
Q U A L I T A T I V E S I M U L A T I O N

Toward Embedded Qualitative Simulation:

A Specialized Computer
Architecture for QSim
Marco Platzner, Swiss Federal Institute of Technology Zurich
Bernhard Rinner and Reinhold Weiss, Technical University Graz

QUALITATIVE SIMULATION IS A
key inference technique of model-based rea-
soning that has found use in such areas as
monitoring, fault diagnosis, and design. To
advance embedded applications of the qual-
itative simulator QSim, we have developed a
special-purpose computer architecture de-
signed to provide high performance, scala-
bility, and increased portability to embedded
computer platforms. To demonstrate our
approach’s suitability for embedded qualita-
tive simulation, we have developed a proto-
type implementation on a heterogeneous mul-
tiprocessor system. As this article discusses,
this prototype improves QSim’s performance
by two orders of magnitude.

Improving embedded
qualitative simulation

After more than a decade of research,
qualitative simulation is on the brink of being
applied to real-world problems. Interest is
shifting from pure research-oriented issues
to more application-oriented ones.

Qualitative simulation involves deriving a
dynamic physical system’s behavior given
only weak and incomplete information about
it. Qualitative simulation entails modeling
physical systems on a higher level of abstrac-

tion than with other simulation paradigms,
such as continuous simulation, which model
the physical system on a mathematical
description in the form of differential equa-
tions. Qualitative simulation relies on a fur-
ther abstraction of these differential equa-
tions—the qualitative differential equations.
Qualitative simulation requires neither a
complete structural description of the phys-
ical system nor a fully specified initial state.
This technique excels at predicting all phys-
ically possible behaviors derivable from this
incomplete knowledge.

Qualitative simulation plays an essential
role in qualitative reasoning research and is
one of the primary inference techniques in
model-based reasoning. The goal here is to
automate tasks that engineers, technicians, and
scientists perform when understanding,
designing, explaining, monitoring, and diag-
nosing physical systems. Many research pro-
jects demonstrate the applicability of qualita-

tive simulation in these areas. Some of these
research systems have been applied to real-
world problems, but only a few have led to
industrial applications or the development of
commercial products (see the “Industrial appli-
cations of qualitative simulation” sidebar).

Embedding qualitative simulation. In a typ-
ical industrial application, the qualitative sim-
ulator is part of a set of software components
that are coupled with a physical process by
sensors and actuators. The computer system
(including the software component “qualita-
tive simulator”) and the physical process (the
environment) form a dedicated unit com-
monly called an embedded system. The qual-
itative simulator in such an application has
various requirements. First, it must interact
with other software components and the envi-
ronment. Second, it must compute its results
within a reasonable amount of time. Finally,
because it is coupled to a physical process, it

THE SPECIALIZED COMPUTER ARCHITECTURE THESE

AUTHORS HAVE PROTOTYPED DRAMATICALLY IMPROVES THE

RUNTIME PERFORMANCE, SCALABILITY, AND PORTABILITY OF

QSIM, A WELL-KNOWN QUALITATIVE SIMULATOR.

62 1094-7167/00/$10.00 © 2000 IEEE IEEE INTELLIGENT SYSTEMS

must be able to handle noisy and erroneous
data. We define such an interactive, efficient,
and robust application of qualitative simula-
tion as embedded qualitative simulation.
Based on the tightness of the coupling be-
tween software components and the physical
process, we can classify two categories:

• Offline applications have a loose cou-
pling between the computer system and
the environment. Data transfers offline
between these systems, for example,
through files or a user interface.Although
the qualitative simulator’s actual perfor-
mance is important for the technique’s
acceptance, it is not vital for its function-
ality. Qualitative simulation serves as a
tool that interacts with other tools, such
as CAD systems. Interoperability, adapt-
ability, and portability are the important
implementation issues. Typical offline
applications of qualitative simulation are
design verification and failure-mode
effect analysis (FMEA).

• Online applications have a tight coupling
between the computer system and the
environment. The computer system must
be reactive; that is, it must compute its out-
put data when input data is derived from
the environment. Moreover, almost all

online qualitative simulation applications
require real-time behavior, where the time-
liness of the computer system’s results is
vital for the system’s functionality. Here,
performance and—even more impor-
tant—predictability play crucial roles. The
computer system must react without fail
to inputs from the environment within pre-
defined time windows. Because real-time
systems are also spatially tightly coupled
with the physical process, resource limi-
tations strongly influence their design.
Often widely divergent criteria must be
met, such as low power consumption,
small size, high performance, and high
reliability. Typical online qualitative sim-
ulation applications are monitoring and
fault diagnosis. Although some monitor-
ing and diagnosis applications use quali-
tative simulation, they lack reactive and
real-time behavior.

Both categories will become increasingly
important commercially, provided qualita-
tive simulators drastically improve in their
interoperability, robustness, and efficiency.
Looking at these requirements, we feel that
efficiency is the major issue. The qualitative-
modeling paradigm itself supports robust-
ness, which leads naturally to quite robust

system representations. Interoperability
requires that qualitative simulators become
software components with well-defined
interfaces, and portability to many different
platforms. Trends in software engineering,
platform independence, and component soft-
ware support this requirement. Efficiency,
however, will be the enabling factor for
embedded qualitative simulation.

Efficient embedded qualitative simulation.
Improving qualitative simulation’s perfor-
mance will require effort in the design of both
efficient qualitative simulation methods and
computer architectures that optimally support
these methods. A great challenge is the combi-
nation of AI tasks with real-time behavior, a
challenge the AI community faces more and
more nowadays. The model-based configura-
tion manager of NASA’s DS-1 spacecraft1 is an
excellent example of such combination. Based
on the taxonomy David Musliner and his col-
leagues have developed,2 we can identify three
approaches to real-time AI:

• embedding AI tasks into a real-time
system,

• embedding real-time tasks into an AI sys-
tem, and

• cooperating real-time and AI tasks.

MARCH/APRIL 2000 63

Industrial applications of qualitative
simulation

Qualitative reasoning has been a very active research area since the
early 1980s, and qualitative simulation has always played an important
role in this area. Until recently, very little research in this area has led to
industrial or commercial applications. In the last few years, however,
more attention has gone to application-oriented research.1–3

Probably the most advanced industrial application of qualitative sim-
ulation for monitoring and diagnosis is the recently completed ESPRIT
III project Tiger.4 A condition-monitoring system for gas turbines that
was developed as part of Tiger reasons in parallel at three different lev-
els to meet different reasoning and performance requirements. At the top
level, qualitative simulation predicts the turbine’s behaviors at startup
and in response to load changes. This constrained-influences approach
is based on the combined use of causality and deep knowledge in terms
of mathematical equations. Application sites include a large industrial
turbine at Exxon Chemical in the UK and a small aircraft auxiliary
power-unit turbine at Dassault Aviation in France.

An industrial application done in cooperation with Siemens5 uses
qualitative simulation for online diagnosis and monitoring of ballast-
tank systems on ships and offshore platforms. The application’s predic-
tion module derives qualitative parameter values only for instantaneous
time points to check consistency with parameter observations.

Research at the University of Wales in combination with Ford and
Jaguar has led to the commercially available design-analysis tool
Flame.6 Designs must be analyzed for hazardous and safety-critical sit-
uations. Flame automatically generates a failure-mode effect analysis
of electrical subsystems in cars. FMEA involves the investigation and
assessment of the effects of all possible failure modes on a system.
Work in this area is also done at the Technical University of Munich,

Bosch, and Daimler.
Although none of these applications uses the qualitative simulator

QSim, they have adopted many ideas from QSim. The European Net-
work of Excellence MONET (see monet.aber.ac.uk) is an excellent
starting point for further investigations of qualitative-simulation and
qualitative-reasoning applications.

References
1. Proc. First Int’l Workshop on Model-Based Systems and Qualitative

Reasoning: Perspectives for Industrial Applications, John Wiley &
Sons, London, 1996.

2. R. Milne, J. Pastor, and L. Travé-Massuyés, “Qualitative Reasoning
for Complex Systems and Their Control,” Proc. Workshop at the 16th
Int’l Joint Conf. AI, Morgan Kauffmann, San Francisco, 1999.

3. L. Travé-Massuyés and R. Milne, “Application-Oriented Qualitative
Reasoning,” The Knowledge Eng. Rev., Vol. 10, No. 2, June 1995,
pp. 181–204.

4. R. Milne et al., “TIGER: Real-Time Situation Assessment of
Dynamic Systems,” Intelligent Systems Eng., Fall, 1994, pp.
103–124.

5. O. Dressler, “On-Line Diagnosis and Monitoring of Dynamic Sys-
tems Based on Qualitative Models and Dependency-Recording Diag-
nosis Engines,” Proc. 12th European Conf. AI, John Wiley & Sons,
London, 1996, pp. 481–485.

6. D.R. Pugh and N.A. Snooke, “Dynamic Analysis of Qualitative Cir-
cuits for Failure Mode and EffectAnalysis,” Proc. Ann. Reliability and
Maintainability Symp., IEEE Press, Piscataway, N.J., 1996, pp. 37–42.

In the last approach, neither the AI tasks nor
parts of them are forced to run in real time;
the AI tasks plan and schedule the real-time
tasks. Therefore, this approach is not well
suited for developing a real-time application
with the AI task qualitative simulation. The
first two approaches, however, lead directly
to reasonable application scenarios.

Embedding qualitative simulation into a
real-time system. Here, the qualitative simu-
lator is forced to meet deadlines. The first of
two methods to achieve this reduces the qual-
itative simulation’s high execution time and
its variance by

• constraining the qualitative-simulation
algorithm’s input—the model—at the
price of decreased output quality,

• customizing the qualitative-simulation
algorithm to a certain problem class
(incorporating domain knowledge to sim-
plify qualitative simulation), and

• supporting qualitative simulation by a
specialized computer architecture, often
denoted as performance engineering.3

Although these strategies will let us solve
numerous important real-world problems,
none makes an algorithm for qualitative sim-
ulation predictable in general. The second
method to force qualitative simulation to meet
deadlines is to design incremental or anytime
algorithms.4 This method makes the simula-
tion task interruptible and at any time provides
a useful—rather than the optimal—reaction.

Embedding real-time tasks into qualitative
simulation. Here, most parts of the qualita-
tive simulator remain unchanged. However,
some functions that must have predictable
execution times are integrated into the sys-
tem as high-priority tasks. An example sce-
nario for this approach is a monitoring and
diagnosis system where a real-time task
monitors the system state and, if it detects
critical values of some parameters, triggers
an alarm shutdown. Otherwise, the moni-
tored system state passes to an AI task that
diagnoses the system, but not in real time.

Specialized computer architecture. To
advance embedded applications of qualita-
tive simulation, we have developed a spe-
cialized computer architecture designed to
improve the runtime performance, scalabil-
ity, and portability of QSim.5 Our approach
improves runtime performance by paral-
lelizing and mapping some QSim functions
onto a multiprocessor system and migrating
others from software to dedicated hardware.6

This approach will broaden the application
area for QSim in offline applications and
facilitate qualitative simulation in online
applications. In the presence of timing con-
straints, our approach will enable a wider
range of real-world examples to be simulated
in real-time, following the performance-engi-
neering approach. Scalability means that we
can adapt our computing system’s perfor-
mance to the problem complexity by adding
more processing elements and dedicated
hardware. We increased portability by imple-
menting QSim in C, which is far more appro-
priate for porting the qualitative simulator to
different embedded-processor platforms than
the original Lisp implementation.

QSim algorithm

In QSim, models take the form of either
qualitative differential equations (QDEs) or
constraint networks, which consist of variables
and constraints. Variables represent system
parameters, such as velocity or temperature.
Variable values are expressed by two parts, a
qualitative magnitude (qmag) and a qualitative
direction (qdir). Constraints describe relations
between system parameters. QSim uses several
types of constraints that represent arithmetic
relations (such as ADD–, MULT–, and D/DT–
constraints) and functional dependencies (such
as the monotonic function constraints M+ and
M-) between variables.

QSim predicts all possible behaviors of a
physical system. A behavior is a sequence of
states that represent one possible temporal
evolution of the system. The generation of
behaviors basically requires the solution of
two different problems:

• Generation of initial states: Given a QDE
and partial information about the initial
state, determine all complete, consistent
qualitative states.

• Generation of successor states: Given a
QDE and a complete qualitative state,
determine its immediate successor states.

Figure 1 shows the flowchart of the basic
QSim algorithm. Initial state processing gen-
erates all complete, consistent initial states and
stores them in an agenda for further processing.
The algorithm generates each state’s immedi-
ate successors in three successive steps:

• The algorithm determines the possible
values of all variables for the next time-
step (generate possible values).

• The QSim kernel generates all candidates
for successor states.

• The algorithm applies global filters to test
each candidate state for consistency with
the behavior’s other states—for example,
to detect cycles.

States surviving all these checks are stored in
the agenda. The generation of successor states
continues until the algorithm has processed
all states in the agenda or has reached a
resource limit.

The QSim kernel consists of two consec-
utive functions, constraint filter and form-
all-states, which are further hierarchically
structured as Figure 2 shows. The constraint
filter calls several tuple-filter functions. Each
constraint in the QDE requires one tuple-fil-
ter function. These functions further divide
into constraint-check functions. CCFs are
primitive functions, and an individual CCF
exists for each constraint type.

The QSim computer
architecture

In developing our QSim computer archi-
tecture, we relied on two strategies: paral-
lelizing and mapping more complex QSim
kernel functions onto a multiprocessor and
supporting small but runtime-intensive func-
tions with specialized processing elements.

64 IEEE INTELLIGENT SYSTEMS

Agenda={} End

Initial state
processing

Generate
possible values

Constraint
filter

Form-all-states

Global filters

Start

Yes

No

QSim kernel

Figure 1. QSim flowchart.

Combining both strategies produces the
maximum performance gain.

QSim kernel multiprocessor. The genera-
tion of all candidate successor states in the
QSim kernel is equivalent to finding all solu-
tions of a constraint-satisfaction problem
defined by the constraint network and the
possible values of all variables.7 Thus, we
can also view the QSim kernel as a CSP
solver. The kernel functions find the solu-
tions by transforming the constraint network
into its dual representation; that is, the net-
work’s constraints become the CSP’s vari-
ables, and the CSP’s constraints represent the
constraint network’s shared variables. From
this viewpoint, the constraint filter achieves
local consistency of the dual-constraint net-
work—node and arc consistency—and form-
all-states finds all globally consistent vari-
able assignments (CSP solutions).

Parallel constraint filter. The constraint filter
uses the possible values of all variables as
input data and returns only combinations of
these possible values that do not violate local
consistency conditions. This filtering takes
two consecutive steps:

• The tuple-filter function returns only
tuples that are consistent within an indi-
vidual constraint (node consistency).

• The Waltz filter function discards tuples
that violate conditions between adjacent
constraints (arc consistency).

The dataflow graph in Figure 3 reveals that
all tuple-filter functions are independent and
can execute in parallel. The number of con-
straints C of the QDE determines the degree
of parallelism. The Waltz filter executes after
all tuple-filter results have been received. All
constraint-filter functions can group logically
in a master/slave structure of tasks. For each
QDE constraint, one slave task executes that
constraint’s tuple-filter function. The master
task transmits the input data to all tuple-fil-
ter tasks, receives the tuple-filters’ results,
and executes the Waltz filter.

Although the logical structure implies the
use of multiprocessors in a star topology
with the master as the central node, we map
the constraint-filter tasks onto a wide-tree
topology. In a wide tree, each node can have
more than two children and the master task
corresponds to the root node. On the one
hand, this is motivated because in a star struc-
ture the master becomes a bottleneck as the

number of slaves increases. By using a wide
tree, we ensure scalability. On the other hand,
the wide tree leverages on a class of micro-
processors having several fast point-to-point
communication links on-chip that allow a
simple and quick setup of multiprocessors.
Using the wide-tree model, we can both eas-
ily map the logical task structure onto such a
multiprocessor and optimally exploit its
communication facilities.

Because the actual number of slave tasks
and their input data is not known before ker-
nel execution, our approach uses an online
scheduling algorithm running on the root
processor to map the slave tasks onto the
remaining processing elements. We apply a
list-scheduling algorithm that

• uses estimated task-execution times to
improve the schedule,

• guarantees a worst-case completion time
for all tasks, and

• is only slightly slower than simple task-
attraction scheduling.

Parallel form-all-states. The kernel function
form-all-states uses a backtracking algorithm
to solve the CSP. To find all solutions of the
CSP, a depth-first search must process a big
search space—spanned by the tuples surviv-
ing the constraint-filter. Unlike the constraint
filter, the function hierarchy offers no obvi-
ous parallelization. For a parallel imple-
mentation of form-all-states, the CSP must
be partitioned. Our QSim architecture uses
a parallel-agent-based partitioning strategy.8

PAB divides the overall search space into
smaller independent subspaces that any
sequential CSP algorithm can solve in par-
allel. It achieves the partitioning by divid-
ing the tuple sets of constraints into subsets.
A subspace is thus given by a subset of
tuples of some constraints and the complete
tuple sets of all remaining constraints. Our

variable-based partitioning algorithm9 per-
forms the partitioning. The degree of paral-
lelism—the number of independent sub-
spaces—depends on input data and cannot
be determined in advance.

The parallel form-all-states algorithm’s
logical structure is similar to the constraint
filter’s logical structure. Given the PAB strat-
egy, a master/slave structure also results. The
master task generates and transmits sub-
problems to the slave tasks and merges the
partial results to the overall result. The slave
tasks execute a sequential CSP algorithm to
find all solutions in the subspaces.

QSim kernel coprocessors. The tuple filter
checks each constraint for node consistency
by calling the CCF for each candidate tuple.
Our analysis revealed that these CCFs are
very runtime-consuming functions. Conse-
quently, we have designed specialized pro-
cessing elements to accelerate these CCFs
and tuple filters for the most common con-
straint types (MULT, ADD, M+, M–, and
D/DT). Our design realizes these processing

MARCH/APRIL 2000 65

Constraint
filter

QS
im

ke
rn

el

Form-all-states

Tuple
filter

Waltz filter

CCF
(D/DT, M+,

M-, ADD, MULT)

Figure 2. The hierarchical structure of the QSim functions.

t-f1

Tuples2
Tuples1 TuplesC

t-f2

w-f

Possible qualitative values

Locally consistent tuples

t-fc

Figure 3. A dataflow graph of the constraint filter for a
QDE with C constraints. t-fi denotes the tuple-filter function
for the constraint i, W-f the Waltz-filter, and tuplesi the
node-consistent tuples of constraint i.

elements as coprocessors attached to the mul-
tiprocessor processing elements.

As an example, Figure 4 shows the data-
flow graph of the MULT-CCF, one of the
most time-consuming CCFs. We can parti-
tion this CCF into four subfunctions, SF1 to
SF4. The subfunctions SF1 to SF3 check
whether various rules for qualitative multi-
plication hold with respect to the given input
values. These subfunctions require triples of
qualitative values as input data and return
boolean results. SF3 forms an iteration over
additionally required qualitative values, called
the corresponding values, stored in the inter-
nal memory. SF4 performs a logical AND
operation on the partial results of SF1 to SF3.

The main coprocessor design’s features are

• exploitation of parallelism—the parallel
execution of SF1, SF2, and the iterations
of SF3,

• use of optimized data types—the number
of bits and the coding scheme of the input
values and the values stored in the
coprocessor memory, and

• use of customized memory architectures—
the internal organization and the access
mode of the coprocessor memory.

Besides the functional blocks SF1 to SF4,
the coprocessor contains a block of memory,
an I/O controller, and a function controller.
The I/O controller establishes communica-
tion to a host processor through two sepa-
rate communication channels that enable

simultaneous input and output operations.
The function controller decodes the instruc-
tions and controls the operation of all other
functional blocks of the coprocessor. The
coprocessor architectures for other con-
straint types are similar. The CCFs for the
M+ and M– are slightly less complex because
SF2 is not required. The CCF for D/DT con-
sists only of one subfunction; the iterative
check for the corresponding values is also
not required.

Prototype implementation and experi-
mental results. Figure 5 shows an example
of the overall heterogeneous multiprocessor
architecture. We chose the digital signal
processor TMS320C40 as the processing ele-
ment because of its six independent com-
munication channels and its high I/O perfor-
mance. So we can build wide-tree structures
of up to five children per node. We developed
the software using the distributed real-time
operating system Virtuoso, which supports a
portable and flexible software design.

We prototyped a number of coprocessors
on field-programmable gate arrays (FPGAs).
Table 1 shows the hardware cost in terms of
configurable logic blocks for the Xilinx XC4K
family and the utilization of the XC4013. For
the constraint types MULT, ADD, M+, and
M–, we prototyped CCF coprocessors with an
internal memory capacity of 16 triples. The
coprocessors for MULT and ADD use sequen-
tial execution of the SF3 iterations, whereas
the M+ and M– use 16 processing elements
to evaluate the SF3 iterations in parallel. For
the constraint type D/DT, we implemented a
complete tuple-filter coprocessor that checks
all 16 possible CCFs in a single step.

We based our experimental evaluation
on a prototype consisting of one to seven
TMS320C40 processors running at 50 MHz

66 IEEE INTELLIGENT SYSTEMS

SF1

Partial
results

SF2

SF4

Qualitative values (triples)

Internal memory (triples)

Result

SF3

Figure 4. The MULT-CCF is partitioned into four subfunctions, SF1 to SF4.

Front end

Processing element
TMS320C40

Processing element
TMS320C40

Coprocessor
XC4013

Processing element
TMS320C40

Processing element
TMS320C40

Processing element
TMS320C40

Coprocessor
XC4013

Figure 5. An example for the overall QSim computer architecture. The processing elements (DSP TMS320C40) connect
in a wide-tree structure with up to five children per node. The processing elements can be equipped with coprocessors
(Xilinx XC4013). The number of processing elements and coprocessors can vary owing to the scalable design of the
QSim computer architecture.

Table 1. Coprocessor types with the required hardware
cost in configurable logic blocks (CLBs) of the Xilinx

XC4K family and utilization of the XC4013.

COPROCESSOR HARDWARE UTILIZATION OF

TYPE COST (CLBS) XC4013 (%)

CCF
MULT 317 55
ADD 173 30
M+ 519 90
M– 519 90

Tuple filter
D/DT 137 24

and three XC4013 coprocessors each exe-
cuting CCFs of one type. We ran QSim sim-
ulation models on the multiprocessor, vary-
ing the number of processing elements and
tracing all kernel functions. Separately, we
measured the execution times of all
coprocessor types for all possible input data,
which let us estimate the overall runtime of
our architecture assuming full coprocessor
support. Full coprocessor support is a real-
istic scenario because recent progress in
FPGA technology now permits the integra-
tion of all coprocessor types shown in Table
1 into a single FPGA device.

The individual speedups resulting from
parallelization and coprocessor support, Scf

Sfas, and Scop let us determine the overall
speedup of the QSim computer architecture
Stot compared to the runtime on a single pro-
cessing element. The kernel’s runtime is
given by the sum of the runtimes of the two
kernel functions constraint filter and form-
all-states: tseq = tcf + tfas. We define two ratios
of kernel function runtimes, α = tcf/tseq and
β = tfas/tseq. With these ratios, the QSim com-
puter architecture’s speedup takes the form

.

Given this speedup formula, high overall
speedup clearly can result only if both kernel
functions are accelerated appropriately with
respect to their runtime ratios. Depending on
the solution of the two basic problems of
QSim—the generation of initial states and the
generation of successor states—we can iden-
tify two different classes of runtime ratios.
Our empirical runtime analysis revealed that
the generation of initial states results in a run-
time ratio of approximately α = 0.1 and β =
0.9. In this case, a high speedup for form-all-
states is important. On the other hand, gener-
ation of successor states results in a runtime
ratio of approximately α = 0.75 and β = 0.25.

Here, a high speedup for
the constraint filter is
essential; therefore, the in-
fluence of the coproces-
sors on the overall speed-
up increases considerably.

We evaluated the QSim
computer architecture
using the three QSim sim-
ulation models STLG (17
variables, 18 constraints),
RCS (45 variables, 48
constraints), and QSEA
(38 variables, 37 con-
straints).5 Table 2 shows
the kernel execution times
of a complete simulation
run for these models. This
table includes tseq, the execution time of the
QSim computer architecture using one pro-
cessing element; tmp, the execution time for
a seven-node multiprocessor; and ttot, the
execution time for a seven-node multi-
processor with full coprocessor support.
Table 2 also presents the kernel execution
times on a standard Lisp implementation of
QSim tstd. For a comparison, we simulated
the same models on a Sun Sparc10 running
SunOS 5.5, compiling and executing the
QSim source code using Allegro Common
Lisp 4.3.1. We included timing functions
into the Lisp source code to determine the
runtime required for the kernel functions. We
measured the ratios of the kernel runtime to
the overall QSim runtime—including the
global filters (see Figure 1)—as 70% for
STLG, 93% for RCS, and 98% for QSEA.

Figure 6 compares the speedup factors of
the QSim computer architecture to a standard
QSIM implementation in Lisp. An accelera-
tion factor of about three to eight results from
migrating from a Lisp to a C implementation.
This is quite remarkable because the Sparc
processor is clocked much faster than the
TMS320C40 processor and because the

TMS320C40’s special processor features are
not exploited well due to the symbolic com-
putation of QSim. Using the multiprocessor
and coprocessor support improves the per-
formance by another order of magnitude.

OUR WORK PROVIDES TWO MAIN
benefits for QSim applications. First, using
our QSim kernel coded in C improves the per-
formance by at least an order of magnitude
compared to a standard Lisp implementation
on the same processor platform. The C kernel
also improves the portability to different
embedded target platforms and the coupling
with many existing I/O subsystems for process
control and monitoring. Second, deploying
our QSim computer architecture results in a
further performance improvement of about
one order of magnitude. This specialized
architecture is scalable: processors and dedi-
cated hardware can be easily added to improve
the performance even further, if the simula-
tion model provides sufficient parallelism.

Developing this specialized architecture
has given us insights that might be interest-
ing for other AI applications as well. Paral-
lelizing AI algorithms is very different than
in scientific computing where parallelization
is more commonly applied. AI algorithms
mostly rely on symbolic computation, have
an irregular runtime behavior, and offer only

S

S S S

tot

cf cop fas

=
1

α β+

MARCH/APRIL 2000 67

Table 2. Comparison of the QSim computer architecture with the standard Lisp implementation of QSim. The runtimes
of the standard Lisp implementation (tstd) were measured on a Sparc10 running Allegro Common Lisp. These runtimes
are compared with the kernel runtimes on the QSim computer architecture with one processing element (tseq), using a

seven-node multiprocessor (tmp) and this multiprocessor with full coprocessor support (ttot).

MODEL STANDARD QSIM QSIM COMPUTER ARCHITECTURE

tstd [s] tseq [s] tmp [s] ttot [s]

STLG 0.19 0.03 0.026 0.012
RCS 4.05 1.21 0.917 0.403
QSEA 114.58 14.56 4.160 3.640

30

20

10

0
STLG RCS

Model
QSEA

Sp
ee

du
p

fa
ct

or

Standard QSim
Single PE
7 PEs
7 PEs + coprocessors

Figure 6. Speedup factors of the QSim computer architecture compared to a
standard QSim implementation in Lisp.

low to medium data parallelism. We believe
that the key to successful parallelization is

• the comprehensive analysis of the AI
algorithm,

• the exploitation of parallelism at multiple
levels of granularity, and

• the deployment of a multiprocessor sys-
tem that best matches the multigranular
parallel algorithm in its logical structure
and its communication requirements.

Both offline and online applications will
benefit from the improvement in QSim’s per-
formance. For offline applications, applica-
tion developers can simulate more complex
models in less time, which in turn will enable
qualitative simulation to more widely accepted
engineering tasks. Online applications that fol-
low the performance-engineering approach
will benefit by providing tighter bounds on the
execution times for given models. However,
performance engineering does not reduce
the QSim algorithm’s possibly exponential
worst-case behavior.

The advances in performance, scalability,
and portability of QSim are important first
steps toward embedded qualitative simula-
tion. Future efforts to reach this ambitious
goal should focus on integrating qualitative
simulation with established methods at the
quantitative level to benefit from both
worlds, improving qualitative simulation’s
real-time capabilities and deploying it in
embedded real-world applications.

Acknowledgments
This work took place at the Institute for Tech-

nical Informatics, Technical University Graz, and
was supported by the Austrian Science Fund under
grants P10411-MAT and J1429-MAT.

References
1. N. Muscettola et al., “Remote Agent: To

Boldly Go Where No AI System Has Gone
Before,” Artificial Intelligence, Vol. 103, Nos.
1–2, Aug. 1998, pp. 5–47.

2. D.J. Musliner et al., “The Challenges of Real-
Time AI,” Computer, Vol. 28, No. 1, Jan.
1995, pp. 58–66.

3. T.P. Hamilton, “AnArchitecture for Real-Time
Qualitative Reasoning,” Recent Advances in
Qualitative Physics, B. Faltings and P. Struss,
eds., MIT Press, Cambridge, Mass., 1992, pp.
279–294.

4. A. Garvey and V. Lesser, “A Survey of Research
in Deliberative Real-TimeAI,” Real-Time Sys-
tems, Vol. 6, No. 3, May 1994, pp. 317–347.

5. M. Platzner, B. Rinner, and R. Weiss, “Paral-
lel Qualitative Simulation,” Simulation Prac-
tice and Theory, Vol. 5, Nos. 7–8, Oct. 1997,
pp. 523–538.

6. B. Kuipers, Qualitative Reasoning: Modeling
and Simulation with Incomplete Knowledge,
MIT Press, Cambridge, Mass., 1994.

7. A.K. Mackworth, “Constraint Satisfaction,”
Encyclopedia of Artificial Intelligence, Vol. 1,
S.C. Shapiro, ed., John Wiley & Sons, New
York, 1992, pp. 285–293.

8. Q.P. Luo, P.G. Hendry, and J.T. Buchanan,
“Strategies for Distributed Constraint Satis-
faction Problems,” Proc. 13th Int’l DAI Work-
shop, 1994.

9. M. Platzner and B. Rinner, “Design and Imple-
mentation of a Parallel Constraint Satisfaction
Algorithm,” Int’l J. Computers and Their Appli-
cations, Vol. 5, No. 2, June 1998, pp. 106–116.

Marco Platzner is a senior researcher at the Swiss
Federal Institute of Technology (ETH) Zurich where
he works on reconfigurable computer architectures.
His research interests include embedded systems,
hardware and software codesign, and application-
specific computing systems. He received his PhD
and MSc in telematics from the Technical Univer-
sity Graz. He is a member of the IEEE, ACM, and
TIV (Telematik Ingenieurverband, Austria). Con-
tact him at the Computer Eng. and Networks Lab,
Swiss Federal Inst. of Technology (ETH) Zurich,
Gloriastrasse 35, 8092 Zurich, Switzerland;
marco.platzner@computer.org.

Bernhard Rinner is a senior researcher at the
Technical University Graz. His research interests
include parallel processing, real-time AI, and
embedded systems. He received his PhD and MSc
in telematics from Technical University Graz. He
is member of the IEEE and TIV. Contact him at
the Inst. for Technical Informatics, Technical Univ.
Graz, Inffeldgasse 16, A-8010 Graz, Austria;
b.rinner@computer.org.

Reinhold Weiss is a professor of computer science
(technical informatics) and the head of the Institute
for Technical Informatics at the Technical Univer-
sity Graz. His research interests focus on embedded
distributed real-time architectures with applications
in factory automation, digital signal processing, and
simulation. He received his Dipl.-Ing. and Dr.-Ing.
in electrical engineering and his Dr.-Ing. habil. in
real-time control from the Technical University of
Munich. He is a member of the editorial board of
Computers and Their Applications. He is a mem-
ber of the IEEE, GI (Gesellschaft für Informatik,
Germany), and ÖVE (Österreichischer Verein für
Elektrotechnik, Austria). Contact him at the Inst.
for Technical Informatics, Technical Univ. Graz,
Inffeldgasse 16, A-8010 Graz, Austria; rweiss@iti.
tu-graz.ac.at.

Microsoft Rising
... and other tales
of Silicon Valley

by Ted G. Lewis

This is the story of Microsoft® and how
it rose to become the first monopoly of
the Information Age. It is assembled
from Ted Lewis’s columns published in
Computer, Internet Computing, and
Scientific American. Microsoft Rising is a
tale of greed, emotion, and marketing
hype in one of the fastest-growing
industries of the world. It is an eyewit-
ness account of the changing computer
industry and the story of Silicon Valley
and how it works.

This book reports the author’s personal
history through the early 1990s to the
end of the decade. These stories often
try to predict or explain the chaos of
Silicon Valley. It analyzes the industry
and shows how hi-tech industry is con-
stantly changing in turmoil and up-
heaval. The book does not promise any
answers, but rather concludes this short
journey into the recent past with a
number of provoking ideas about the
future of hi-tech.

350 pages 6" x 9" Softcover
0-7695-0200-8

Catalog # BP00200
$24.95 Members / $29.95 List

Order Today!
Online Catalog
computer.org

In the U.S. & Canada call
+1 800.CS.BOOKS

68 IEEE INTELLIGENT SYSTEMS

