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Abstract:

Model-based monitoring and diagnosis systems must be able to express and reason
with incomplete knowledge. However, it is desired to refine the imprecision in the
underlying model when more measurements from the supervised system are avail-
able. Imprecision is often specified by intervals of model parameters. In this paper
we compare the two refinement methods refutation and parameter estimation in
the context of monitoring. Refutation removes parts of the parameter intervals that
are provable inconsistent with the measurements. Parameter estimation, on the
other hand, searches for exact parameter values that best match the measurements.
This comparison is supported by various experiments with the refutation-based
refinement implemented in the MOSES monitoring system and the MATLAB system

identification toolbox.
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1. INTRODUCTION

In case of an unexpected fault knowledge about
the supervised system is per definition incomplete.
Model-based monitoring and diagnosis systems
must, therefore, be able to express and reason
with incomplete knowledge. However, it is desired
to refine the imprecision in the underlying model
when more measurements from the supervised
system are available. Imprecision is often specified
by intervals of model parameters.

This paper focuses on the refinement process of
imprecise models, i.e., we compare the two refine-
ment methods refutation and parameter estima-
tion in the context of monitoring. Both methods
start with a parameterized differential equation
as system model. Refutation removes parts of
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the initial parameter intervals that are provable
inconsistent with the measurements. Parameter
estimation, on the other hand, searches for exact
parameter values that best match the measure-
ments.

Refutation-based refinement expands ideas from
semi-quantitative system identification (Kay et
al., 2000) and its application to monitoring
(Rinner and Kuipers, 1999). The refutation-
based refinement method used in this compari-
son has been implemented in the monitoring sys-
tem MoSES (Rinner and Weiss, 2002¢; Rinner
and Weiss, 2003). Parameter estimation is a tra-
ditional refinement method (Ljung, 1999); vari-
ous estimation techniques have been implemented
in the SYSTEM IDENTIFICATION TOOLBOX from
MATLAB (The Mathworks, Inc., 2001).

The remainder of this paper covers these param-
eter refinement methods in more detail. Section 2



introduces the refutation refinement method. Sec-
tion 3 compares the refinement procedures of both
methods and Section 4 presents experimental re-
sults using MOSES and the SYSTEM IDENTIFICA-
TION TOOLBOX for MATLAB. A summary and a
discussion about related work conclude this pa-
per.

2. SUBSPACE REFUTATION

Both refinement methods compared in this paper
are based on a parameterized differential equation
model. This section briefly summarizes the impre-
cise modeling and the refutation of subspaces used
in MOSES.

In general, a technical system is modeled as a
linear system

where x(t) is the state vector, u(t) is the in-
put vector, p is the parameter vector, y(t) is
the output vector, and A,B,C,D are matri-
ces with appropriate dimensions and functions
of p. In an imprecise model p is a vector of
intervals instead of exact numerical values, i.e.,

13 = [(217ﬁ1)7 (E271_)2)7 st (BKJ_)K)]T' The SyStem
is then imprecisely specified as:

k() = AG)X(M) +BEu®) o
¥(t) = C(P)X(t) + D(p)u(t)

The model imprecision is now represented by
the K-dimensional uncertainty space specified by
P- In order to refute parts of this uncertainty
space we must first divide it into smaller regions
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If the monotonicity of x and y with regard to p is
given (Rinner and Weiss, 2002b), the trajectories
of all subspaces can be derived by computing the
integral only at special (extremal) points of the
subspaces. Thus, the trajectories of the imprecise
model can be computed by standard numerical
methods starting at the extremal points of the
subspaces. The number of extremal points is ex-
ponential in the number of uncertain parameters,
and therefore the computational effort for com-
puting the trajectories strongly increases with the
number of uncertain parameters.

Each subspace model can be checked for consis-
tency with the measurement by checking whether

the sample at time ¢ (superimposed by a fixed
noise interval) lies within the computed trajecto-
ries of the subspace model at t. When there is
no overlap the subspace model is inconsistent and
refuted from further processing. The correspond-
ing partition is then also refuted and the model’s
imprecision has been refined.

3. COMPARISON OF THE TWO
REFINEMENT METHODS

A brief comparison of the refutation approach and
traditional parameter estimation is summarized in
Tab. 1. The most important requirements for the
two approaches as well as their main features are
informally described in this section.

3.1 Refinement by Refutation

At all extremal points of each subspace trajecto-
ries are computed using a standard Runge—Kutta
solver. All these subspace model behaviors are
checked for consistency with the measured data,
and inconsistent models are refuted. The above
steps are repeated for all data samples. As more
subspace models get inconsistent and, therefore,
are refuted the parameter space gets smaller.

Note that for refutation the only requirement for
measurement noise is that its amplitude must
be bounded. No special distribution has to be
assumed. Measurement noise can, therefore, be
modeled as an interval parameter.

Currently, only linear models with time-invariant
parameters are supported. Although, slight non-
linearities may be covered by wider parameter in-
tervals. Since refutation is an incremental method,
it can be applied online. However, depending on
the number of uncertain parameters and the num-
ber of partitions the refinement can be a very time
and memory consuming task.

Refutation keeps the implicit correspondence be-
tween model parameters to physical parameters.
It does not result in parameter values outside the
initial interval and, therefore, does not violate the
modeler’s interpretation of the parameters.

3.2 Traditional Parameter Estimation

The starting point for the standard parameter
estimation is also a parameterized model struc-
ture. Contrary to refutation, many different types
of models can be used for parameter estimation.
A lot of different methods have been developed
for various application domains. For the purpose
of this work mainly methods for parameterized



REFUTATION

PARAMETER ESTIMATION

Requirements
model structure
model

parameters
measurement noise

known a priori

linear systems
intervals, time-invariant
bounded amplitude noise

not required
linear systems
exact values, time-variant possible
filtered white noise

refined model

derived system behavior
computational load
uninformative data
parameter interpretation

initial values noncritical critical for convergence
Features

mode of operation online online
discontinuous changes possible possible

reduced parameter intervals
guaranteed bounds
strongly dependent on uncertain parameters
insensitive
maintains physical interpretation

exact parameter values
best matching single behavior
moderate
may converge to wrong model
interpretation may get lost

Table 1. Summary of important requirements and features of the refinement methods
refutation and traditional parameter estimation.

state—space representations are used, i.e., only
the prediction error method (PEM) is applied. In
short, a residual, the prediction error, is calculated
from the predicted and the measured value. This
residual is a function of the parameters. Minimiz-
ing the norm of the prediction errors with respect
to the parameters yields the parameter’s values
that best fit the data.

As an iterative method PEM needs initial param-
eter values to start the iteration. Unfortunately,
the choice of these initial values is critical for
the convergence. The iteration may get stuck at
a local minimum (Ljung, 1999). There are also
some requirements for the measurement noise. To
ensure correct estimates, it has to be filtered white
noise. The measured data has to be informative
about interesting frequency ranges. Parameter es-
timation results in exact values for parameters.
Therefore, only a best matching single behavior
of the analyzed system is derived. There are no
guaranteed bounds on the system behavior as in
refutation.

Traditional parameter estimation methods are ap-
plied for time—invariant and linear models. Recur-
sive formulations of standard algorithms are for
online operation and can cope with time-variant
parameters. For the computation of the estimates
efficient algorithms are available. The computa-
tional load is kept within acceptable limits. As
a widely used implementation of parameter esti-
mation methods the system identification toolbox
(StTB) for MATLAB (Ljung, 2001) is used in this
work.

Parameter estimation may result in completely
different parameter values than their initial val-
ues. This strongly complicates the physical inter-
pretation of the parameters which is important in
monitoring and diagnosis applications.
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Fig. 1. The heating system. Ly, Lo, L3, L15, Log,
C1, Cy and C3 are the system parameters. T,
T> and T3 are the element temperatures and
Tp is the environment temperature. The g;j
are heat flows.

4. EXPERIMENTAL RESULTS

In order to compare the performance of the re-
finement methods several experiments have been
conducted. Data from simulated processes as well
as a real technical system are used as input to
Mosks and SITB.

Basis for all experiments is a laboratory scale
heating system which consists of three heat-
ing/cooling elements mounted on a thermal con-
ductive plate. A process control computer (B&R
2003) controls the individual elements and trans-
fers the measured data to the monitoring system.

For our experiments the heating system is mod-
eled as an imprecise linear differential equation
(Fig. 1) (Rinner and Weiss, 2002a), and only the
heating source g;» and environment temperature
T, are considered as inputs. The outer heating ele-
ments (g;; and ¢;3) remain switched off. In overall
there are eight uncertain parameters in the model.
These are the thermal conductivities L; and the
thermal masses Cj, i.e., p1,-..,p3 correspond to
Lq,...,Ls, ps and ps correspond to Li2 and Lo,
and pe, - - -, psg correspond to C1,...,Cs.

The structure of this model is given as (cp. Eq. 1)
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and the empty matrix D.

The input vector consists of two elements. The
binary controller signal for heating element g;2
and the environment temperature Ty. Transitions
of the binary signal can be seen as mode changes.
In case of the heating system the controller signal
corresponds to on and off states of the heater.

In our experiments we have used three different
data sets as input to the refinement methods.
First, data is simulated from a linear SIMULINK
model corresponding to Eq. 4. In this case
all parameters are exactly known. Second, the
SIMULINK model is slightly modified by introduc-
ing a moderate nonlinear saturation effect, i.e., the
parameter vector slightly depends on the system
state. Both simulated data sets are superimposed
by an uniformly distributed noise of variance 0.2.
Finally, data from the real heating system is used.
In this case we have only a very imprecise knowl-
edge about the parameter values, and we do not
know the properties of the measurement noise.

All experiments have been performed using MOSES
implemented on a standard PC running LINUX
and the SITB in version 5.0.1 under WINDOWS.

4.1 Simulated linear Process

In this experiment the refinement capabilities are
compared using simulated data derived from a
linear model with known parameter values. The
results of the parameter refinement with the SiTB
and MOSES are shown in Tab. 2 and Tab. 3,
respectively.

In this case parameter estimation excels over refu-
tation. Even with data superimposed by rather
large noise the estimated values are very close to
the real parameter values.

As an additional experiment, the model resulting
from parameter estimation is used to monitor
the underlying process, i.e., the exact model and
an interval for the measurement noise are used
as model in MOSES. As expected the estimated
values (cf. Tab. 2) allow the linear behavior to be
tracked without any false alarms.

Real Value | Initial Value | Estimate
p1 0.12 0.1 0.1191
D2 0.1534 0.2 0.1553
p3 0.12 0.1 0.1191
P4 0.65 0.8 0.6452
5 0.649 0.8 0.6452
D6 50 40 49.7288
7 59 70 59.5756
D8 50 40 49.7288
Table 2. Refinement of linear model

parameters using the prediction error
method (PEM) from the SITB.

Real Value | Initial Interval | Refined Interval
P 0.12 (0.1, 0.2) (0.1, 0.15)
p2 0.1534 (0.1, 0.2) (0.15, 0.2)
P3 0.12 (0.1, 0.2) (0.1, 0.15)
P4 0.65 (0.5, 0.8) (0.5, 0.8)
P5 0.649 (0.5, 0.8) (0.5, 0.8)
D6 50 (33, 100) (33, 100)
p7 59 (33, 100) (33, 100)
P8 50 (33, 100) (33, 100)

Table 3. Refinement of linear model
parameters by MOSES.

4.2 Simulated Process with a nonlinear Effect

In this experiment the comparison is based on sim-
ulated data from a nonlinear system model with
known parameters. The results of the parameter
refinement with the SITB and MOSES are shown
in Tab. 4 and Tab. 5, respectively.

Noise and the nonlinear behavior can cause prob-
lems for parameter estimation. As can be seen in
Tab. 4 the estimated parameters are very different
from the real ones. However, the resulting behav-
ior describes data from the process with accept-
able accuracy. But with diagnosis in mind getting
an accurate simulation of a process is not the only
desired result. Moreover, it is also preferable to
retain a mapping of physical system components
to model parameters. For example parameter pg
corresponds to a thermal mass. A negative value
for this parameter makes a physical interpretation
difficult.

In Tab. 5 the results of MOSES are presented.
With such heavy noise the refinement by refu-
tation is moderate. Although, MOSES does not
converge to wrong parameters. More significant
nonlinear effects, however, result in the need for
wider parameter intervals to be able to track sys-
tem behaviors. Such a case is undesirable because
fault detection time increases with growing pa-
rameter intervals.

Monitoring the given process in MOSES using
exact values computed by the SITB results in an
early false alarm. As can be verified by Fig. 2,
the exact model leads to a false alarm at time
t = 62s. Even tough a noise level of 1.5 (instead
of 0.2 as in the data creating process) was specified
for the monitoring algorithm. Note that although



Real Value | Initial Value | Estimate
P1 0.12 0.1 0.8984
P2 0.1534 0.2 0.1674
P3 0.12 0.1 -0.6360
j 2 0.65 0.8 4.8738
5 0.649 0.8 -3.4399
Pe 50 40 377.0969
7 59 70 63.3121
P8 50 40 -261.9042

Table 4. Refinement of a model with
saturation effect computed using SITB.

Real Value | Initial Interval | Refined Interval
D1 0.12 (0.1, 0.2) (0.10, 0.15)
P2 0.1534 (0.1, 0.2) (0.15, 0.20)
D3 0.12 (0.1, 0.2) (0.10, 0.15)
P4 0.65 (0.5, 0.8) (0.5, 0.8)
s 0.649 (0.5, 0.8) (0.5, 0.8)
D6 50 (33, 100) (33, 100)
7 59 (50, 100) (50, 100)
D8 50 (33, 100) (33, 100)

Table 5. Refinement of a model with
saturation effect computed by MOSES.

exact model parameter values are used bounding
envelopes are derived by MOSES because the noise
interval is treated as an additional parameter.
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Fig. 2. Monitoring a (simulated) linear process
with slight nonlinearities. The system param-
eters are computed by the SiTB.

4.8 Real-world Heating System

In this experiment data from the real-world heat-
ing system is used. Since our knowledge about
the parameter values is very limited we start
the refutation-based refinement process with very
large intervals because we want to be sure that
the ”real” values lie within the initial intervals.
Using data from the fault free process, MOSES
is now able to dramatically refine the intervals.
This refinement is shown in Tab. 6. As a measure
for the model imprecision the uncertainty space
is stated as the product of the interval widths of
all parameters. The uncertainty space is reduced
by several orders of magnitude. Note that the
achieved refinement is much better compared to
the previous experiments because there is less
noise in the data.

With the SITB, on the other hand, only exact
parameter values are computed. Tab. 7 presents

Initial Interval | Resulting Interval
p1 (L1) (0.01, 1) (0.11, 0.13)
p2 (L2) (0.01,1) (0.14, 0.18)
p3 (L3) (0.01, 1) (0.11, 0.13)
pa (L12) (0.01, 10) (0.62, 0.8)
ps (L23) (0.01, 10) (0.62, 0.8)
pe (C1) (5, 200) (48, 63)
p7 (C2) (5, 200) (57, 66)
ps (Cs) (5, 200) (48, 63)
Uncertainty
Space 3.72E+05 1.94E-02

Table 6. Refinement with data from the
heating system computed by MOSES.

Initial Value | Estimate
p1 (L1) 0.1 0.1342
pa (L2) 0.2 0.1013
p3 (L3) 0.1 0.1342
pa (L12) 0.8 0.6435
ps (Las) 0.8 0.6435
p6 (C1) 40 68.0733
p7 (C2) 70 74.3107
ps (Cs) 40 68.0733
Table 7. Refinement of the heating sys-

tem model computed using SITB.

these results computed with the PEM routine
from the SiTB. Like previous results this exper-
iment shows the strength of MOSES compared to
the SITB.

Again, using the model from the SITB for moni-
toring the process leads to an early false alarm.
This situation is depicted in Fig. 3. As in the pre-
vious case there is not a single predicted behavior
but two bounding envelopes due to measurement
noise.
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Fig. 3. Monitoring the heating system using exact
parameters computed by the SITB.

5. DISCUSSION

In this paper we have compared the two refine-
ment methods refutation and parameter estima-
tion. Especially in monitoring and diagnosis, re-
finement is an important feature since the ini-
tial knowledge about the supervised system is
imprecise. It is desired to (automatically) reduce
the model imprecision by exploiting the measure-
ments from the healthy system. This refinement
can be applied either offline prior to monitoring
or online.



Both methods refine or estimate the parameters
of a linear differential equation model. Refuta-
tion narrows the initial parameter intervals, keeps
the correspondence of the model parameters to
the physical parameters, and is insensitive to un-
informative data. Parameter estimation on the
other hand searches for best matching parameter
values and can cope with time-variant param-
eters. The convergence of parameter estimation
is sensitive to the initial parameter values, and
the important correspondence between model and
physical parameters is more complicated and re-
quires more complex (nonlinear) models (Frank et
al., 2000). The result of the parameter estimation
also depends on the norm used in the prediction
error method (PEM). In this comparison we only
applied the standard quadratic norm. The com-
putational load for refutation may be very high,
especially when the number of uncertain parame-
ters and partitions is large.

Related work has been done by (Bradley et al.,
2001). In their framework PRET nonlinear models
are automatically constructed using experiments
on a physical system. PRET focuses on system
identification and not on monitoring. Petridis and
Kehagis (Petridis and Kehagias, 1998) have de-
veloped a parameter estimation algorithm for dy-
namic, nonlinear systems. They partition the un-
certainty space into a number of different models
with exact parameter values. The trajectories of
these models are computed simultaneously, and
the model with the smallest deviation to the mea-
surements is selected. The deviation is computed
based on a stochastic representation and results
in probabilities for the individual models. Finally,
there are several examples for applying interval
models and/or parameter estimation for monitor-
ing technical system, e.g., (Tornil et al., 2000),
(Armengol et al., 2000), (Narasimhan et al., 2002).

The presented empirical comparison can be deep-
end and extended in various ways. Thus, future
work may include (i) an evaluation of different
norms for the predictive error method (PEM), (ii)
a formal investigation of the theoretical properties
of both approaches, and (iii) different case studies.
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