High Performance Qualitative Simulation on

a Multi—-DSP Architecture”

Marco Platzner, Bernhard Rinner
{marco, rinner}@iti.tu-graz.ac.at

Institute for Technical Informatics

Graz University of Technology

Abstract

We present a special-purpose computer
architecture for the qualitative simulator
QSIiM, which is mainly used in artificial
intelligence (Al) applications. This archi-
tecture consists of DSPs TM5320C40 and
specialized coprocessors (Xilinx FPGAs).
We stress the distinct algorithm character-
istic of qualitative simulation compared to
DSP applications. We also demonstrate
the suitability of the DSP TM5320C40 for
this non—-DSP application.

keywords:
special-purpose computer architecture,
multi-DSP TMS320C40,
qualitative simulator QSIM,
distributed operating system Virtuoso

1 Introduction

The goal of qualitative simulation is to
derive a characterization of the behavior
of a dynamic system given only weak in-

formation about it. This fundamental

*This project is partially supported by the
Austrian National Science Foundation Fonds zur
Forderung der wissenschaftlichen Forschung un-
der grant number P10411-MAT.

strength of qualitative simulation is ex-
ploited more and more in applications, like
design, monitoring, and fault-diagnosis,
nowadays.

QSiM, the widely-used algorithm for
qualitative simulation has been developed
by Kuipers [3].

QSIM implementations is poor execution

A drawback of current

speed. In our research project [6][5] a
special-purpose computer architecture for
QSIM is developed. Performance improve-
ment and scalability are our most impor-
tant objectives. Two approaches are con-
sidered to achieve these objectives. Com-
plex functions are parallelized and mapped
onto a multiprocessor system. Less com-
plex but frequently used functions are di-
rectly implemented in hardware. These
functions are executed on specialized co-
processors.

This paper presents the current state
of our research project. Although QSim
has an algorithm characteristic which dif-
fers strongly from typical DSP algorithms,
we are using the DSP TMS320C40 for
our computer architecture. The suitabil-
ity of the TMS320C40 for this high per-
formance computing machine is demon-
strated. Important results of QSIM anal-
ysis are presented in Section 2. Section 3
gives an overview of the computer architec-

80 %

Constraint-filter

Il

QSim kernel

e
7
’

FORM-ALL-STATES

120% !

[

Tuplefilter

Waltz-filter

CCF

70 %

(DIDT, M+, M-
ADD, MULT)

Il

1 30%

=

Figure 1: Runtime analysis of the kernel. Kernel functions are hierarchically structured and
their runtimes are informally presented with regard to the runtime of the calling function.

ture design and some implementation de-
tails. Some remarks for further work con-
clude this paper.

2 Algorithm Characteristic
and Analysis

The qualitative simulator QSIiM has a
distinct algorithm characteristic which dis-
tinguishes QSIM from typical DSP al-
gorithms. ~ Many algorithms in DSP-
applications show a high inherent data
parallelism. These algorithms are mainly
based on extensive numerical computation,
and their internal execution is hardly influ-
enced by input data. QSIM, however, can
be characterized as follows.

e Symbolic computation

e Low to medium data parallelism
e High input sensitivity

e NP-completeness

Figure 1 presents an overview of the
QSIM kernel functions. The function hier-
archy as well as runtime ratios are shown

in this figure. Kernel functions are essen-
tial in calculation of one simulation step,
and mostly they require more than 50 %
of the overall runtime.

2.1 Constraint-Filter

The constraint-filter consists of mutu-
ally independent functions (tuple-filter)
and the Waltz-filter. Figure 2 shows the
pseudo-code of the constraint-filter. The
number of tuple-filters depends on the in-
put simulation model. The Waltz-filter is
used for efficiency reasons to reduce the
search space for the final kernel function
FORM-ALL-STATES.

The constraint-filter can be easily paral-
lelized. The independent tuple-filters are
executed on individual processors. After
all tuple-filter results have been received
Waltz-filtering is performed.

2.2 FORM-ALL-STATES

FORM-ALL-STATES actually solves a
constraint satisfaction problem (CSP) by
a backtracking algorithm. A big search
space has to be processed with a depth-

FOR all constraints c¢; DO
tuple-filter(¢;)

ENDFOR

waltz-filter()

Figure 2: Constraint-filter pseudocode

first search to find all solutions of the CSP.
Although solving CSPs is NP-complete we
did not experimentally observe an expo-
nential behavior. The runtime of FORM-
ALL-STATES did not exceed 20 % of the
kernel runtime.

We use a parallel-agent-based (PAB)
[4] strategy to parallelize FORM-ALL-
STATES. The basic idea of PAB is to par-
tition the overall search space into smaller
independent sub-spaces which can be
solved with any sequential CSP-algorithm.

2.8 Constraint-Check-Function
(CCF)

There are many types of CCFs in current
QSIM implementations (e.g. ADD, MULT,
D/DT, M*, M™). Although the CCF's vary
in their complexity these functions con-
sist only of primitive operations, like eval-
uation of boolean functions, comparisons,
and table-lookups. However, due to their
frequent execution they dominate the over-
all kernel runtime. These functions are di-
rectly implemented in hardware (CCF' co-
processor).

3 Multi-DSP Architecture

3.1 Requirements

To achieve a high performance computer
architecture we defined a set of require-
ments for i) the processor type, ii) the in-
terconnection network, and iii) the oper-
ating system. These requirements are de-

rived from both the results of QSIM anal-
ysis and our objectives.

Processor type The processor require-
ments are high computation performance
and excellent multiprocessing capabilities.
This includes a large number of indepen-
dent 1/O channels and a high communica-
tion bandwith. In our architecture special-
ized coprocessors are embedded into the
multiprocessor. Therefore, the protocol of
the I/O channels should be convenient to
implement in hardware.

Communication network The pro-
posed computer architecture is a multi-
processor system with distributed memory.
The processors are connected in a wide
tree structure. The parallel algorithms for
both kernel functions, constraint filter and
FORM-ALL-STATES, have the same logi-
cal structure. The tasks are connected in a
star structure. However, due to the limited
number of 1/O connections per processor,
a star topology is not scalable. Thus a wide
tree topology is a compromise between log-
ical structure and scalability.

Operating system The development of
this computer architecture has to be sup-
ported by a distributed multi-tasking op-
erating system. This is due to two reasons:
First, the use of an operating system eases
a scalable and to some extend portable im-
plementation. Second, the number of tasks
of the parallelized QSIM kernel functions
is not known at compile time. Hence, dy-
namic mapping and dynamic scheduling of
all tasks is required. The operating sys-
tem’s overhead has to be minimal.

3.2 Multi-DSP Implementation

The digital signal processor TMS320C40

was chosen as processing element for

e

TMS320C40

il

[
TMS320C40

[
TMS320C40

TMS320C40

L]
TMS320C40

11
iRl
CCF
Copr ocessor

i}

COopr ocessor

CCF

Figure 3: Example of the overall architecture. The processing elements are connected in a
wide tree structure. Some processing elements are equipped with CCF coprocessors

our special-purpose computer architecture.
This DSP fulfills above requirements [8].
The TMS320C40 has six communication
ports, each with a data transfer rate of
20 MByte/s. All communication ports
and the CPU can work in parallel. The
TMS320C40 allows to implement multi-
processor trees with up to five children.
Communication between TMS320C40 and
the specialized CCF coprocessors is estab-
lished via two independent communication
ports. This reduces the hardware effort for
a communication port interface to 8 data-
and 2 control-lines. The distributed multi-
tasking operating system Virtuoso [9] was
chosen to support the design and imple-
mentation of scalable and portable multi-

DSP software.

A prototype of the overall multi-DSP
architecture is shown in Figure 3. Some
processing elements of this multiproces-
sor architecture are equipped with CCF
coprocessors. OQur multi-DSP system is
built using two Transtech ISA—bus moth-
erboards each equipped with TMS320C40

TIM modules. The coprocessors are im-

plemented using Xilinx FPGAs (XC4013).
A 19”7 industrial PC rack serves as host
and chassis for the multi-DSP architec-
ture. Communication from the host to the
multi-DSP system is established via ISA-
bus and a FIFO buffer on the Transtech

motherboard.

3.3 Current State

First experimental results of this project
include speedup estimations for a paral-
lelized FORM-ALL-STATES [7] and a pro-
totype implementation for the CCF copro-
cessor [1]. Different partitioning heuristics
for the CSP are implemented and com-
pared using single-processor runtimes. The
CCF runtime is improved using the copro-
cessor by up to a factor of 20 compared to
a software implementation.

4 Conclusion, Future Work

We presented the design and implemen-
tation of a special-purpose computer archi-

tecture. Based on this computer architec-
ture we demonstrated the suitability of the
DSP TMS5320C40 for this non—DSP appli-
cation. The high I/O performance and the
number of communication ports are major
reasons for choosing TMS320C40 as pro-
cessing element. High floating-point per-
formance and special addressing modes of
this processor are of minor interest for this
project.
Ongoing and future work includes:

e Implementation of the parallel kernel
functions

e Implementation of coprocessors for
other often used constraint types

e Embedding of coprocessors into the
multi-DSP system

e Evaluation of the overall computer ar-

chitecture
References
[1] G. Friedl. Entwurf und FPGA-

Coprozessors
fur qualitative Simulation. Master’s
thesis, Institute for Technical Infor-

Implementierung eines

matics, Graz University of Technology,

1995.

[2] G. Friedl, M. Platzner and B. Rin-
ner. A Special-Purpose Coprocessor
for Qualitative Simulation. In FURO-
PAR’95 International Conference on

Parallel Processing, Stockholm, Swe-
den, August 1995.

[3] B. Kuipers. Qualitative Reasoning:
Modeling and Simulation with Incom-
plete Knowledge. Artificial Intelligence.
MIT Press, 1994.

[4]

Q.P. Luo, P.G. Hendry, and J.T.
Buchanan. Strategies for Distributed
Constraint Satisfaction Problems. In
Proceedings 13th International DAI
Workshop, Seattle, WA, 1994. DAL

M. Platzner and B. Rinner. Improving
Performance of the Qualitative Sim-
ulator QSIM — Design and Imple-
mentation of a Specialized Computer
Architecture. In Fighth International
Conference on Parallel and Distributed
Computing Systems, Orlando, Florida,
September 1995.

M. Platzner, B. Rinner, and R. Weiss.
A Distributed Computer Architecture
for Qualitative Simulation Based on a
Multi-DSP and FPGAs. In 3rd Eu-
romicro Workshop on Parallel and Dis-
tributed Processing, pages 311-318, San
Remo, January 1995.

J. Riedl. Parallele Algorithmen und
Laufzeitmessungen fur Constraint Sat-
isfaction im qualitativen Simulator
QSim. Master’s thesis, Institute for
Technical Informatics, Graz University

of Technology, 1995.

C. Steger, M. Platzner, and R. Weiss.
Performance Measurements on a Multi-
DSP Architecture with TMS320C40.
In International Conference on Signal
Processing Applications € Technology,
Santa Clara, California, USA, Septem-
ber 1993.

E. Verhulst. Virtuoso: A virtual sin-
gle processor programming system for
distributed real-time applications. Mi-
croprocessing and Microprogramming,

40:103-115, 1994.

