
Response Time Analysis of Systems with
Real-Time and non Real-Time Processing

Dietmar PRISCHING
AVL List GmbH

Graz, Austria

Bernhard RINNER
Institute for Technical Informatics, Graz University of Technology

Graz, Austria

ABSTRACT

Most real-world automation systems (AS) require both
real-time (RT) as well as non real-time (NRT) functionality.
Modern AS are more frequently realized as a single platform
solution in order to reduce their development time. This trend
is driven by the advances in processor technology. The
interoperability between RT and NRT processing is an
important parameter in a single platform solution.

This paper focuses on the modeling of the RT-NRT
interoperability based on response time analysis (RTA) which
is extended by the context switches between RT and NRT.
Our extended RTA is now able to derive the NRT load
distribution in dependency on the RT load, and important
interoperability parameter such as NRT utilization and
maximum NRT suspension time can be computed. We apply
our model on a complex AS system (PUMA Open) that uses
dedicated operating systems for RT and NRT processing,
respectively.

Keywords: response time analysis, interoperability,
embedded systems, automation system, fixed-priority
scheduling

1 INTRODUCTION

Automation systems (AS) are an important class within
the real-time systems (RTS). A key requirement is that their
computing systems must react within guaranteed time windows
to events in the environment. Predictability and dependability
are, therefore, essential for an AS. Most real-world AS,
however, include also functions that do not require real-time
guarantees, i.e., they are comprised of a real-time (RT) part and
a non real-time (NRT) part. In a typical AS, the RT part is
responsible for control, data acquisition, signal conditioning
and monitoring. The NRT part is responsible for data post
processing, visualization, data persistence, system parameter
settings and, especially, for the graphical user interfaces (GUI).

Modern AS are more frequently realized as a single
platform solution, because the development time is smaller
than the development time of the RT and NRT parts on
different platforms. This trend is also driven by the advances
in processor technology. Processing power has increased
considerably over the last years, and a single processor may
now offer sufficient power to run AS with RT and NRT parts.

An important parameter for the combination of NRT and
RT processing is interoperability, which is defined as the
ability to run the NRT part along with the RT part and vice-
versa [7], [12]. An important requirement for a RT-NRT
combination is that the RT part is preferred over the NRT part,
and the NRT part does not influence the RT part. There are
solutions for combining RT and NRT processing commercially
available. These solutions are mainly based on extending
general-purpose operating systems with real-time features or
by combining dedicated operating systems for NRT and RT
processing. However, these solutions lack in considering the
influence of the context switch between the RT and NRT part
to the RT timing properties. Furthermore, the performance of
the NRT part in dependency on the RT hasn’t also been
clarified. Particularly, the maximum suspension of the NRT
computation can affect the NRT performance severely.

This paper focuses on a model to calculate performance
metrics of complex systems that consist of a combination of RT
and NRT processing. The performance metrics are (i) the
response times of RT tasks, (ii) the CPU utilization of the RT
processing and (iii) NRT timing properties. The modeling is
based on a response time analysis (RTA) derived from Burns
[3], [4] and Bernat [1]. RTA is an effective, simple and
flexible technique that allows the modeling of most aspects of
fixed priority real-time systems. We have extended this
approach to quantify the interoperability of RT and NRT
processing. Therefore, we include the overhead of RT and
NRT processing as well as the overhead of the RT processing
itself into the RTA formulation. Furthermore, we show that
RTA can be used to retrieve the NRT computation distribution
in dependency on a RT processing load.

Our approach is demonstrated on the automation system
(AS) PUMA Open, which has been developed over the last few
years by more than 50 engineers and that is released at the
market since 2001. It is targeted for the test of engines,
transmissions and power trains. This AS combines both RT
and NRT computing on the same platform and has been built
on the general operating system (OS) ©Microsoft Windows
and its real-time extension INtime

The remainder of this paper is organized as follows.
Section 2 briefly summarizes related work on response time
analysis (RTA). Section 3 introduces our analytic model which
introduces RT and NRT interoperability into the RTA
formulation. Section 4 describes the implementation of our
modeling approach and presents results. Finally, Section 5

concludes this paper with a summary and a discussion on
further work.

2 RESPONSE TIME ANALYSIS (RTA)

Significant for our work are (i) multiple invocations of the
tasks (ii) idle time at level i and (iii) kernel overhead.

Worst Case Response Times Analysis
[2] applies an engineering approach to calculate the worst case
response time (Ri) for each task (τi,) at the critical instant [11]
(all tasks are released together). Ri can be computed with the
following equation. Ri is the smallest ω �������������	

()ωω ii IC += (2-1)

Ci…Computation time of task i

where Ii(ω) is the interference of tasks of higher priority than i

during interval [0,ω) and is given by:

()
()

j
hp j

i C
T

I
ij

⋅











= ∑

∈ ττ

ωω

Tj…Cycle time of task j

Definition 2-1: (Priority relations) hp(τi) is the set of tasks of
higher priority than τi; hep(τi) is the set of tasks of higher or
equal priority than task τi, and hep(ij) is set of tasks of higher
or equal priority than task τi also including task i.

Finish Time (Fi) of the kth Task Invocation
There may be some time the processor is used by lower priority
tasks between the finalization of the first invocation and the
start of the second one. This time is called the idle time at
level i (i). Formally:

Definition 2-2: (i� ��� ���� ����� 	�
�� �	� ������ �� �	� � �
� 	��

amount of time the processor can be used by tasks of lower
priority than i������������������	�
����� ��

The amount of idle time at the start of each task
invocation (start time (Si)) is of special interest. Thus, it can

also be written as () ()()kSk iii δδ = . The computation of

finish time Fi(2) is based on the fact that this time is equivalent
to the worst case response time of a task with the same priority
������
� 2 and a computation time C = 2C2��� 2(2). Thus, the
worst case finish time of the second invocation of task i ∈ �

 ���� i = (Ti, Di, Ci) | 1 ��i ����������������������� ���������

that:

()() ()ωδω iiii ISC ++= 22 (2-2)

This formulation can be extended for the kth invocation.

() ()ωδω iii IkkC ++= (2-3)

Computing the Idle Time i(t)
The computation of i(t) is more complex because it can not be
computed directly. We will show this with the following
counter example (see Table 2-1). Someone can assume that:

()
()

j
hep j

i C
T

tt
ij

⋅











−= ∑

∈ ττ

ωδ .

��� ��� ������ ���� ����� ������� � ��� !��� T3(10) = 3.5.
"���#���� T3(10) = 4.5 due to the fact that the second
invocation from T2 can’t be accounted full.

Table 2-1: Example task set.

Task T C Priority
T1 5 1 1
T2 9 2 2
T3 10 0.5 3

So, the computation of i(t) is based on the observation that the
amount of idle time between [0,t) is equal to the maximum
computation time a single task, running at a lower priority than

i, could use during [0,t). To compute this value it is assumed
that the task set is made up only of the tasks of higher or equal
priority than task i plus a virtual task, v, with lower priority
than i. Task v will consume all unused computation time of
tasks of higher or equal priority than task i. To compute the
amount of idle time at level i between [0,t), task v has a period
and a deadline (Dv) equal to the time t:

()vvvv CtDtT ,, ===τ . The maximum time the

processor can be used by tasks of lower priority than i is the
maximum computation time, Cv, that makes task v meet its
deadline. Formally:

i(t) = max {Cv | v is schedulable }

Schedulable means that a certain Cv is available within
the period t, and the scheduling test is performed by solving
���� �$��������� ����� �� %�����
� !��������� ���Dv:

()ωω •+= iv IC (2-4)

where the amount of interference at level i including task i,

denoted by ()ω•
iI , is given by:

()
()

∑
∈

• ⋅











=

iij hep
j

j
i C

T
I

ττ

ωω (2-5)

As described above, this equation can be computed by
solving a recurrence relation.

Kernel Overhead
Simple scheduling models ignore the operating system (OS)
software kernel behavior. Context switch times and queue
manipulations are, however, significant and cannot be
neglected. When a software kernel is used, models of the
actual behavior are needed. Without these models, excessively
pessimistic overheads must be assumed. Context switch times
can be accounted for by adding their cost to the task that causes
the context switch. For periodic tasks, the cost of the insertion
into the delay queue and switching back to the lower-priority
task that has been preempted is, however, not necessarily
constant. More about task scheduling, delay queue, run queue
can be found in, e.g., [10], [14]. The interrupt handler for the
clock does the manipulation of the delay queue. The

manipulation cost may depend on the size of the delay queue,
i.e., on the number of periodic tasks in the application. To
model adequately the delay queue manipulations that occur in
the clock interrupt handler, it is necessary to address directly
the overhead caused by each periodic task. It may be possible
to model the clock interrupt handler using two parameters:
CCLK (the overheads occurring on each interrupt assuming that
tasks are on the delay queue but that none are removed), and
CPER (the cost of moving one task from the delay queue to the
run queue). Each periodic task now has a fictitious task (fpt is
set of fictitious periodic tasks) with the same period T but with
computation time CPER [2].

PER
fptf f

CLK
CLK

j
ihpj j

i

C
T

C
T

C
T

C

⋅











+

⋅







+⋅












+=

∑

∑

∈

∈

ω

ωωω
)(

(2-6)

fpt…fictitious task set

3 MODELING RT-NRT INTEROPERABILITY

Performance metrics of interest in this work are (i) the
response times of RT tasks, (ii) the CPU utilization of a RT
load and (iii) NRT timing properties. We start from a process
model made up of n RT tasks and a single NRT task. When no
RT task is ready to execute, the lowest priority task (NRT task)
is scheduled. Our fixed priority model is based on the
assumption of a closed system. That means that the pattern of
the response times of all tasks is repeated periodically within
the hyper-period H.

Response times

T0
C / s

� / s

D = T

C

Id
le

 ti
m

e
di

st
ri

bu
ti

on

v

v max
v

�- Values

idle time

Figure 3-1: The distribution of the idle time at each level
can be derived from the computed values of �.

First we describe the exact computation of the timing
properties of a specific RT-processing that doesn’t consider
interoperability at all. We can calculate the exact idle time
distribution within the cycle (T) of the hyper-period H for each
level i. The computing of the idle time distribution for a
individual level i (i(0,T)) is based on Eq. (2-4) [1]. Cv is
� ����� ��%�����������&�� ���� ������ %���� � ���Dv fails (see
Figure 3-1). The computed values of ω can be used to derive
the idle time distribution. Each monotonic rise of ω with
regard to Cv corresponds to an idle time, and each
discontinuous step of ω corresponds to an interference at level
i (see Figure 3-1). This computation is carried out for each

level i. Now, multiple invocations for each task i can be
calculated with the idle time distributions i(0,T). The worst
case finish time of multiple invocations (Fi(k)) is based on Eq.
(2-3). In order to introduce context switch times in our
approach, we also need the start times of the multiple task
invocations. We can compute these start times with a simple
modification of Eq. (2-3). We simply set the kth computation
time of task i as the smallest possible time unit that is used in
the model. Therefore, the computation of start time Si(k) is
based on the fact that this time is equivalent to the worst case
response time of a task with the same priority as task i and a
computation time C = 1(smallest time unit) + (k-1)Ci + i(k).

() () ()ωδω iii IkCk ++−+= 11 (3-1)

To summarize, we are now able to compute (i) the exact
idle time distribution at each level i i(0,T) within the hyper-
period, and (ii) the start and finish time for the multiple
invocations within the hyper-period.

Next, we describe a method for computing the timing
properties of a RT-processing that also considers
interoperability with NRT. We start with the approach from
Eq. (2-6) [2]. The last term in this equation represents the
overhead caused by task context switches, and CPER is the
context switch time. In general, CPER depends on whether a
context switch between NRT and RT, RT and RT across
different processes and RT and RT within the same process
takes place (thread vs. process see [14]). For further
clarification we denote a OS context switch as NRT – RT and a
thread context switch within the same process as RT-RT(SP)
and a thread context switch across different processes as RT-
RT(DP). The time for a NRT-RT is defined as CNRT-RT, for RT-
RT(SP) as CRT-RT(SP) and for RT-RT(DP) as CRT-RT(DP)

(Examinations about modeling context switch time see [5]).
With the calculated start and finish times of the tasks it is
possible the retrieve the kind of context switch that occurs for a
certain invocation of a task i. This happens as follows. In
Figure 3-2 we see the invocations of a task set that consist of
two RT tasks (Task1, Task2). At an invocation of Task1 an OS
switch happens (NRT – RT) happens. Furthermore also a
thread context switch between the NRT task and Task1 also
occurs. We define this as a RT-RT(DP). At the finish of Task1
a thread context switch to Task2 happens. In dependency
whether Task1 and Task2 belong to the same or different
processes a RT-RT(SP) or RT-RT(DP) occurs. The
information whether or not a context switch occurs prior to a
certain task invocation can be represented by step functions Φ
(ΦNRT-RT, ΦRT-RT(SP), ΦRT-RT(DP)). In Table 3-1 we see these step
functions for the above example under the assumption Task1
and Task2 belongs to the same process.

NRT

RT Task1

RT Task2

NRT - RT

RT - RT

Invocation 1 Invocation 2

Figure 3-2: Schematic thread invocations

Table 3-1: Step function fort he example task set.

Invocation (k) Task1

()kRTNRT
Task

−Φ 1 ()kSPRTRT
Task

)(
1

−Φ ()kDPRTRT
Task

)(
1

−Φ

1 1 0 1

2 1 0 1

Task2

()kRTNRT
Task

−Φ 2 ()kSPRTRT
Task

)(
2

−Φ ()kDPRTRT
Task

)(
2

−Φ

1 0 1 0
2 0 1 0

The interference caused by the NRT-RT context switch
overhead at level i including context switches of task i, denoted

by ()ωRTNRT
iI −

, is given by (for hep(ij) see Definition 2.1):

() ()
()

∑ ∑
∈













=
−

−− ⋅Φ=
ijj

j

hep

T

k
RTNRT

RTNRT
j

RTNRT
i CkI

ττ

ω

ω
0

In the same way, the interference caused by the RT-RT(SP)
and RT-RT(DP) respectively overhead at level i including
context switches of task i, denoted by , is given by:

() ()
()

∑ ∑
∈













=
−

−− ⋅Φ=
ijj

j

hep

T

k
SPRTRT

SPRTRT
j

SPRTRT
i CkI

ττ

ω

ω
0

)(
)()(

and

() ()
()

∑ ∑
∈













=
−

−− ⋅Φ=
ijj

j

hep

T

k
DPRTRT

DPRTRT
j

DPRTRT
i CkI

ττ

ω

ω
0

)(
)()(

The interferences from context switch between NRT and RT,
RT-RT(SP) and RT-RT(DP) can be summarized and we write:

)()(DPRTRT
i

SPRTRT
i

RTNRT
i

CS
i IIII −−− ++=

Therefore, NRT-RT interference is included into the
response time calculation at the critical instant, with the
following extension of Eq. (2-1):

() ()ωωω CS
iii IIC ++= (3-2)

Similarly, the NRT-RT interference is included into the
idle time computation by extending Eq. (2-4):

() ()ωωω CS
iiV IIC ++= •

(3-3)

Modeling the RT – NRT interoperability extends the basic
formulations of the response time analysis (RTA). Therefore,
offsets, sporadic tasks, blocking factors and release jitter
formulations can also be included in our RTA formulation.
These extensions are, however, not discussed in this paper.

CPU Utilization
������ �� ���� � 	
� �� ����	
��� ������� ���� ��	����	�� ���������	�

factor U is the fraction of processor time spent in the execution

of the task set. Since Ci/Ti is the fraction of processor time
spent in executing task i, the utilization factor for n tasks is
given by [6]:

∑=
i

i

T

C
U (3-4)

With the previous results the rate of certain context switches is
knows. So we can denote fNRT-RT as the frequency of NRT-RT,
with fRT-RT(SP) as the frequency of RT-RT(SP) and with fRT-RT(DP)

as the frequency of RT-RT(SP). So, with an extension of the
formulation from the CPU utilization for a specific RT-
processing is given by:

∑
−−

−−−−
Π

⋅+

⋅+⋅+
=

)()(

)()(

DPRTRTDPRTRT

SPRTRTSPRTRTRTNRTRTNRT
j

j

Cf

CfCf
T

C

U
 (3-5)

NRT Properties
The following properties of the RT-NRT interoperability can
be derived from the above calculations.
• The i(0,T)-distribution at the lowest priority level i is

equal to the NRT computation distribution.
• The response time of the lowest priority task at the critical

instant corresponds with the longest suspension of NRT
computation.

• fNRT-RT is a crucial factor for NRT-RT interoperability
overhead. NRT update-functionality (E.g. graphic) is
disturbed through a higher fNRT-RT. Thus the RT-NRT
interoperability performance isn’t 100% at high fNRT-RT

(see [12],[13])

4 IMPLEMENTATION AND CASE STUDY

Computing the timing properties
The main steps for computing the timing properties for a RT-
NRT processing can be summarized as follows:
1. First the timing metrics of a RT-processing that does not

consider interoperability are calculated.
2. Second, with the calculated start and finish times of the

tasks the step functions ((ΦNRT-RT, ΦRT-RT(SP), ΦRT-RT(DP))
are determined.

3. In a third step, with our extended equations (see Eq. (3-
2) and Eq. (3-3)) start and finish times of the tasks are
calculated that consider NRT-RT, RT-RT(SP) and RT-
RT(DP). Howsoever, these results can change the step
functions and so step 2 and step 3 have to be repeated
until the step function does not change between the
iterations.

4. Finally, the CPU utilization from the RT load based on
Eq. (3-5) is calculated as well as the NRT properties can
be determined based on the timing metrics results (see
chapter 3, NRT Properties).

PUMA Open Automation System
We have applied our process model in the automation system
(AS) PUMA Open. PUMA Open is targeted for the design and
test of engines, transmissions and power trains. It is a large
and complex AS running under the operating systems Windows
NT/2000/XP for NRT processing and INtime for RT

processing, respectively. Its basic functionality includes safety
monitoring, data acquisition and storage as well as control and
automation functions. Data acquisition is performed at
frequencies up to 10 kHz. Furthermore, PUMA Open is
required to operate complex control loops within 1 ms response
time. Due to these requirements, it is important to understand
and model all mechanism of its RT processing as well as
predict the timing behavior in the resolution of microseconds.

In [13] we have evaluated the Windows-INtime
interoperability. For a PENTIUM II (434 MHz) configuration
the OS context switch time (CNRT-RT) was determined as 3 µs.
Furthermore a RT-RT(DP) is also determined with 3 µs and a
RT-RT(SP) with 2 µs. Thus, a high context switch rate has a
significant influence on the system performance.

0
2
4

6
8

10
12

14
16
18

0 5000 10000 15000 20000

F r equency / Hz

Figure 4-1: The relative CPU usage caused by Windows–
INtime context switches at different rates.

Further Windows-INtime results are (i) that a suspension
of Windows for more than 7 ms affects the GUI is severely, (ii)
a suspension of 10ms disturbs the network [15] and (iii) that
the Windows-INtime interoperability performance overhead
may exceed 10 % at high OS context switch rates. To monitor
a representative task set of a RT-processing we have
implemented the ProfileAnalyzer [13]. The ProfileAnalyzer is a
tool that delivers accurate measurements of thread context
switches and thread execution times.

Example Task Set
Recent timing requirements of the PUMA Open are data
acquisition, monitoring and control with 10 kHz. So in this
example, we demonstrate the applicability of our model. We
work with three tasks (thread T1, T2 and T3) shown in Table
4-1 and each thread belong to an own process (thread vs.
process see [14]). Figure 3-1 depicts the result of multiple
invocations that doesn’t consider interoperability and
Figure 4-3 and Table 4-3 shows the result of our model that
includes the interoperability overhead. Without the context
switches T1, T2 and T3 keep its deadlines (see Error! Not a
valid bookmark self-reference.). However, when including
the context switch times T3 misses its deadline (see Table
4-3).
Table 4-2 shows the calculated timing properties.

Table 4-1: Example Task Set 2

Process Task T / �s C / �s D / �s Priority
A T1 100 20 100 1
B T2 200 50 100 2
C T3 400 20 100 3

Figure 4-3 and Table 4-3 shows the result of our model that
includes the interoperability overhead. Without the context
switches T1, T2 and T3 keep its deadlines (see Error! Not a
valid bookmark self-reference.). However, when including
the context switch times T3 misses its deadline (see Table
4-3).

Table 4-2: Calculated timing properties that don’t
consider interoperability.

Task k A / �s S / �s F / �s R / �s
1 0 0 20 20
2 100 100 120 20

T1

3 200 200 220 20
1 0 20 70 70
2 200 220 270 70

T2

3 400 420 470 70
1 0 70 90 90T3
2 400 470 490 90

Figure 4-2: Calculated multiple invocations that don’t
consider interoperability.

Table 4-3: Response times including context switches.

Task k A / �s S / �s F / �s R / �s
1 0 6 26 26
2 100 103 123 26

T1

3 200 206 226 26
1 0 29 79 79
2 200 229 279 79

T2

3 400 429 479 79
1 0 82 128 128T3
2 400 482 528 128

Figure 4-3: Calculated multiple invocations that consider
interoperability.

The calculated CPU utilization without interoperability is
UΠ= 50 %. At including interoperability fNRT-RT follows with
7450 Hz and fRT-RT(DP) with 19950 Hz. Therefore, the CPU
utilization with Eq. (3-5) is UΠ= 60.48 %. The longest
suspension from NRT (NT_THREAD) is 128 µs that is far
away from 7ms, that can disturb NRT. However, an fNRT-RT

with 7450 Hz disturbs the NRT update-functionality, so that
e.g. the NRT graphic can be remarkable affected.

Representative PUMA Open task sets have more than 50
tasks. Including the interoperability results in a better fit to the
measurements, especially for the CPU utilization. The
deviation between measured and computed values is smaller
than 1 %. We demonstrate this with the following small
PUMA open counter example. In this example all RT tasks are
periodic, scheduled according to the rate monotonic (RM)
policy and belong to the same process. Table 4-4 shows the
input timing properties (Ti and Ci) as well as with our approach

calculated response times of theses tasks. Figure 4-4 depicts
the computed timing behavior for this task set in a Gantt chart.
Due to the complexity of this task set, the iterative calculation
(see above) has to be repeated tree times, until the step
functions do not change.

The context switch rate and the utilization are derived as
fNRT-RT = 2.9 kHz and fRT-RT(SP) (all tasks belong to the same
process) = 10.5 kHz and so UΠ ~ 60%. The deviation between
measured and computed values is smaller than 1%.
NT_THREAD represents the Windows NRT task. Its
maximum suspension time is computed as 3189 µs (response
time of the lowest priority task) and the total computation time
of the NRT task within 1s is ~ 420 ms. Given these numbers
(fNRT-RT is smaller than frOm example 1) we can conclude that
the Windows performance is only slightly affected.

Table 4-4: Example task set 3 (PUMA Open).

i Ti [ms] Ci [�s] Ri [�s]
1 0.2 30 30
2 0.5 40 70
3 1 90 170
4 2 260 500
5 2 95 671
6 4 100 773
7 8 160 969
8 10 17 988
9 16 50 1242
10 20 116 1360

 11 32 11 1373
12 50 80 1489
13 100 280 1883
14 200 34 1919
15 320 134 2728
16 500 55 2785
17 1000 200 3189

Figure 4-4: Computed timing behavior for the example
task set 3 represented as Gantt charts.

5 DISCUSSION

We have presented a process model for computing the
timing properties of complex systems with real-time (RT) and
non real-time (NRT) processing. Our modeling technique is
based on the response time analysis (RTA). We have extended
this approach to quantify the interoperability of RT and NRT
processing. Therefore, we include the overhead of RT and
NRT processing as well as the overhead of the RT processing
itself into the RTA formulation for the computation of response
times of task. Furthermore, we show that the RTA formulation

can be used to obtain the CPU utilization of a RT load and
NRT timing properties that are important for the development
and operation of most AS.

Our approach was demonstrated on the automation system
(AS) PUMA that combines both RT and NRT processing on
the same target platform and it is based on the general purpose
OS Microsoft® Windows NT/2000/XP and its real-time
extension INtime. The small deviation between the computed
and the measured timing properties in our PUMA Open test
cases demonstrates the feasibility of our approach.

The computation of each value of the idle time
distribution i(0,T) has a similar complexity to the computation
of Ri. As ongoing and future work we optimize and speed-up
the idle time computation. Furthermore, we want to take
offsets and sporadic tasks into consideration for our model.
Finally, we will include a formulation for interrupts that are
executed in the context of the pre-empted task.

REFERENCES

[1] BERNAT. G., 2002 Response Time Analysis of Asynchronous Real-
Time Systems, University of York

[2] BURNS, A., 1994: Preemptive Priority-Based Scheduling: An
Appropriate Engineering Approach, Advances in Real Time Systems,
1994 225-248.

[3] AUDSLEY, N., C.; BURNS, A., 1993 Applying New Scheduling
Theory to Static Priority Pre-emptive Scheduling. Software
Engineering Journal

[4] BURNS, A., WELLINGS. A., 2001: Real-Time systems and
programming languages. Addision Wesley 3rd edition, 2001

[5] BUSQUETS, M., WELLINGS A., 1996: Adding Instruction Cache
Effect to Schedulability Analysis of Preemptive Real Time Systems.
University of York

[6] BUTTAZZO, G. C., 1997: HARD REAL_TIME COMPUTING
SYSTEMS, Predictable Scheduling Algorithms and Applications,
London, Kluwer Academic Publishers

[7] http://www.dedicated-systems.com

[8] Real Time Magazine Real-Time Consult “INTIME 1.20”;
http://www.dedicated-systems.com

[9] INtime Software Overview Guide, RadiSys

[10]KLEIMAN, S., SHAH, D., SMAALDERS, B., 1996 Programming
with Threads, California

[11]LIU, C. L., LAYLAND, J. W., 1973: Scheduling algorithms for
multiprogramming in a hard-real-time environment, Journal of the
Association for Computing Machinery, 20(1), pp. 46-61

[12]OBENLAND, K. M., ROSEN, L. H., 2000: The Performance Trade-
offs of Implementing a Large Scale Real-time Application Using the
Windows NT Operating System, Proceedings of the Sixth IEEE Real
Time Technology and Applications Symposium, 2000

[13]PRISCHING, D., RINNER, B., 2003: Thread-based analysis of
embedded applications with real-time and non real-time processing on
a single-processor platform, embedded world 2003 Congress,
Nürnberg

[14]SILBERSCHATZ. A., GALVIN, P., GAGNE, G., 2000: Applied
Operating System Concepts, Hohn New York, Wiley & Sons, Inc.

[15]www.tenasys.com

