In,

International Conference on Acoustic, Speech and Signal Processing (ICASSP 2000).

pages 3354-3357, Istanbul, Turkey, June 2000.

A NEW APPROACH TO MODEL COMMUNICATION FOR
MAPPING AND SCHEDULING DSP-APPLICATIONS

Claudia Mathis, Bernhard Rinner, Martin Schmid, Reinhard Schneider and Reinhold Weiss

Institute for Technical Informatics
Technical University Graz, AUSTRIA

ABSTRACT

We present a novel approach to model inter-processor com-
munication in multi-DSP systems. In most multi-DSP sys-
tems, inter-processor communication is realized by trans-
ferring data over point-to-point links with hardware FIFO
buffers. Direct memory access (DMA) is additionally used
to concurrently transfer data to the FIFO buffers and per-
form computation. Our model accounts for the limited size
of the communication buffers as well as concurrent DMA
transfer.

This novel communication model is applied in our rapid
prototyping environment for optimizing multi-DSP systems.
Given an extended data flow graph of the DSP applica-
tion and a description of the target multi-processor system,
our rapid prototyping environment automatically maps the
DSP application onto the multi-processor system and gen-
erates a schedule for each processor.

keywords: communication model; mapping and schedul-
ing; multi-DSP; rapid prototyping

1. INTRODUCTION

Mapping and scheduling are key elements for rapid proto-
typing in embedded systems and digital signal processing
(DSP) as well as codesign [8]. Mapping and scheduling
of tasks onto multi-processor systems requires the estima-
tion of computation and communication times. We pro-
pose a model for buffered inter-processor communication.
This model accounts for the limited size of communica-
tion buffers as well as direct memory access (DMA) for
inter-processor data transfer, all of which is important for
mapping and scheduling DSP applications onto multi-DSP
systems. This communication model results in a more accu-
rate prediction of the inter-processor communication times
and it is applied in our rapid prototyping environment for
optimizing DSP systems [7].

Related research on design automation for distributed
real-time systems uses different models and strategies to
solve the mapping and scheduling problem. Tindell et al. [6]
consider the most important parameters for hard real-time
systems such as task period, worst-case execution time,
memory requirement and replica tasks. However, their sim-
ple token-based communication model is not well suited for
DSP systems. Beck and Siewiorek [1] refine this model for

Authors in alphabetical order

Hardware Model

[—[]

»® ® I\ I

ee N Mapoine 4 L]
{l [l {l

Optimization |:=
Parameters [

Application Model

Optimizer]

U

Optimized
DSP System

Figure 1: Overall architecture of our prototyping environ-
ment for optimized multi-DSP systems.

bus-based communication. Since they only consider syn-
chronous communication the model is also difficult to apply
to DSP. Burns et al. [3] use an asynchronous communica-
tion model based on dual-ported RAMs for a distributed
system with a point-to-point communication structure.

In order to improve the accuracy of communication time
prediction, we model inter-processor communication in more
detail. In the remainder of this paper, we briefly sketch our
rapid prototyping environment for optimized multi-DSP sys-
tems and focus on our model for buffered communication.
A small example demonstrates the applicability of our com-
munication model for mapping and scheduling in multi-DSP
systems.

2. PROTOTYPING OPTIMIZED
MULTI-DSP SYSTEMS

Figure 1 presents the overall architecture of our prototyping
environment for optimized multi-DSP systems. The goal of
this environment is to automatically map a DSP application
onto a multi-processor system and to generate a schedule
for each processor. This mapping and scheduling is approx-
imated by a heuristic optimizer. Two models serve as the
primary input to the optimizer. The application model de-
scribes the overall DSP application by means of tasks and
dependencies between them. The hardware model describes
the multi-processors system onto which the DSP application
is mapped. Mapping constraints between application and
hardware model may be specified and serve as an optional
input to the optimizer.

In the following, we present only parts of the prototyp-
ing environment relevant to the communication model.

2.1. Application Model

Our design tool is tailored for real-time DSP applications.
Usually, a DSP application is decomposed into smaller tasks
with dependencies. The dependencies between the tasks are
due to data transfer. Most DSP real-time applications have
the following characteristics. First, DSP applications are
cyclic, i.e., their tasks have to be executed periodically. Sec-
ond, tasks have precedence relations, i.e., tasks can only be
initiated when all required input data are available. Finally,
the tasks have to meet strict timing constraints (deadlines).

Our application model is based on a dataflow graph [2] —
a representation frequently used to model DSP applications.
The nodes of the graph represent the individual tasks, the
arcs between nodes represent data transfer. Each node re-
ceives input data, performs some data processing, and sends
output data to other tasks.

We add supplementary information to the simple data
flow graph to better characterize DSP applications with lim-
ited resources. Thus, each node is assigned with a maximum
task execution time C'r and the required memory needs mr
for code and data of that task. The bus usage fy. repre-
sents the percentage of instructions requiring bus access of
each task. The bus usage allows to estimate the effect of
bus conflicts during DMA transfer. Data transfer between
tasks is specified by a sender task Tj, a receiver task T; and
the amount of data d;; transferred.

2.2. Hardware Model

Multi-processor systems with distributed memory are the
target platforms for our design tool. Such multi-processor
systems may consist of different processing elements with
different communication links. Thus, the hardware model
must be flexible enough to express these heterogeneous ar-
chitectures.

In our hardware model, each processing element is char-
acterized by its execution speed K, and the amount of lo-
cal memory m,. Physical point-to-point connections are
described by the features of the communication interfaces
of the connected processing elements. A communication
interface is represented by its transmission mode (uni- or
bidirectional) ¢y, the size of input and output buffer (B,
and B;), as well as the initialization times (t;» and #;s)
and transfer rates (K, and K,) for reading (receiving) and
writing (sending) from and to the corresponding hardware
buffers.

Communication using DMA transfer is modeled by the
initialization time of the DMA coprocessor tpaa and the
bus access priority ppaa to resolve bus conflicts. Access
priority for the common bus may be given permanently to
either the DMA coprocessor or the processor or it may al-
ternate between them.

2.3. Mapping Constraints

In general, the optimizer does not exclude any mapping
of tasks onto processing elements a priori. Each task can
be mapped onto each processing element. However, if a

com. interfacel
I
|

processor B

Figure 2: Realizing buffered intra- and inter-processor com-
munication by introducing buffers (d;;) and communication
tasks (Ts and 7). Inter-processor communication may re-
sult in synchronization of T and T;.

task requires dedicated resources, the mapping has to be
restricted. This means that the mapping of individual tasks
onto a (small) set of processing elements has to be enforced
or avoided. Such restrictions on the mapping are expressed
by mapping constraints. Thus, for each task a list of valid
and invalid processing elements may be specified.

2.4. Optimizer

The optimizer approximates an optimal mapping and sched-
ule for all tasks given the application model, the hardware
model and mapping constraints. For this approximation,
the optimizer has to determine the memory usage as well
as the execution and communication times.

Data transfer in our optimized DSP system is based on
buffered communication (Figure 2). A task writes its out-
put data into a communication buffer. The task(s) receiving
these data read(s) from that communication buffer. If the
buffer size is at least as large as the amount of data trans-
ferred, asynchronous communication is guaranteed and both
sender and receiver task are decoupled. To realize buffered
communication, the optimizer has therefore to allocate com-
munication buffers between tasks transferring data. If both
tasks T; and T; are mapped onto the same processing el-
ement, a buffer of size d;; is allocated. If the tasks are
mapped onto different processing elements, a buffer of size
d;; is required on both processing elements. In this case,
the optimizer additionally introduces a sender task Ts on
one processor and a receiver tasks 7). on the other processor
(see Figure 2). These tasks read data from the buffer d;;
and write them to the corresponding hardware buffers of
the communication interface and vice versa.

To reduce the number of communication buffers, the op-
timizer allocates only a single buffer among tasks receiving
the same input data from an individual task. These tasks
are identified by a group identifier gr in the application
model. Communication buffers are furthermore allocated
dynamically, i.e., when all tasks receiving data from a single
buffer have completed their read operation, the communi-
cation buffer is deallocated.

The memory usage for a processing element P; is given
by the sum of the required memory for each task located
at P; and the maximum memory need for the dynamically
allocated buffers d;; located at P;.

The task execution times are specified in the applica-
tion model. Time required for reading and writing data
from and to buffers is included in the task execution times.
The communication tasks T and 7T, may not be decoupled

receiver:

A(t)
B J
wordsin
buffer

Figure 3: Timing diagram of a synchronized inter-processor
communication.

because the size of the hardware buffers in the communi-
cation interfaces B, and B, is limited. Thus, the overall
execution time is determined by the individual task execu-
tion times, the task dependencies and the execution times
of the communication tasks.

We apply Simulated Annealing (SA) [5][4] in our op-
timizer. SA minimizes a specified cost function which is
composed by terms such as the overall completion time of
the DSP application and the memory usage of the process-
ing elements. These terms are weighted by the optimization
parameters. By changing the cost function, e.g., by modi-
fying the optimization parameters or introducing nonlinear
functions, different optimization objectives can be achieved.

3. MODELING BUFFERED
COMMUNICATION

3.1. Direct Inter-processor Communication

Due to the limited size of input and output hardware buffers
(B, and Bg) of the interfaces synchronization between sen-
der and receiver tasks may occur in inter-processor commu-
nication. We model buffered inter-processor communica-
tion to determine the execution times of sender and receiver
tasks transferring d data words over a buffered communi-
cation link of size B = B, + B,. K, and K, represent the
transfer rates for writing to and reading from the buffers,
respectively.

Figure 3 presents the timing diagram of the inter-proces-
sor data transfer. Three important time points can be iden-
tified for the sender as well as the receiver. At ts; and ¢,1,
the sender and receiver tasks are initiated. After initializa-
tion (¢;s and ¢;,), the sender task starts writing data words
into the communication buffer at ¢s2, and the receiver task
starts reading data words from the communication buffer
at tr». Writing and reading data to and from the buffer is
finished at ts3 and t,3, respectively.

Data transfer over a buffered communication link can
be separated into 4 phases. If we know the duration for
each phase, the execution times for the sender and receiver
tasks can be determined. In phase 1, only the sender writes
data into the buffer. The duration is given as t; = t,1 +

direct data transfer

P, ™1 [[\ T, T2 | T5]
s T4 X T T3 | time
P, T1 | T2 | T5]
DMA copr. () I 1
P, [T4 \ | T3 |
DMA copr. % 1 time
Touaon P Toma on P DMA data transfer

DMA A DMA B

Figure 4: Comparison of direct inter-processor communi-
cation (above) and DMA data transfer (below). Inter-
processor communication is indicated by an arc.

tir — (ts1+1tis). At the end of the first phase (t-2), A(tr2) =
min(B,d, }t(—ls) data words are stored in the buffer. In phase 2,
both sender and receiver write/read asynchronously data
to/from the buffer." During this phase, the amount of data
in the buffer is given by

AW = Altr) + (o0 —)=t (D)
Phase 2 ends when synchronization between sender and re-
ceiver is enforced. If the sender is faster than the receiver
(K% > 1%)7 synchronization is enforced when the buffer is
completely filled (A(t) = B). Thus, by combining the syn-
chronization condition with Equation 1, the synchroniza-
tion time point can be determined

B — A(t
tsyn = f(iQ) + tro. (2)
K, Kn

Synchronization does not occur if too less data are trans-
mitted to fill the buffer (d < Kis(tsyn — ts2)). As a con-
sequence, phase 3 is skipped and the duration of phase 2
is given as t2 = (d — A(t,2))Ks. Otherwise, the duration
of phase 2 is t2 = tsyn — tr2. During phase 3 sender and
receiver are synchronized. Data is written to and read from
the buffer at the slower transfer rate. In the case described,
the remaining data are written to the buffer at the speed
of the receiver. Thus, the duration of phase 3 is given by
t3 = (d— z=(tsyn —ts2)) K. In the final phase, the receiver
only reads data from the buffer. The duration of phase 4 is
ts = A(tss) K.

For the other cases, i.e., if the sender is as fast as or
slower than the receiver, the durations of phases 2 to 4 can
be determined similarly. To summarize, the total execu-
tion time for the sender tasks T to write d words into the
communication buffer is tsepg = tis + t1 + t2 + t3 and the
execution time for the receiver task 7 to read d words from
the communication buffer is t,ec = t;r + to + t3 + 4.

3.2. DMA Transfer

In case of DMA inter-processor communication, data is
transferred between memory and the hardware buffers of
the communication interfaces (B, and Bs) by dedicated

!Phase 2 is only entered if sufficient data has to be transmitted
(d > A(tr2)).

Kp=1ns/cycle
mﬂ=64k8yle

P1

=10 cycles
t,=0 cycles
c,,= bidirectional
K= K= 4 cycle/word
B=B=8

P2 |« » P3

Kp=1 ns/cycle

Kp=1 ns/cycle
m,=64kByte

m,=64kByte

Figure 5: Design example with 9 tasks and 3 processors.

DMA coprocessors. We model DMA transfer by replac-
ing the communication tasks T and 7, with (short) DMA
initialization tasks Tpaar and Tparas. After DMA ini-
tialization data is transferred concurrently to CPU compu-
tation. Bus access conflicts between DMA and CPU may
occur and delay task execution as well as data transfer de-
pending on the assigned bus access priority (ppara). The
factor for this delay is given by the relative number of bus
conflicts ¢, which is determined by the bus usage f, of all
tasks during DMA transfer of time ¢:

a=1 3 fuin ()

VT; in t

Figure 4 presents a comparison between direct inter-
processor communication and DMA transfer. Inter-proces-
sor communication occurs between T7; and 7T3. Due to con-
current DMA transfer and CPU operation, the overall task
completion time is shorter using DMA transfer. Note that
the DMA transfer times are longer than the corresponding
execution times of the communication tasks (7, and T)
due to bus access conflicts.

4. PROTOTYPING EXAMPLE

Mapping and scheduling using the communication model
is demonstrated by the following example (Figure 5): the
DSP-application consists of 9 tasks, each requiring an exe-
cution time of 1000 cycles and a data transfer to the lower
and lower-right neighbor. The target system consists of
three DSP processors, connected in a ring topology. In this
example, the optimization objective is the overall task com-
pletion time only; memory requirements are not considered.

Figure 6 (above) shows a possible solution using direct
inter-processor communication for all communication links.
A better solution for this example is found, if DMA transfer
is used for the communication between processors P1 and
P2 (below).

5. CONCLUSION

The communication model presented in this paper is de-
signed to meet the requirements of DSP applications. This
model is successfully applied in our prototyping framework
for optimizing multi-DSP systems. The main advantage of
our modeling approach is the improved accuracy of its tim-
ing predictions which may be exploited to better utilize the
hardware.

M |nitialisation 3 Communication
P1 T3 Ja[T | [a] T |
1 1
P2 T1 | ', A\ [T4 | ', A\ [T7 |
P3 T2 | R T5 | I 3] T8 | o
>
4620 ns
P1 T3 | W T6 | IPH T9 |
1 1
P2 T2 T5 T8
DMA|
P3 T | I T4 | T7 | -
‘ >
Ons 3850 ns
Figure 6: Optimized DSP system using direct inter-

processor communication (above) and DMA transfer via a
link of P2 (below).

Future research will be focused on further refining the
communication model and demonstrating our prototyping
framework on more complex applications in the field of DSP
and real-time systems. A mid-term goal of this research
is to develop a framework for the codesign of multi-DSP
systems.

6. REFERENCES

[1] J. E. Beck and D. P. Siewiorek. Simulated Annealing
Applied to Multicomputer Task Allocation and Proces-
sor Specification. In Proc. IEEE Symp. on Parallel and
Distributed Processing, pages 232-239, 1996.

[2] S.S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Syn-
thesis of embedded software from synchronous dataflow
specifications. J. of VLSI Signal Processing Systems,
21(2), 1999.

[3] A. Burns, M. Nicholson, K. Tindell, and N. Zhang. Al-
locating and scheduling hard real-time tasks on a point-
to-point distributed system. Technical report, Univer-
sity of York, UK.

[4] V. Cerny. Thermodynamical approach to the travel-
ing salesman problem: an efficient simulation algorithm.
J. of Optimization Theory and Applications, 45:41-51,
1985.

[6] S. Kirkpatrick, J. C. D. Gelatt, and M. P. Vec-
chi. Optimization by simulated annealing. Science,
220(4598):671-680, 1983.

[6] K.W.Tindell, A. Burns, and A. Wellings. Allocating
Hard Real-Time Tasks: An NP-Hard Problem Made
Easy. The Journal of Real-Time Systems, 4:145-165,
1992.

[7] C. Mathis, M. Schmid, and R. Schneider. A Flexible
Tool for Mapping and Scheduling Real-Time Applica-
tions onto Parallel Systems. In Proc. Third Intern. Con-
ference on Parallel Processing € Applied Mathematics,
pages 437-444, Kazimierz Dolny, Poland, 1999.

[8] W. Wolf. Hardware-Software Co-Design for Embedded
Systems. IEEE Proceedings, 82(7):967-989, July 1994.

