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Abstract: Constraint satisfaction is very common in many artificial intelligence ap-
plications. This paper presents results from parallelizing constraint satisfaction in a
special application — the algorithm for qualitative simulation QSim [Kuipers 94].

A parallel-agent based strategy (PAB) is used to solve the constraint satisfaction prob-
lem (CSP). Two essential steps of PAB are studied in more detail to achieve a good
performance of the parallel algorithm. Partitioning heuristics to generate independent
parts of the overall search space are investigated. Sequential CSP algorithms are com-
pared in order to reveal the most efficient one for QSim. The evaluation of these heuris-
tics and algorithms is based on runtime measurements using CSPs traced from QSim.
These runtimes allow a best- and worst-case estimation of the expected speedup of the
parallel algorithms. The comparison of sequential CSP algorithms leads to following
strategy for solving partitioned problems. Less complex problems are solved with simple
backtracking, and more complex models are solved with graph-directed backjumping
(GBJ).
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1 Introduction

Constraint satisfaction is very common in artificial intelligence applications, and
it is also a basic operation in qualitative simulation. Constraint satisfaction prob-
lems (CSP) are often solved by backtracking algorithms, which find solutions
with depth-first search. Many sequential and parallel algorithms have been de-
veloped to solve CSPs more efficiently. This paper presents results of our work in
parallelizing and distributing constraint satisfaction for the special application
QSIM.

QS1M, the widely-used algorithm for qualitative simulation, has been devel-
oped by Kuipers [Kuipers 94]. Qualitative simulation is a new and challenging
simulation paradigm. Major areas of qualitative simulation applications are de-
sign, monitoring, and fault-diagnosis. A drawback of current QSIM implementa-
tions is poor execution speed. In our research project [Platzner, Rinner, Weiss 95]
a special-purpose computer architecture for QSiM is developed to improve the
performance. Better performance is achieved by SW/HW-migration of frequently
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Figure 1: Constraint graph of the QSmM bathtub model. Constraints are represented by
the nodes of the graph. The constraint arity ranges from 1 to 3. Edges between nodes
correspond to shared variables. Sets of valid tuples are attached to all constraints after
constraint-filtering.

used primitive functions, and mapping QSIM kernel functions onto a multipro-
cessor system. The overall application-specific computer architecture consists
of digital signal processors TMS320C40 which are equipped with specialized
FPGA-based coprocessors for executing the primitive functions.

2 Constraint Satisfaction in QSim

A constraint satisfaction problem can be informally described as follows: Given a
set of n variables each with an associated domain, and given a set of constraints
each involving a subset of the variables, find an n-tuple such that this n-tuple
is an instantiation of the n variables satisfying all constraints. A more formal
description can be found in [Dechter 92].

Constraint satisfaction is a basic operation in the qualitative simulator QSim.
It is used to determine all possible successors of a given qualitative state —
i.e. calculating all solutions of a CSP, specified by a constraint network (variables
and constraints) and possible values of all variables (domains). In QSiM CSPs
are represented dual to the representation in [Mackworth 77]. The nodes of the
constraint graph correspond to constraints, and the edges between the nodes
correspond to variables. A constraint graph of a QSIM example is shown in
[Figure 1]. This dual representation is used because the arity of QSIM constraints
is not limited by 2.

Since solving CSPs is N P-complete, preprocessing or filtering steps before
backtracking can eliminate large parts of the overall search space [Mohr, Henderson 86].
These techniques are node, arc, and path consistency and are widely applied in
constraint satisfaction. In QSIM node consistency is achieved by the constraint-
filter. For each QSIM constraint all possible tuples of the attached variables
are checked against the constraint conditions. Tuples violating these conditions
are discarded. Arc consistency is achieved by the Waltz-filter, which eliminates
inconsistencies between adjacent constraints. Each tuple associated with con-
straint C; is discarded unless the same value of the shared variable is assigned in
at least one tuple of each adjacent constraints. Path consistency is not currently
used in QSIM. The final backtracking step generates all valid assignments of
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the remaining tuples and thus all solutions of the CSP. A simple backtracking
algorithm is used for this depth-first search. Increased performance is achieved
by interleaving node and arc consistency algorithms and by a heuristic ordering
of the constraints for the backtracking step.

There are many techniques exploiting the parallelism of these filtering steps
[Conrad, Agrawal, Bahler 92][Cooper, Swain 92]. We also parallelize the node
and arc consistency algorithm of QSIM in our research project, but in this paper
we present only the results in parallelizing and distributing the backtracking
algorithm [Riedl 95].

CSPs in QSIM have special characteristics which are different from many
other CSPs. These characteristics have to be considered in selecting appropriate
algorithms and parallelizing techniques as presented in the next section.

number of solutions QSIM needs all solutions of the CSP for further process-
ing. Searching cannot be finished after finding one solution. All parts of the
search space have to be checked. This is different from many other applica-
tions, where just one solution is required. Efficiency considerations for these
applications can be found in [Rao, Kumar 93].

variable domain Pure qualitative simulation uses discrete variables and the
number of values is limited in most cases by 4.1

arity of the constraints QSIM describes the simulation model with different
constraints. The arity of the most important constraints ranges from 1 to 3.

structure of the CSP In qualitative simulation CSPs with the same structure
— CSPs with the same constraints and variables but different domains —
often have to be solved successively. The description of such CSPs can be
simplified, a representation of the domain of the variables is sufficient.

3 Parallel Constraint Satisfaction

3.1 Existing Algorithms

Many parallel algorithms for constraint satisfaction are known in literature. Luo,
Hendry, and Buchanan [Luo, Hendry, Buchanan 94] have classified the most
common algorithms as distributed-agent-based (DAB), parallel-agent-based (PAB),
and functional-agent-based (FAB). Different strategies involve different control
structures, problem spaces, and communication methods. The FAB strategy can
be excluded from further considerations, because it requires shared memory ar-
chitectures. Important features of the remaining strategies can be summarized
as follows.

DAB In the DAB strategy, the problem is distributed based on the variables.
Each agent controls one or more variables and their domains. The search
space is shared among the agents and the agents have to communicate be-
cause of the constraints between distributed variables.

PAB In the PAB strategy, the problem is distributed based on the domains
of the variables. Each agent solves a part of the complete search space,
which is independent from each other, because each search space involves all

! Calculating the initial states from an incomplete state description can lead to more
than 4 values of individual variables.
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variables. Therefore, all agents solve a unique CSP and no communication
between agents is required.

Our application-specific computer architecture has to fulfill several require-
ments, which obviously influence the parallelization of the constraint satisfaction
algorithm. The following requirements are of special interest.

scalability Our special-purpose computer architecture consists of several inde-
pendent processors, each equipped with its own local memory. The number
of processing elements is moderate but variable. Thus, the parallel constraint
satisfaction algorithm should be scalable.

model independence The parallel algorithm should be applyable to all QSiMm
models — i.e. the application of the algorithm should not depend on the
structure of the model (CSP graph).

There are several reasons for choosing a PAB strategy for our application.
First, it is an excellent strategy for finding all solutions of a given CSP and it
is an inherent scalable algorithm. Second, the PAB strategy can be applied to
problems with arbitrary structure. Finally, the independent search spaces can
be solved with any sequential (and optimized) algorithm. A detailed comparison
between DAB and PAB strategies can be found in [Luo, Hendry, Buchanan 94].

In the next two subsections, we consider the essential steps of PAB in more
detail — we investigate methods to achieve a good partitioning of the complete
search space, and compare sequential algorithms to use the best one for QSim-
models and their partitioned subproblems.

3.2 Generating Independent Subproblems
3.2.1 Evaluation and Speedup Estimation

Partitioning of the complete search space is essential for an efficient parallel
algorithm. The partitioning methods are evaluated using runtimes of the sub-
problems. The most interesting runtimes are the overall runtime ¢,, which is
the sum of the runtimes of all subproblems, the maximum runtime of all sub-
problems t,,4;, and the sequential runtime of the unpartitioned problem ¢,.,.
Due to redundancies in the independent subproblems the overall runtime ¢, can
be longer than ¢,.,. An efficient partitioning method keeps the overall runtime
small. If £, gets smaller than ¢,.4 a superlinear speedup is expected. The subprob-
lem with the longest runtime restricts the maximum speedup. Thus, a balanced
partitioning, where all subproblems have nearly the same runtime, should be
achieved.

Using these runtimes (¢;¢q, tmas, and t,), it is possible to estimate the speedup
of the parallel algorithm. Communication times are not considered in this estima-
tion, and simple task attraction is assumed to schedule tasks to free processors.
We determine the limits of the speedup by worst- and best-case estimation. First
of all, the speedup is defined as S(n) = t,cq/tpar, where t,,, denotes the runtime
using m processors.

The worst-case condition is satisfied if the longest task is scheduled last and
all other tasks are equally distributed among the processors. The worst case
runtime of the parallel algorithm can be given as

to—1
tpar == =2 Tee + tmaz
n
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For best case estimation we have to consider two cases. If the number of pro-
cessors is greater than [-£>—] the parallel runtime is limited by .44, otherwise

tmae

all tasks are equally divided among the processors. More formally, the best case
parallel runtime can be estimated as

Lo Gf n <[]
tpar: n

tmae

tmaz Otherwise

3.2.2 Partitioning Methods

Two partitioning methods are investigated — constraint-based partitioning and
variable-based partitioning.

constraint-based partitioning (CBP) This partitioning is based on the tu-
ple sets of the constraints. The tuple set of an individual constraint is divided
into two or more disjunct subsets. A subproblem is defined by one subset and
the tuple sets of the remaining constraints. Thus, two or more subproblems
are generated. To achieve more subproblems than elements of one tuple set
partitioning is extended recursively.
Two variants of this method are studied. CBP-ALL divides the tuple set of
the constraint in as many subsets as elements in the tuple set. CBP-ALL tries
to generate tuple sets with just one tuple. All variables of such constraints
can be instantiated before backtracking starts. CBP-HALF divides the tuple
set into two parts. Hence, more tuple sets can be divided and the overall
number of tuples in the subproblems is a little smaller.

variable-based partitioning (VBP) The tuple sets of adjacent constraints
are not independent from each other. The tuple sets depend on the domain
of the shared variables. This dependency is exploited by the VBP method.
The domain of the variable is divided into two or more subdomains. This
induces a partitioning of the tuple sets of all attached constraints. In an
individual subset there are only the same values of the shared variable as in
the corresponding subdomain. Combinations of subsets with different values
of the shared variable are inconsistent and can be discarded. Hence, as many
subproblems as subdomains are generated. To generate more subproblems
than the ordinality of one domain, partitioning is extended to other variables.
Four variants of VBP can be classified by the sequence of variables which
domains are partitioned. VBP-INST uses the same order as the sequential
algorithm. Variables which are shared by many constraints are partitioned
first by VBP-CON. VBP-DOM divides the largest domains first. Finally,
VBP-TUP takes variables with the largest number of attached tuples first
— i.e. the order of the variables is given by the number of tuples of the
attached constraints.

3.3 Solving the Subproblems

With the parallel CSP strategy PAB the individual subproblems can be solved
with any sequential algorithm. QSIM uses a simple backtracking algorithm, ex-
tended by a constraint ordering scheme, for this task. There are many exten-
sions and improvements of simple backtracking known in literature. [Prosser 93]
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presents an overview of possible improvements, other enhancement schemes are
also presented in [Dechter 90]. Most of these improvements were evaluated with
standard CSP benchmarks (ZEBRA problem, N-queens, randomly generated
CSPs, etc.).

QSiM CSPs have different characteristics than those benchmark CSPs. Ob-
viously we are interested in fast algorithms for QSiM CSPs. Therefore, we eval-
uate improved backtracking algorithms with CSPs traced from QSIiM. These
algorithms are: FC (forward checker), CBJ (conflict-directed backjumping), and
GBI (graph-directed backjumping). A simple backtracking algorithm (BT) is
also executed as a reference. The implementation of these algorithms is based
on [Kondrak 94] and the CSP-library of [Beck 94].

4 Experimental Results

4.1 QSmm CSPs

To obtain realistic results from our measurements, three different QSIM models
have been simulated and the generated CSPs have been traced. Two simulation
models were chosen from the QSiM-package. The Starling model (STLG) has 17
variables and 18 constraints, and the Heart model (HEART) consists of 28 vari-
ables and 21 constraints. The Reaction-Control-System (RCS) [Kay 92], which
is not included in the QSiM-package, is the most complex model we have traced.
It consists of 45 variables and 48 constraints.

8 to 16 CSPs with different complexity — different cardinality of the vari-
ables’ domains — were chosen from the big number of CSPs generated during
gsim runs. The CSPs were executed on a digital signal processor TMS320C40.
The runtimes of all backtracking algorithms were measured with the internal
hardware timer of this processor.

4.2 Partitioning Methods

The most interesting runtimes for evaluating the two partitioning methods (CBP
and VBP) and its variants are presented in [Table 1] and [Table 2]. Only the
runtime of the backtracking algorithm for solving the subproblems is shown in
these tables. The overall runtime (¢,) and the maximum runtime (%;q5) of all
subproblems are summarized for all CSPs of an individual model. The sums are
presented in the corresponding rows of the table. All subproblems were solved
with the simple backtracking algorithm as used in QSIM.

A further interesting point is the influence of the number of generated sub-
problems to t, and t,,,,. Three cases are considered — the CSP is partitioned
into at most 16, at most 64, and at most 256 subproblems. The corresponding
runtimes are also presented in the tables.

Due to the exploitation of the dependencies between adjacent constraints,
the VBP method achieves better results than CBP. Especially, the big increase
of the overall runtime ¢, and the size of the maximum subtask %,,,4, lead to poor
parallel performance with CBP. VBP generates shorter maximum subtasks, and
in some cases i, is shorter than the runtime of the single-processor algorithm.
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16 Subtasks 64 Subtasks 256 Subtasks

Model |t, [ms][tmaz [ms]|to [ms][tmae [ms][to [ms][tmaz [ms]
STLG 9.09 3.21| 13.51 3.19| 37.77 3.09
CBP-ALL |HEART| 28.70 7.97| 34.57 5.01| 60.07 4.94
RCS 741.97 450.93|763.48 442.79(947.65 231.14
STLG 9.15 3.21| 14.00 3.11| 27.93 2.31
CBP-HALF HEART| 35.04 8.26| 53.48 7.89| 83.64 7.76
RCS 741.73 476.34(771.12 245.51|911.53 191.81

Table 1: CBP method. All runtimes of CSPs of an individual QSIiM model are sum-
marized and are presented in the corresponding row. The runtimes are measured on a
digital signal processor TMS320C40. The runtimes for the single-processor algorithm
are 6.12 ms for STLG, 25.72 ms for HEART, and 726 ms for RCS.

16 Subtasks 64 Subtasks 256 Subtasks
Model | to [ms]|tmaz [ms]| to [ms][tmaz [ms]| to [ms][tmar [ms]
STLG 6.96 3.49 6.55 3.28 6.34 3.18
VBP-INST|HEART| 27.89 8.85 26.64 8.63| 27.80 5.33
RCS 739.48 497.93| 7T746.44 495.45| 865.42 259.95
STLG 6.02 3.29 5.60 1.99 9.40 1.53
VBP-CON [HEART| 25.23 5.48 45.49 4.71| 58.05 4.55
RCS 1370.53 104.29| 826.66 67.86| 825.96 30.71
STLG 34.96 3.15 24.73 1.99| 18.12 1.70
VBP-DOM|HEART| 26.52 6.61 24.83 6.35| 36.31 5.74
RCS 3932.79 265.16|15119.29 252.02|4739.37 244.82
STLG 7.65 2.15 5.60 1.99 9.40 1.53
VBP-TUP [HEART| 65.85 12.11 52.62 6.31| 73.83 5.94
RCS 1401.59 103.31| 779.47 51.08| 780.95 44.95

Table 2: VBP method. All runtimes of CSPs of an individual QSmM model are summa-
rized and are presented in the corresponding row. The runtimes for the single-processor
algorithm are 6.83 ms for STLG, 28.77 ms for HEART, and 805.63 ms for RCS. The
small increase compared to the single-processor runtimes of CBP is due to different
memory mappings of the target system.

Speedup Estimation of VBP

A comparison of the speedup estimation for VBP-INST and VBP-CON is shown
in [Figure 2]. In most cases VBP-CON outperforms VBP-INST — especially for
complex CSPs (model RCS). VBP-CON results in a linear speedup for worst-
and best-case estimation. It turns out that the length of the maximum task
limits the expected speedup for VBP-INST.

Speedup increases with the number of generated tasks. However, the more
tasks are generated the more overall communication time is required and the
speedup of highly partitioned CSP can be lost. Best results are expected with
VBP-CON and a medium number of tasks.
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Figure 2: Speedup estimation of VBP for the RCS model. Worst- and best-case speedup
for VBP-INST and VBP-CON are shown in the left and right column plots. Especially
for complex models VBP-CON performs better than VBP-INST.

4.3 Comparison of Single-Processor CSP Algorithms

The CSPs of the three QSIM models have been solved with different sequential
algorithms. We have tried to find a parameter to estimate the runtime of a given
CSP. The average number of tuples per constraint (7/C) was chosen as such
a parameter. A plot of the runtimes is presented in [Figure 3]. The CSPs are
ordered corresponding to this parameter.

It turns out that simple backtracking is the fastest algorithm for simple QSim
models. For complex models sophisticated algorithms perform better. Graph-
directed backjumping (GBJ) has the shortest runtime on almost all complex
models. Thus, the parameter T//C can be used to divide QSiM CSPs into two
parts. Simple CSPs (T/C' is smaller than a given limit) should be solved with
simple backtracking, the other CSPs should be solved with the GBJ algorithm.
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Figure 3: Comparison of sequential backtracking algorithms. The CSPs are ordered
to the average number of tuples per constraint (T/C). For simple CSPs BT performs
better than the other algorithms. On more complex CSPs the opposite is true —
especially GBJ is up to 7 times faster than BT for RCS at T/C = 4.

5 Conclusions

In this paper we have presented a parallelizing strategy for constraint satisfaction
in QSIM. Two important steps of the PAB strategy are studied in detail. First,
partitioning methods for the CSP are introduced and evaluated. The evaluation
of these methods is based on runtime measurements of the subproblems and a
worst- and best-case speedup estimation. Second, different sequential backtrack-
ing algorithms are compared using QSIM CSPs. Results from this work can be
summarized as follows.

VBP-CON partitioning method VBP-CON performs better than the other
partitioning methods. A medium number of generated subproblem should be
chosen to achieve a good tradeoff between communication times and length
of the maximum subtask.

BT and GBJ for solving the subproblems Simple CSPs should be solved
with simple backtracking, more complex CSP should be solved with graph-
directed backjumping (GBJ). The complexity of a CSP can be estimated
with the average number of tuples per constraint (7/C). The exact limit
between BT and GBJ depends on the implementation of the algorithms and
has to be determined experimentally.

Implementation of parallel constraint satisfaction based on the PAB strategy
is in progress. The strategy is implemented on a multiprocessor system consisting
of TMS320C40. The speedup estimations are compared with experimental results
from this implementation.
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