SIMULATION

PRACTICE 2= THEORY
ELSEVIER Simulation Practice and Theory 5 (1997) 623-638

Parallel qualitative simulation

Marco Platzner, Bernhard Rinner *, Reinhold Weiss

Institute for Technical Informatics, Graz University of Technology, Steyrergasse 17/1V,
A-8010 Graz, Austria

Received 1 May 1996; revised 26 February 1997

Abstract

Qualitative simulation is a rather new and challenging simulation paradigm. Its major
strength is the prediction of all physically possible behaviors of a system given only weak and
incomplete information about it. This strength is exploited more and more in applications
like design, monitoring and fault diagnosis. However, the poor performance of current
qualitative simulators complicates or even prevents their application in technical environments.
This paper presents the development of a special-purpose computer architecture for the best-
known qualitative simulator QSIM. Two design methods are applied to improve the perfor-
mance. Complex functions are parallelized and mapped onto a multiprocessor system. Less
complex functions are accelerated by software to hardware migration; they are executed on
specialized coprocessors. © 1997 Elsevier Science B.V.

Keywords: Qualitative simulator QSIM; Special-purpose computer architecture; Muiti-DSP
TMS320C40; FPGA

1. Introduction

Qualitative simulation is a rather new and challenging simulation paradigm which
belongs to the research area qualitative reasoning (QR). In qualitative simulation,
physical systems are modeled on a higher level of abstraction than in other simulation
paradigms, like in continuous simulation. In continuous simulation, the structural
description of a physical system is modeled by a mathematical description in form
of differential equations. Qualitative simulation relies on a further abstraction of
these differential equations — the so-called gualitative differential equations (QDEs).
Qualitative simulation requires neither a complete structural description of the
physical system nor a fully specified initial state. The major strength of qualitative
simulation is the prediction of all physically possible behaviors derivable from this
incomplete knowledge. Additionally, qualitative simulation potentially predicts beha-
viors which are not physically possible. Hence, qualitative simulation is sound but

* E-mail: rinner@iti.tu-graz.ac.at.

0928-4869/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved.
PIT S0928-4869(97)00008-6



624 M. Platzner et al. / Simulation Practice and Theory 5 ( 1997) 623-638

incomplete. The qualitative simulation paradigm is mainly used in applications where
a detailed description of a physical system is not required or even not known. Major
application areas of qualitative simulation are design, monitoring, and fault diagnosis
(2,7,17].

At the Graz University of Technology, a distributed expert system for fault
diagnosis in technical processes is developed [16]. In this embedded system, several
local expert systems are tightly coupled with a technical process (e.g., a modular
production system) and are supervised by a global expert system. Fault diagnosis is
achieved by model-based algorithms. When a deviation is detected between calcu-
lated and measured states, diagnosis is started in a local expert system. The calculated
state of the technical process is derived from discrete and continuous simulators.
The applied fault diagnosis methods will be complemented by a qualitative reasoning
method. This means, that the already used hybrid simulation technique [14], which
combines discrete and continuous simulation, has to be extended by a qualitative
simulator for deriving system behavior. The widely-used algorithm QSIM was chosen
for this task. QSIM has been developed by Kuipers [6] and is the best-known
algorithm for qualitative simulation. In the past years, QSIM has been widely
studied, applied and extended, both by the original developers and by researchers
worldwide. However, QSIM has still some drawbacks which prevent it from a wider
application in industrial environments. The main drawback is that current QSIM
implementations lack in runtime performance. Models of only low to medium
complexity can be simulated within reasonable execution time. There are two reasons
for this. First, QSIM tends to generate a huge number of system behaviors during
simulation. This can at least partially be avoided by improved filter algorithms.
Research in this area is done by the Qualitative Reasoning Group at UT Austin.
Second, QSIM is implemented in LISP and executed on general-purpose computers.
None of the research work in the area of qualitative simulation thus far studies or
analyzes the computational complexity of QSIM or presents an empirical study of
QSIM’s runtime behavior [1]. However, complexity and performance issues are
extremely important for applying qualitative simulation in embedded systems. High
performance qualitative simulators are required in these environments. Another
drawback is that nothing is known about the real-time capabilities of QSIM.
Investigations are necessary to decide how to integrate the Al task QSIM into real-
time environments.

In this paper, we present the development of a special-purpose computer architec-
ture for QSIM with the primary goal to increase the performance [11]. The design
of this application-specific computer architecture is based on an analysis of the
QSIM algorithm and on extensive experimental measurements taken from a QSIM
implementation [13].

The remaining part of this paper is organized into following sections. Section 2
analyzes the algorithm and the runtime behavior of QSIM. In Section 3, the design
of a multiprocessor and specialized coprocessors for QSIM is presented. Some details
concerning the prototype implementation are also given in this section. Section 4
presents the experimental results for the QSIM multiprocessor and the specialized
coprocessors. Section 5 concludes this paper with a brief discussion of the results.



M. Platzner et al. | Simulation Practice and Theory 5 (1997) 623—638 625
2. QSIM algorithm and runtime analysis

In QSIM, models are described as qualitative differential equations or equivalently
as constraint-networks, which consist of variables and constraints. Variables represent
system parameters, e.g., speed or temperature. The values of qualitative variables
are expressed by two parts, a qualitative magnitude (gmag) and a qualitative direction
(gdir). Constraints describe relations between system parameters. QSIM uses several
types of constraints which represent arithmetic relations (e.g.,, ADD-, MULT-,
D/DT-constraints) and functional dependencies (e.g., M™*-, M ~-constraints)
between variables.

Fig. 1 shows the flow-chart of QSIM. In QSIM, an assignment of values to all
variables of the model defines a state. A state characterizes the modeled system at
a given time. States are stored in a global data structure called agenda. The first
function in the flow-chart of QSIM, initial state processing, generates all possible
initial states consistent with the model and its initial values. In one simulation step,
i.e., a loop cycle in Fig. 1, one state is read from the agenda and all successor states
are determined. These successor states are written back to the agenda. This simula-
tion step is repeated until the agenda is empty or a time limit or state limit is

initial state processing

agenda=(}

generate possible values

QSim kernel
1

constraint-filter

form-all-states

global filters
|

Fig. 1. Flow-chart of QSIM.




626 M. Platzner et al. [ Simulation Practice and Theory 5 ( 1997) 623-638

exceeded. The individual functions of a simulation step can be informally described
as follows:

® Generate possible values. This function generates the possible values for all
variables for the next time step. The number of transitions from one qualitative
value to the next is limited. No variable can have more than four possible successor
values [6].

e Constraint-filter. An assignment of possible values to all variables of a given
constraint is called ruple. The task of the constraint-filter is to reject all tuples which
do not satisfy the local consistency conditions in the constraint-network. This is
achieved by calling a ruple-filter function for each constraint in the network.
Additionally, the Waltz-filter discards tuples by detecting inconsistencies between
adjacent constraints.

e Form-all-states. This function finds all consistent combinations of tuples in the
constraint-network. Each consistent combination is a candidate for a successor state.
Forme-all-states is actually a backtracking algorithm to solve a constraint satisfaction
problem (CSP) [9].

o Global filters. Each candidate state is checked by global filters. Candidate states
which pass all global filters are written to the agenda. There are many global filters
in QSIM. Some of them are necessary while many of them are optional extensions
of QSIM.

The qualitative simulator QSIM is a very complex algorithm and has many
optional features. The design considerations for our specialized computer architec-
ture are restricted to the QSIM kernel functions constraint-filter and form-all-states.
The kernel functions are essential in calculating one simulation step, and they
normally dominate the overall runtime of QSIM. Furthermore, several model-based
fault diagnosis and monitoring systems do not require the functionality of the whole
simulator [2,7]. These systems are based on the kernel functions.

Fig. 2 presents an overview of the hierarchical structure of the QSIM kernel
functions. The constraint check functions (CCFs) are primitive kernel functions and
check the local consistency of individual tuples. For each constraint type there exists
an individual CCF. The presented runtime ratios in Fig. 2 are extracted from various
runtime measurements of a QSIM system implemented on a TI Explorer LISP
workstation. This empirical runtime analysis was based on the simulation models
included in the QSIM package. The complexity of these models ranges from QDEs
with 3 variables and 3 constraints to QDEs with 28 variables and 21 constraints.
The number of variables and constraints of these models is shown in Table 1.
Additionally, the models RCS [5] (48 constraints, 52 variables), QSEA (21 con-
straints, 28 variables) and the artificially constructed model M1 (30 constraints, no
variables specified) were used for the empirical runtime analysis and for the experi-
mental evaluation of our QSIM computer architecture due to their high complexity.
All models were simulated and the runtimes of the individual functions were mea-
sured. The runtime ratios represent an average of all simulated models. For most
models, the kernel functions require more than 50% of the overall QSIM runtime.
An important fact is that this percentage is positively correlated to the complexity
of the model. Qualitative models for ‘real-world’ technical systems usually have



M. Platzner et al. [ Simulation Practice and Theory 5 (1997) 623638 627

- 1 X A - ¥
-g < tuple-filter S cer
E constraint-filter 2 F - (E/)P];I:’I\I}/[Ji,?l‘d)-
E% I et -+ N
O i T y Waltz-filter ;
form-all-states ;O
-y

VVVAVVY

Fig. 2. Hierarchical structure and runtime analysis of the QSIM kernel. The runtimes are informally
presented with regard to the runtime of the calling function.

Table 1

Simulation models from the QSIM package NQ 2.0 used for the empirical runtime analysis. The models
Bouncing-Ball and Toaster have more than one QDE. These models describe physical systems with several
modes of operation. QSIM switches between the QDEs depending on defined transition conditions

Model QDEs (number) Variables (number) Constraints (number)
Bathtub 1 6 6
Bouncing-Ball 2 7 8
8 8
Simple-Ball 1 7 8
Toaster 4 4 4
10 10
5 5
3 3
Heart 1 28 21
STLG 1 17 18

4-reactions 1 18 16




628 M. Platzner et al. | Simulation Practice and Theory 5 (1997) 623-638

many constraints and variables [5,13]. For these models, kernel runtime ratios of
up to 90% were observed. The empirical runtime analysis reveals that the tuple-filter
and subsequently the CCFs dominate the kernel runtime. A further interesting fact
is that although form-all-states is NP-complete, an exponential behavior of this
function could not be experimentally observed [13]. The runtime of form-all-states
increases with more complex models, however, the runtime ratio remains nearly
constant, even with complex models it does not exceed 20% of the kernel runtime.

3. QSIM computer architecture

The specialized computer architecture presented in this paper improves the runtime
of the QSIM kernel by two strategies. First, the parallelism in the complex kernel
functions constraint-filter and form-all-states is exploited. These functions are paral-
lelized and mapped onto a multiprocessor system. Second, the less complex CCFs
are accelerated by software to hardware migration, i.e., the CCFs are implemented
in hardware. In the following sections, design considerations for this specialized
computer architecture and a prototype implementation are described.

3.1. Design of the QSIM kernel multiprocessor

3.1.1. Constraint-filter

The data dependence graph of the constraint-filter is shown in Fig. 3. In this
graph, the nodes represent the individual functions of the constraint-filter, and the
arcs represent input and output data of these functions. Each tuple-filter t-f; requires
the set of possible values for all variables of constraint i, pvals;. The output data of
the functions t-f; are the sets of locally consistent tuples, ruples;. The Waltz-filter W-
f requires all ruples; as input data and returns the restricted sets of tuples, tuples; as
output data. This data dependence analysis reveals a high parallelism within the
constraint-filter. All tuple-filter functions are independent of each other and can be
executed in parallel.

Fig. 4 presents the logical structure of the constraint-filter. It consists of a set of
tasks and communication links. The tasks are partitioned into two groups — a
master task and a set of slave (tuple-filter) tasks. The master task is responsible for
the transmission of the input data to all tuple-filter tasks, the reception of the tuple-
filters’ results and the execution of the Waltz-filter. Since all tuple-filters are indepen-
dent of each other, no communication between the slaves is required. The maximum
degree of parallelism for the constraint-filter is the number of constraints C which
is given by the simulation model. Therefore, the logical structure consists of C slaves.

The logical structure forms a szar with the master as the central element. However,
in a star structure the master becomes a bottleneck as the number of slaves increases.
This limits the scalability of the computer architecture. To achieve a scalable architec-
ture, our multiprocessor system is connected in a wide tree topology which is a
compromise between logical structure and scalability. In a wide tree, each processing
element has a constant node degree and, hence, a fixed number of communication



M. Platzner et al. | Simulation Practice and Theory 5 ( 1997) 623-638 629

pvals1 pvals, pvals c

tuples; ... tuples;,

Fig. 3. Data dependence graph of the constraint-filter.

Fig. 4. Logical structure of the constraint-filter.

links. The root node of the tree corresponds to the master task; all other nodes
correspond to the slaves of the logical structure.

The C+1 tasks of the logical structure are mapped onto the processing elements
of the wide tree architecture by a scheduling algorithm. For the design of this
scheduling algorithm the following issues must be considered:

® The scheduling of the slave tasks is performed at the beginning of the QSIM
kernel execution for two reasons. First, the actual number of slave tasks is not
known before the kernel execution. This is because QSIM may change the set of
active constraints of the model during simulation. Second, also the input data for



630 M. Platzner et al. | Simulation Practice and Theory 5 (1997) 623638

the slave tasks are not known before the kernel execution. These input data are
required to estimate the execution times of the individual slave tasks. These estima-
tions are utilized by the scheduling algorithm.

® Only non-preemptive scheduling algorithms are considered, because all slave
tasks are independent of each other.

e The execution time of the scheduling algorithm itself must be as short as
possible because scheduling is a sequential part of the parallel constraint-filter
implementation.

A list scheduling algorithm [4] is applied for the parallel implementation of the
constraint-filter. This scheduling algorithm (i) uses the estimated execution times to
improve the schedule, (ii) guarantees a worst-case completion time of all tasks and
(iii) is only slightly slower than a simple task attraction scheduling algorithm.

3.1.2. Form-all-states

The kernel function form-all-states solves a CSP by a backtracking algorithm. A
big search space has to be processed by a depth-first search to find all solutions of
the CSP. Contrary to the constraint-filter, there is no obvious parallelization given
by the function hierarchy of form-all-states. For a parallel implementation of form-
all-states, the CSP must be partitioned artificially. A parallel-agent-based (PAB)
strategy [8] is used for the parallelization of the CSP in our QSIM architecture. The
basic idea of PAB is to partition the overall search-space into smaller independent
subspaces which can be solved by any sequential CSP algorithm. Therefore, the
parallel form-all-states algorithm consists of three consecutive steps:
(1) Partitioning of the overall search space into independent subproblems.
(2) Solving the subproblems by a sequential CSP algorithm in parallel.
(3) Merging all partial results of the subproblems to the overall result.

The partitioning step is essential for the performance of the parallel implementa-
tion. A variable-based partitioning (VBP) heuristic [12] is used to partition the search
space of QSIM CSPs.

The logical structure of the parallel form-all-states algorithm is similar to the
logical structure of the constraint-filter. Due to the PAB strategy, also a master—slave
structure is derived. The master task is responsible for the generation of the subpro-
blems, their transmission to the slave tasks and the union of the partial results to
the overall result. The maximum degree of parallelism is determined by the number
of generated subproblems. The number of generated subproblems are influenced by
the simulation model and the partitioning heuristic. The same architectural consider-
ations as for the constraint-filter are valid for form-all-states.

Similar to the parallel constraint-filter, the tasks of the parallel form-all-states
implementation are scheduled at the QSIM kernel execution time. However, due to
the irregular behavior of the backtracking algorithm, the execution times of the
slave tasks cannot be determined in advance. Just the worst-case execution times
are known, and these times differ normally from the actual execution times by orders
of magnitude. To balance the slave tasks as best as possible statically, task attraction



M. Platzner et al. | Simulation Practice and Theory 5 (1997) 623-638 631

scheduling is applied. Whenever a processing element is idle, the next slave task is
scheduled to this processing element.

3.2. Design of the CCF coprocessors

The CCFs are executed on specialized coprocessors. This section presents the
coprocessor design on the example of the MULT-CCF coprocessor. The MULT-
CCF is one of the most complex CCFs; CCFs for other constraint types are less
complex, but very similar in structure.

Fig. 5 shows the dataflow diagram for the MULT-CCF. Input data are the three
qualitative values gval;, gval, and gval; and a list of corresponding value tuples,
cval_tuple[i]. Corresponding value tuples are tuples which are known to be consistent
for a particular constraint. In QSIM, corresponding value tuples can be part of the
initial values or they can be created during simulation. Output data of the MULT-
CCF is the boolean value result, which indicates whether the tuple of gvals is
consistent or not.

An analysis of the MULT-CCF reveals, that this CCF can be partitioned into
several subfunctions. The partitioned MULT-CCEF is shown in Fig. 6. Subfunction
SF1, value check, tests the signs and directions of change of the input values.
Subfunction SF2, infvalue check, tests relations between infinite and zero input
values. Subfunction SF3, cval check, tests the input values against all tuples from
the list of corresponding value tuples. SF1 to SF3 form the functionality of the
MULT-CCF. SF4 performs a logical AND operation on the partial results of SF1

gval, qval, qval, cval_tuplefi]

result

Fig. 5. Dataflow diagram of the MULT-CCF.



632 M. Platzner et al. | Simulation Practice and Theory 5 (1997) 623—638

qdir gmag ,
qdir,, qmag,
qdir qmag ,
cval tuple
L v r memory
SF1 SF2 SF3 | ovalfil
(value (infvalue (cval L ovallil
check) check) check) cval i[i]
partial partial result partial
result result
SF4
(&)
result

Fig. 6. Partitioned MULT-CCF. The corresponding value tuples are stored in a memory inside the
MULT-CCF.

to SF3. The list of corresponding value tuples grows monotonically during simula-
tion. New tuples of corresponding values are created by a global filter outside the
QSIM kernel. This is a very rare process compared to the CCF executions. Therefore,
the list of corresponding value tuples can be considered as static. This motivates to
store the data cval_tuple[i] in an internal memory of the MULT-CCF. This is
indicated in Fig. 6.

The specialized coprocessor implementing the functionality of the MULT-CCF is
designed at the gate- and register-level to obtain maximum performance. The main
features of the design are:

e Exploitation of parallelism. Parallelism is exploited at two levels. First, it can
be taken from Fig. 6 that the subfunctions SF1, SF2 and SF3 are dataflow-indepen-
dent. Therefore, they can be executed in parallel. SF3 actually implements an
iteration over the list of corresponding value tuples. These iterations are also mutu-
ally dataflow-independent and can be executed in parallel. For this parallel execution
of SF3 iterations, several architectural variants are proposed, including pipelining
and array processing techniques [10]. SF4 is implemented similar to the short-circuit-
evaluation in software, i.e., whenever one of the subfunctions SF1 to SF3 returns a
negative result, SF4 aborts the entire calculation and generates the overall result.
Second, the parallelism inside the subfunctions SF1 to SF3 is exploited by means



M. Platzner et al. | Simulation Practice and Theory 5 (1997) 623-638 633

of wide application-specific data-paths and by transforming control-flow dominated
code, i.e., nested case-statements, into table-lookups.

® Use of optimized data types. The required data types are optimized concerning
the number of bits to represent the data type and the coding for an efficient execution
of SF1 to SF4.

e Use of a customized memory architecture. The list of corresponding value
tuples is stored in an internal memory of the coprocessor. This memory is split into
three blocks (see Fig. 6) to access a whole tuple of corresponding values in one read
cycle. Further, this customized memory operates in an auto-increment, circular
addressing mode.

The coprocessor design contains functional blocks for SF1 to SF4, the internal
memory, an 1/O controller, and a function controller [3]. The I/O controller estab-
lishes communication to a host processor via two separate communication channels,
which enables simultaneous input and output operations. The function controller
decodes the instructions and controls the operation of all other functional blocks of
the coprocessor. Three instructions are defined for the MULT-CCF coprocessor.
Two instructions update the internal memory; the third instruction actually executes
the MULT-CCF.

3.3. Prototype implementation

A prototype of the overall heterogeneous multiprocessor architecture is shown in
Fig. 7. The digital signal processor TMS320C40 was chosen as processing element
because of its high I/O performance and its 6 independent communication channels
[15]. Software is developed in ‘C’ under the distributed real-time operating system
Virtuoso [18], which supports a portable and flexible software design. The specialized
CCF coprocessors are implemented on field programmable gate arrays (FPGAs).

4. Experimental evaluation
4.1. QSIM kernel multiprocessor

The experimental evaluation of the QSIM kernel multiprocessor is based on a
comparison of the execution times of the sequential implementation, 7., and the
parallel implementation using »n processing elements, f,,(n). With these execution
times, the speedup S(n) =14/t (7) can be determined. The execution times are
measured on a prototype of the QSIM kernel multiprocessor using a 32 bit timer
of the TMS320C40 with a resolution of 80 ns. The sequential implementation of the
QSIM kernel is executed on the root node of the QSIM kernel multiprocessor. In
the next two sections, the QSIM kernel multiprocessor is evaluated independently
for both kernel functions constraint-filter and form-all-states.



634 M. Platzner et al. | Simulation Practice and Theory 5 (1997) 623—638

host

processing element
TMS320C40
[ 1 [ ]

L1 LT L]
processing element processing element vae processing element
TMS320C40 TMS320C40 TMS320C40

CCF coprocessor
XC4013

processing element
TMS320C40
[ 1 1

frd

CCF coprocessor
XC4013

Fig. 7. Example of the overall architecture for the QSIM kernel multiprocessor. The processing elements
are connected in a wide tree structure. Some processing elements are equipped with CCF-coprocessors.

4.1.1. Constraint-filter

The parallel implementation of the constraint-filter is evaluated using three
different sets of input data. Two sets are derived from the QSIM models RCS (48
constraints) [5] and QSEA (21 constraints) and one set is constructed artificially
(M1). In the data sets RCS and QSEA, the numbers and types of the tuple-filter
tasks as well as the numbers of tuples which must be checked vary. The data set
M1 consists of 30 tuple-filters of type MULT; each tuple-filter must check 64 tuples.

Fig. 8 presents the speedups of the parallel implementation of the constraint-filter
using 1, 2 and 3 slave processing elements. The best speedup is achieved with input
data set M1 because from all data sets M1 has the longest execution times of the
individual tuple-filter tasks. At this complex data set, the overhead introduced by
the parallel implementation, e.g., communication times, has only a small influence
on the overall execution time.

4.1.2. Form-all-states

The parallel implementation of form-all-states is evaluated using CSPs derived
from the simulation of the QSIM models RCS and QSEA. Fig.9 presents the
speedups of the parallel form-all-states implementation using up to 7 slave proces-
sors. Parallel execution of the RCS model reveals a superlinear speedup using one



M. Platzner et al. | Simulation Practice and Theory 5 (1997) 623638 635

3_l I T

S(n)

Fig. 8. Speedup S(n) of the parallel implementation of the constraint-filter for the models RCS, QSEA
and M1 using n=1...3 slave processors.

6 L T 71 T T +H
sk RCS o
QSEA
4-—
z 3
)
1
0 1 i i i |
1 2 3 4 5 6
n

Fig. 9. Speedup S(n) of the parallel implementation of form-all-states for the models RCS and QSEA
using n=1...7 slave processors.

and two slave processors. This occurs because the partitioning algorithm discards
many inconsistent subproblems, and the total execution time of the remaining
consistent subproblems is smaller than the execution time of the unpartitioned
problem.

4.2. CCF coprocessor

The experimental evaluation of the CCF coprocessors is based on a comparison
of the execution times of the software CCF, 1, and the execution times of the pair
host and coprocessor, t,,, for the CCF. From these execution times, the overall
speedup of the coprocessor, Sy, = .w/thw, 1S calculated. This overall speedup respects
also the required communication between the host and the coprocessor. The copro-
cessor execution times are measured on a MULT-CCF coprocessor prototype with
sequential execution of SF3 iterations. This coprocessor is implemented on an FPGA
of type Xilinx XC4013 and is operated at a clock frequency of 15 MHz [3]. The
measured execution times and the calculated speedups are subdivided into 6 cases
according to the subfunction which causes termination of the MULT-CCF. For the



636 M. Platzner et al. | Simulation Practice and Theory 5 (1997) 623—638

short-circuit-evaluation of the software CCF, the execution order SF1, SF2, SF3 is
assumed. Following cases are differentiated:

case 1: execution of SF1

case 2: execution of SF1, SF2

case 3: execution of SF1, SF2, SF3,

case 4: execution of SF1, SF2, SF3,, SF3,

case 5: execution of SF1, SF2, SF3,, SF3,, SF3,

case 6: execution of SF1, SF2, SF3,, SF3,, SF3,, SF3,

For example, case 4 represents the sequential execution of SF1, SF2 and two
iterations of SF3. The six cases above reflect the most likely situations. In Fig. 10
the overall speedup of the coprocessor, S, is presented dependent on the execu-
tion cases.

5. Conclusion

In this paper we have presented the design and the prototype implementation of
a specialized computer architecture for the qualitative simulator QSIM. The experi-
mental results proved that a significant speedup can be achieved with this computer
architecture. The performance of QSIM is improved by the two strategies paralleliza-

S

tot
35
30,55

1 2 3 4 5 6

case

Fig. 10. Speedup S,,, of the MULT-CCF coprocessor dependent on 6 different execution cases.



M. Platzner et al. | Simulation Practice and Theory 5 ( 1997) 623638 637

tion and software to hardware migration. With the first strategy, speedups of up to
2.79 using three slave processors for the constraint-filter and 5.06 using 7 slave
processors for form-all-states are achieved. However, the actual speedup of the
parallel constraint-filter depends on the number and execution times of the tuple-
filters. For the parallel implementation of form-all-states, the actual speedup is
limited mainly by the number of generated subproblems and the execution times of
these subproblems. The second strategy results in specialized coprocessors with
speedups of up to 30.55, even on an FPGA-based prototype.

In general, our computer architecture exploits the parallelism in the QSIM kernel
functions. The degree of parallelism depends strongly on the input simulation model.
More complex models, i.e., models with many constraints and variables, lead to
higher degrees of parallelism. Due to the high complexities of models for ‘real-
world’ problems, the efficiency of existing qualitative simulators is a significant
barrier to their application. The presented special-purpose computer architecture
will help to remove this barrier.

Further work will include (i) the more extensive evaluation of the overall computer
architecture, (ii) the implementation of a larger heterogeneous multiprocessor system
and (iii) the integration of the presented computer architecture into fault diagnosis
applications.

References

[1] E. Davis, An engaging exploration of QSIM and its extensions, IEEE Expert. 9 (6) (1994) 70-71.
Book review
[2] D. Dvorak, B. Kuipers, Process monitoring and diagnosis: A model-based approach, IEEE Expert.
5(3) (1991) 67-74.
[3] G. Friedl, M. Platzner, B. Rinner, A special-purpose coprocessor for qualitative simulation, in: Proc.
of the 1st Int. EURO-PAR Conf., Stockholm, August 1995, pp. 695-698.
[4] R.I. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math. 17 (2) (1969)
416-429.
[5] H. Kay, A qualitative model of the space shuttle reaction control system, Tech. Rep. AI92-188,
Artificial Intelligence Laboratory, University of Texas at Austin, 1992.
[6] B. Kuipers, Qualitative reasoning: Modeling and simulation with incomplete knowledge, Artificial
Intelligence, MIT Press, 1994.
[7] F. Lackinger, W. Nejdl, Diamon: A model-based troubleshooter based on qualitative reasoning,
IEEE Expert. 8 (1) (1993) 33-40.
[8] Q.P. Luo, P.G. Hendry, J.T. Buchanan, Strategies for distributed constraint satisfaction problems,
in: Proc. 13th Int. DAI Workshop, Seattle, WA, 1994.
[9] A.K. Mackworth, Constraint satisfaction, in: S.C. Shapiro (Ed.), Encyclopedia of artificial intelli-
gence, vol. 1, John Wiley&Sons, Inc., 1992, pp. 285-293.
[10] M. Platzner, Design, implementation and experimental evaluation of coprocessor architectures for
fast qualitative simulation, Ph.D. thesis, Graz University of Technology, 1996.
[11] M. Platzner, B. Rinner, Improving performance of the qualitative simulator QSIM: Design and
implementation of a specialized computer architecture, in: Proc. of the ISCA Int. Conf. on Parallel
and Distributed Computing Systems, Orlando, 1995, pp. 494-501.
[12] M. Platzner, B. Rinner, R. Weiss, Exploiting parallelism in constraint satisfaction for qualitative
simulation, J. UCS J. Univers. Comput. Sci. 1 (12) (1995) 811-820.



638 M. Platzner et al. | Simulation Practice and Theory 5 ( 1997) 623638

[13] B. Rinner, Konzepte zur Parallelisierung des qualitativen Simulators QSIM, M.Sc. thesis, Institute
for Technical Informatics, Graz University of Technology, October 1993.

[14] P. Seifter, C. Steger, R. Weiss, A distributed simulation architecture used as a reference model in a
distributed real-time expert-system, in: Proc. of the ISMM Int. Conf. on Parallel and Distributed
Computing and Systems, Washington, 1991, pp. 68-72.

[15] R. Simar, P. Koeppen, J. Leach, S. Marshall, D. Francis, G. Mekras, J. Rosenstrauch, S. Anderson,
Floating-Point Processors Join Forces in Parallel Processing Architectures, IEEE Micro, 1992,
pp. 60-69.

[16] C. Steger, R. Weiss, A model-based real-time fault diagnosis system in technical processes, in: Proc.
of the 10th Int. Conf. on Applications of Artificial Intelligence in Engineering, Udine, 1995,
pp. 145-152.

[171S. Subramanian, R.J. Mooney, Multiple-fault diagnosis using general qualitative models with behav-
ioral modes, in: Int. Joint Conf. on Artificial Intelligence, 1995.

[18] E. Verhulst, Virtuoso: A virtual single processor programming system for distributed real-time appli-
cations, Microprocess. Microprogram. 40 (1994) 103-115.



