. From that, the different modes of
operation can be constructed. Finally, the focus scenarios
are evaluated resulting in performance statements.

[HIG01] works with a similar approach as [SMI97] on
the topic of scenarios. The scenarios are described as
transactions, and the user must identify and characterize
the primary transactions from a performance perspective.
However, the Performance data of the system are acquired
through performance measurements and stored in a
performance database.

Finally the analytic performance models and the
models of the system specifics deliver the model results.
At [HIG01] the results predicted by the model can be
compared to those actually measured. SPE*ED [SMI97]
produces analytic results for the software models, and an
approximate, analytic MVA solution of the generated
queuing network model. The results reported by SPE*ED
are the end-to-end response time, the elapsed time for each
processing step, the device utilization, and the amount to
time spent at each computer device for each processing
step. SPE*ED is intended to model software systems under
development.

IV. PERFORMANCE EVALUATION AND PREDICTION

The ideas of both methods are practical for our

approach. In comparison to [SMI97] and [HIG01] we start
also with an analytic performance model. But our analytic
performance is not based on a queuing network models.
With queuing network models approximate solutions can
be calculated. But for our project we need results as
precise as achievable. Our analytic performance model is
based on a response time analysis (RTA) derived from
Burns [BUR93], [BUR01] and Bernat [BER02]. Response
time analysis is an effective, simple and flexible technique
that allows the modeling of most aspects of fixed priority
real-time systems. [BUR94] applies an engineering
approach to calculate the worst case response time (Ri) for
each task (τi,) at the critical instant 02 [LIU73] (all tasks
are released together). Our RTA model is based on the
approach from [BER02] that considers multiple
invocations of tasks, idle time at each priority level, task
offsets and sporadic task invocations. We have extended
this approach to quantify the interoperability of RT
(INtime) and NRT (Windows) processing. Therefore, we

include the operating system context switching (fOSCS) of
RT and NRT into the RTA formulation. In [PR03] we
have evaluated the Windows-INtime interoperability. For
a PENTIUM II (434 MHz) configuration the OS context
switch time (COSCS) was determined as 5 µs. Thus, a high
context switch rate has a significant influence on the
system performance. With an extension of the formulation
from [BUT97], the CPU utilization for a specific RT-
processing (task set П) is given by:

Equation 1: ∑ ⋅+=Π OSCSOSCS
j

j Cf
T
C

U

Furthermore, RTA can be used to retrieve the NRT
computation distribution in dependency on a RT
processing load.

Concerning the system specifics we use the same
approach with scenarios. Our case study PUMA Open is
completely designed with the unified model language
(UML) notation. Thus, the PUMA Open requirements at
the development time were realized using UseCases. So
we can derive the important scenarios from a performance
perspective with the PUMA Open UML model. With
extensive performance system measurements we will
establish a performance database. One the one hand, we
chose the same approach as [HIG01] to obtain
performance data. One the other hand, only if the input
parameters for the model are as precise as possible the
calculated output is useful. Therefore, it is necessary to
determine the worst-case execution time WCET of tasks at
a high precision.

One approach is to measure the worst-case execution
time like [HIG01]. Several aspects like processor
properties (cache, pipelining) must be considered. Another
approach relies on the calculation of the worst-case
execution time (e.g. from C code). The dynamic setting of
hybrid systems requires a research focus on an improved
determination of the WCET, possibly by combining the
mentioned approaches. Important aspects of WCET are
run-time analysis (calculation methods, compiler
integration and measurement procedure), research at the
hardware system architecture and optimization of executed
source code.

Figure 3: Overview about the software performance

models from [SMI97] and [HIG01] vs. own approach.

Figure 3 illustrates an overview of the software
performance models from [SMI97] and [HIG01] in
comparison to our own approach.

V. RESULTS

Table 1 shows the task set for a PUMA Open scenario
called ‘Monitor – Cyclic Calculation’. This scenario
declares that the PUMA Open is ready and it is important
from a performance perspective. The PUMA Open
configuration includes the I/O subsystems EMCON, CAN
and 1394 (F-FEM). Performance data of the system tasks
(Cyclic time Ti, computation time Ci and offset Oi) are
measured with the ProfileAnalyzer. The ProfileAnalyzer
allows a thread-based analysis of applications with RT
(INtime) and NRT (Windows) processing on a single-
processor platform. In [PR03] the ProfileAnalyzer is
introduced in detail. Due to the task offsets a critical
instant [BUR94] of the tasks never occurs [BER02]. The
OS context switch rate and the utilization are derived as
fOSCS = 3.12 kHz, UΠ= 30.52 % (UΠ measured = 31.92 %).
The RTA was calculated for a hyperperiod of 40ms and
the calculated worst-case response times of the tasks are
listed in the rightmost column of Table 1. The total
computation time of the Windows within the hyper-period
of is ~35 ms and the maximum suspension time of
windows is computed with 1320 µs. Given these numbers
we can conclude that the RT processing works well and
the Windows performance is not affected.

Table 1:

Name T /
ms C / µs Priority O / µs R /

µs

Intr 1 34 50 0 39

dspt 40 34 132 0 34

tmr 10 7 134 0 80

RxTx 1 61 135 150 61

Read0 10 214 136 3500 214

DEB 8 20 137 0 105

ECAInterf 2 13 138 0 118

CFRecorder 4 15 139 0 133

CMyProtocol 1 7 140 0 140

TrgTask 1 23 141 0 224

CT1000 1 18 142 0 242

ECAControl 2 38 143 0 280

CT2000 2 25 144 0 305

IohSbc01 2 35 145 200 140

DAalive 50 29 146 0 369

DAWatchDEx 4 23 147 0 292

ADBDataEval 32 27 148 0 419

CCE 8 17 149 0 436

Sender 10 7 150 0 443

ABXC 32 18 151 0 461

CI 8 20 152 0 481

CT4000 4 28 154 0 509

CT5000 5 9 156 0 518

CT8000 8 10 158 0 528

CT10000 10 213 160 0 741

CA2CAnProto 10 98 161 0 839

CT16000 16 9 162 0 848

CT20000 20 13 164 0 861

CT32000 32 12 166 0 873

CT50000 50 271 168 0 1287

CDemoProto 50 33 169 0 1320

VI. DISCUSSION

In this paper we have presented our approach to
evaluate and predict the performance in a complex test bed
system. Performance evaluation and prediction is an
important part for the configuration support not only of
complex test bed systems but also for general computing
systems. Although our performance model has been
targeted to the PUMA Open test bed system, a general
approach to model the performance of complex computing
systems can be derived.

VI. REFERENCES

[BER02] BERNAT. G., 2002 Response Time Analysis of
Asynchronous Real-Time Systems, University of
York

[BUR94] BURNS, A., 1994: Preemptive Priority-Based
Scheduling: An Appropriate Engineering
Approach, Advances in RealTime Systems, 1994
225-248.

[BUR93] AUDSLEY, N., C.; BURNS, A., 1993 Applying
New Scheduling Theory to Static Priority
Pre.emptive Scheduling. Software Engineering
Journal

[BUR01] BURNS, A., WELLINGS. A., 2001: Real-Time
systems and programming languages. Addision
Wesly 3rd edition, 2001

[BUT97] BUTTAZZO, G. C., 1997: HARD REAL_TIME
COMPUTING SYSTEMS, Predictable
Scheduling Algorithms and Applications,
London, Kluwer Academic Publishers

[HIG01] HIGHLEYMAN, B., 2001: PERFORMANCE
ANALYSIS - The Sombers Way
http://www.sombers.com

[JAI91] JAIN, R.,1991: The Art of Computer Systems
Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation,
and Modeling, John Wiley and Sons, Inc.

[LIU73] LIU, C. L., LAYLAND, J. W., 1973: Scheduling
algorithms for multiprogramming in a hard-real-
time environment, Journal of the Association for
Computing Machinery, 20(1), pp. 46-61

[PR03] PRISCHING, D., RINNER, B., 2002: Thread-
based analysis of embedded applications with
real-time and non real-time processing on a
single-processor platform, embedded world 2003
Congress, Nürnberg

[SMI97] SMITH, C., WILLIAMS, L., 1997 Performance
Engineering Evaluation of Object-Oriented
Systems with SPE*EDTM

