
TrustCAM: Security and Privacy-Protection for an Embedded
Smart Camera based on Trusted Computing

Thomas Winkler
Institute of Networked and Embedded Systems

Klagenfurt University
Lakeside Park B02b

9020 Klagenfurt, Austria
thomas.winkler@uni-klu.ac.at

Bernhard Rinner
Institute of Networked and Embedded Systems

Klagenfurt University
Lakeside Park B02b

9020 Klagenfurt, Austria
bernhard.rinner@uni-klu.ac.at

Abstract

Security and privacy protection are critical issues for
public acceptance of camera networks. Smart cameras,
with onboard image processing, can be used to identify
and remove privacy sensitive image regions. Existing ap-
proaches, however, only address isolated aspects without
considering the integration with established security tech-
nologies and the underlying platform. This work tries to fill
this gap and presents TrustCAM, a security-enhanced smart
camera. Based on Trusted Computing, we realize integrity
protection, authenticity and confidentiality of image data.
Multiple levels of privacy protection, together with access
control, are supported. Impact on overall system perfor-
mance is evaluated on a real prototype implementation.

1. Introduction and Motivation
Smart camera networks attract a lot of attention in re-

search [13]. They have the potential for many applications

which are not limited to classical surveillance but also in-

clude new fields such as elderly care, home automation or

entertainment. The use of wireless interfaces is increasing

and the amount of software running on cameras is growing.

With these properties, cameras are likely to become attrac-

tive targets for attackers. Operators consequently will be in-

terested in mechanisms that allow to reliably check the state

of cameras and to get assurance that, e.g., a video is unmod-

ified and comes from the intended camera. Likewise, moni-

tored persons have the interest that their privacy is preserved

and videos can only be accessed by authorized parties.

In this work, we enhance smart camera security by ap-

plying Trusted Computing (TC). TC proposes a hardware

based security solution. A microchip – the Trusted Plat-

form Module (TPM) – provides a set of well defined and

well reviewed security primitives. To our knowledge, this is

the first work that implements and evaluates Trusted Com-

puting concepts in a embedded smart camera. An advantage

of TPMs is that they are cheap and readily available. The

drawback that comes with low price is that current imple-

mentations are relatively slow. Therefore, challenges lie in

the proper integration into a camera system and the com-

puter vision tasks. Our contribution is threefold: First, we

describe our custom camera prototype with integrated TC

support. Second, we discuss how TC can increase the secu-

rity of a camera and how it can be used to realize a multi-

level, privacy protection system. Third, we present results

from our practical implementation and discuss the impact

on overall system performance. The remainder of this work

is organized as follows: After summarizing related work in

section 2, we give an outline of basic TC concepts (section

3). Our system design is presented in section 4. Section 5

discusses the security enhancements, their implementation

as well as evaluation results. Section 6 concludes the paper.

2. Related Work
The importance of privacy and security for camera net-

works has been recognized by many researchers. Efforts

have been made to protect privacy of monitored persons,

e.g., by Fleck et al. [7] in the context of elderly care applica-

tions. Serpanos et al. [12] do not limit their considerations

to privacy but provide a holistic discussion of security ques-

tions. They cover fundamental topics including data confi-

dentiality, integrity, freshness or mutual authentication and

discuss their relevance for camera networks. Cavallaro [3]

highlights the need for privacy protection and argues that

smart cameras offer the potential for major improvements

over CCTV systems. Computer vision is powerful enough

to identify personal data in videos but challenges remain in

making algorithms reliable and robust. Senior et al. [11]

discuss the meaning of privacy in video surveillance and

conclude that there is no general notion of privacy but what

is acceptable depends on the individual person and cultural

1

attitudes. Critical aspects of a surveillance system include

what data is available and in what form, who has access to

data and in what form and how long it is stored. PrivacyCam

by Chattopadhyay et al. [4] is a DSP based system where

motion regions are encrypted before images are streamed.

Dufaux et al. [6] also scramble regions of interest. They

however do not rely on cryptography but do scrambling

as part of MPEG-4 and MJPEG encoding. Baaziz et al.

[2] not only do scrambling, but additionally embed water-

marks into images to ensure data integrity. The system by

Tansuriyavong et al. [14] performs face recognition and

blanks silhouettes of persons. Depending on the configu-

ration, only person’s names, silhouettes of full images are

displayed. Moncrieff et al. [10] apply dynamic data hiding

techniques. While, during normal operation privacy sensi-

tive data is removed, in case of, e.g., an alarm, the system is

automatically adapted to reveal additional information.

Trusted Computing has attracted many researchers but

little work is targeted at embedded systems. Grossmann et

al. [8] describe a teletherapeutic application where vital pa-

rameters are monitored and an insulin pump is controlled

from remote via a smartphone. A TPM is used to attest

the system state before sensitive information is transmitted.

secFleck by Hu et al. [9] is a TPM extension board for the

Fleck mote. The TPM is used as random number genera-

tor, for RSA en- and decryption and digital signatures. No

details about key management or key hierarchies are given.

Software TPM implementations for embedded systems are

explored by Dietrich and Winter [5]. Specifically, the use

of existing CPU extensions like ARM TrustZone is evalu-

ated to implement a software TPM with security guarantees

similar to those of dedicated hardware. Alternatively, smart

cards as found in mobile phones to could be used to im-

plement TPM functionality. Aaraj [1] et al. also explore

a software TPM solution. To improve performance, they

implement critical functions on reconfigurable hardware.

The majority of existing literature on smart camera secu-

rity is focused computer vision aspects such as identifying

privacy relevant image regions. Little effort has been made

to integrate such approaches with solutions from computer

security research. We see our work as a first step towards a

more holistic approach to ultimately fill this gap.

3. Trusted Computing Overview
TC is an industry initiative headed by the Trusted Com-

puting Group (TCG). The main output of the group is a set

of specifications for a hardware chip – the Trusted Platform

Module (TPM) [15] – and software infrastructure like the

TCG Software Stack (TSS) [16]. The TPM is typically im-

plemented as a microcontroller (execution engine) with ac-

celerators for RSA and SHA1. Additionally, the TPM pro-

vides a random number generator and limited amount of

volatile and non-volatile memory. With an Opt-In process,

users can choose if they want to make use of the TPM.

RSA keys can be generated for different purposes such as

encryption or signing. Upon creation, keys can be declared

migratable or not. While migratable keys can be transferred

to a different TPM, non-migratable keys can not. Regard-

less of key type and migratability, a private TPM key can

never be extracted from the chip as plaintext but only in en-

crypted form. By definition, every key must have a parent

key that is used to encrypt the key when it has to be swapped

out of the TPM due to limited internal memory. At the top

of this key hierarchy is the Storage Root Key (SRK) which

never leaves the TPM. TC defines three roots of trust:

Root of Trust for Measurement (RTM). In TC, measur-

ing is the process of computing the SHA1 hash of

an application binary before it is executed. Typically

starting from an immutable part of the BIOS, a chain of

trust is established where each component in the chain

is measured before control is passed to it. The mea-

surements are stored inside the TPM in memory re-

gions called Platform Configuration Registers (PCRs).

As available memory in the TPM is limited, a special

operation called TPM Extend is used to write to PCRs:

������ � ��������������	
��	�	���.

TPM Extend computes the hash of the current PCR

value concatenated with the new measurement. This

accumulated value is written back into the PCR.

Root of Trust for Reporting (RTR). Reporting of the

platform state is called attestation and is done with the

TPM Quote command. As part of that, PCR values

get signed inside the TPM using a key unique to that

TPM. In theory, this key could be the Endorsement

Key (EK) which is inserted into the TPM upon man-

ufacturing. For privacy reasons however, not directly

the EK but alias keys are used. They are called

Attestation Identity Keys (AIKs) and are generated

with the help of an external, trusted third party.

Root of Trust for Storage (RTS). The RTS allows to use

the TPM to securely store data. Binding of data refers

to encrypting data with a TPM key and hence guar-

anteeing that this data only is accessible by this spe-

cific TPM instance. Sealing of data allows to specify

a set of PCR values the data is associated with. Like

unbinding, unsealing can only be done by the specific

TPM instance that holds the private sealing key. Ad-

ditionally, the plaintext is only released if the current

PCR values match those specified upon sealing.

4. Security and Privacy Protection
Before describing the TrustCAM prototype system in

section 5, we discuss the design goals, underlying assump-

tions, setup procedures and targeted features.

2

4.1. Goals, Threats and Assumptions

The main class of threats we consider in this work are

software attacks on camera systems. The motivation for this

is that smart cameras come with a large amount of software.

Often, standard operating systems such as Linux are used.

Additionally, more and more systems have wireless inter-

faces. We believe that these properties make smart cam-

eras an attractive target for attackers. Attacks on the cam-

era hardware, including side channel attacks and hardware

manipulation, are beyond the scope of this work. We how-

ever assume that with adequate effort, a reasonable degree

of tamper resistance can be achieved by, e.g., specifically

designed enclosures. One of the major advantages of TC

is that private cryptographic keys are protected by the TPM

and can never be exported. This allows to achieve a higher

level of security than a pure software solution could. We

use this property as a basis to realize the following set of

security features, highly relevant for camera applications:

1. Integrity. Manipulation of images or videos should be

detected, e.g., using checksums and digital signatures.

2. Authenticity. Evidence about the origin of images

(i.e., which camera took an image) should be provided.

3. Confidentiality. To protect privacy, image regions that

contain personal information should be encrypted.

4. Multi-Level Access Control. Different levels of ab-

straction for confidential data together with access

control for each level should be supported.

Beyond these features, there is a wide range of security as-

pects that are equally important but are not considered in

this work. These include freshness of image data and the

related problem of image timestamping. Moreover, denial

of service attacks and system availability are not addressed.

Related work that discusses some of these aspects in the

context of intelligent cameras can be found in [17].

4.2. System Setup and Camera Deployment

Figure 1 shows an example network of TrustCAM nodes

operated by a central control station (CS). Each camera is

equipped with an individual TPM called ���� . Likewise,

the CS is equipped with a TPM denoted ���� . Further-

more, the CS runs a protected database where cryptographic

keys generated during camera setup are securely stored.

For setup and deployment, we require that cameras are

under full control of the operating personnel. As part of

this setup, cryptographic keys are generated by the cam-

era’s ���� as well as by ���� of the control sta-

tion. First, ���� must be activated by calling the

TPM TakeOwnership command. As part of this process,

a unique owner secret is set and the Storage Root Key

(����) is generated. ���� acts as parent key for the non-

migratable, 2048 bit RSA signing key ���� which is gen-

erated in the second setup step. Being non-migratable guar-

antees that the private part of ���� can only be used inside

���� . Consequently, data signed with ���� is guaran-

teed to come from this specific camera. The public part of

���� is exported and stored in the CS database. Finally,

in the third step, a number of non-migratable, 2048 bit RSA

binding keys (����	�

�) is generated by ���� of the

CS. The public parts of these binding keys are exported and

stored on the camera. During operation, they are used by

the camera for encryption of privacy sensitive image data.

As the private parts of the binding key can only be used

inside ���� , this ensures that sensitive data can only be

decrypted when having access to the CS.

��������

	
��

��������

	
��
�������

	
�� ������������������
�����������

	
��

���������

Figure 1. An network of trustworthy cameras and a control station.

4.3. Integrity and Authenticity

We achieve image integrity by cryptographically sign-

ing frames before they are streamed. For this, we use the

non-migratable signing key ���� which is protected by

���� . The property of being non-migratable ensures that

the private part of the key can only be used inside the cam-

era’s ���� . This solves the problem of image authen-

tication as it guarantees that images signed with this key

actually originate from the specific camera ���� is part

of. Assume that the �� requests a video stream from cam-

era ��� . Once the signed images arrive at the ��, the

public signing key �������
from the �� database has to

be retrieved. With this key, an operator can verify the image

signature. In summary, the procedure works as follows:

1. CS: request video stream from camera ���

2. CAM: acquire image data �	
 from sensor

3. CAM: sign �	
: ��
��� � ��� ��
�����
��	
�

4. CAM: send image signature ��
��� and �	
 to CS

5. CS: retrieve public signing key �������
of ���

from local database

6. CS: verify signature: � ���� �������
���
���� �	
�

7. CS: If signature verification succeeds, one knows

(a) that the image was not modified and

(b) it comes from the intended camera as it was

signed with���� protected by��� ’s ���� .

3

4.4. Confidentiality and Access Control

Privacy in video surveillance applications is a critical is-

sue. To maintain privacy of monitored persons, relevant in-

formation such as faces or license plates need to be pro-

tected. While completely removing such information al-

ready on the camera would solve the privacy problem, at

the same time it would significantly reduce the usefulness

of a camera system for many tasks. As a consequence, our

concept – in accordance with other proposals like [4, 14] –

suggests to encrypt sensitive image regions to maintain con-

fidentiality. We use the public binding keys�������������

which were created during camera deployment. By that, we

not only achieve confidentiality but also an additional se-

curity property: Since the binding keys are non-migratable,

they can not be extracted from ���� and hence can not be

leaked to a third party. Consequently, actual access to the

�� with its ���� is required for image decryption. We

assume that �� access is limited to authorized staff.

Using multiple binding keys�������������
allows us to

implement a multi-level security system. Suppose that sen-

sitive image regions have been detected by the camera. In a

next step, these regions are extracted from the image. The

extracted regions then are bound to ���� using ������

and ������. Furthermore, an abstracted version of the

sensitive regions is generated (e.g., showing only outlines

of persons) which is bound to ���� using ������. To

be able to decrypt the image regions at the ��, not only ac-

cess to the keys (and hence ����) is required but also the

keys’ passwords (usage secrets) must be known. Depend-

ing on their security clearance, operators have knowledge of

one of the usage secrets for ������, ������, ������

or none. Consequently, they have access to different types

of information (image without sensitive regions, abstraction

of sensitive regions, ...). To reveal the full original image,

in this model the two operators who know the usage secret

for ������ and ������ respectively have to cooperate.

Requiring two operators to collaborate provides a certain

degree of protection against operator misuse. It however

can not protect against attacks by collaborating insiders.

5. Implementation and Results
To evaluate the performance impact of the proposed se-

curity enhancements, we implemented them on our Trust-

CAM prototype. For the experiments, the control station

is simulated with a laptop computer also equipped with a

TPM. All communication between TrustCAM and the lap-

top is done via WiFi. In the following sections, we describe

implementation details together with measurement results.

5.1. Hard- and Software Architecture

Our custom prototype system mostly uses commercially

available components. Figure 2 gives an overview of the

system architecture. TrustCAM is based on the Beagle-

Board1 which has a dual-core processor with an ARM Cor-

tex A8 CPU clocked at 480 MHz and a TMS320C64x+ dig-

ital signal processor running at 360 MHz. The system is

equipped with 256 MB RAM and 256 MB NAND flash. Via

USB, we connect a color SVGA CMOS sensor (Logitech

QuickCam Pro 9000) and an RA-Link RA-2571 802.11b/g

WiFi adapter. An XBee radio provides a second, low-

performance communication channel. Finally, an Atmel

AT97SC3203S – the only commercial TPM designed for

embedded devices – is connected to the mainboard via the

I2C bus. Figure 3 shows a picture of the prototype system.

On the software side, we rely on an ARM Linux system

with a customized kernel. Based on that, we have imple-

mented a custom software framework that supports compo-

sition of applications from independent processing blocks.

These blocks implement a predefined interface and perform

a certain task such as motion detection or video stream-

ing. Processing blocks are executed as individual threads

that communicate via shared memory. The actual tasks per-

formed by the system are defined by the selected process-

ing blocks and how they are lined up. This high-level ap-

plication logic, together with parameters for the processing

blocks, is specified by application designers as a script. For

application level TPM access, we use a modified versions of

the TrouSerS2 TCG software stack where we have replaced

the trusted device driver library (TDDL) with a fully custom

version that interacts with the TPM on the I2C bus.

SerialUSB I2CUSB

OMAP 3530
(ARM Cortex A8 and TMS320C64x+ DSP)

XBee
Radio

802.11 b/g
WiFi Radio

Color
CMOS
Sensor

Atmel
TPM

256MB
RAM

256MB
NAND
Flash

Linux Kernel

TrouSerS TSS
with I2C TDDL

System Libraries (libjpeg, zlib, libexif,
OpenSSL, IVT…)

TrustCAM Software Framework

Application 1 Application 2 Application N

Figure 2. The TrustCAM prototype hard- (gray) and software

(white) architecture. The image sensor and WiFi radio are con-

nected via USB. The XBee low performance radio uses a serial

connection and the TPM is attached via the I2C bus. The software

layers consist of a custom Linux kernel, standard system libraries,

a modified TrouSerS TSS and the TrustCAM software framework.

5.2. Image Encryption

As outlined in section 4, we propose to encrypt sensitive

image regions. For that purpose we create two 256 bit AES

1BeagleBoard Website: http://www.beagleboard.org (03/2010)
2TrouSerS Website: http://trousers.sourceforge.net/ (03/2010)

4

Figure 3. The TrustCAM prototype with the image sensor, the

XBee radio and the Atmel I2C TPM at the top level. Behind that

are the processing board and WiFi radio.

session keys, and , at application startup.

They are bound to of the control station. Specifi-

cally, is bound using and :

.

The other symmetric key, , is bound with :

.

Figure 4 depicts the processing flow of our camera. The

image acquisition block reads an image from the sensor and

passes it to the privacy protection block. The sensor can de-

liver either uncompressed YUYV or compressed JPEG im-

ages. The first operation performed by the block is detec-

tion of regions of interest (ROI). For evaluation purposes,

we use ROI with fixed sizes. The ROI locations are com-

puted randomly for every frame. In an actual implementa-

tion regions of interest could be determined using, e.g., mo-

tion detection or face detection. After the ROI have been

selected, they are extracted from the input images. The re-

maining background image () and the ROI image

() are JPEG compressed using libjpeg. As inter-

mediate level between revealing no or all sensitive image

data, canny edge detection is performed on the ROI image.

The resulting black and white, binary image () al-

lows to, e.g., observe actions of persons in the video stream

without revealing too much privacy sensitive information.

is compressed using zlib since JPEG compres-

sion is not efficient for binary images. The compressed ROI

images are encrypted with the respective AES session keys:

.

.

Table 1 shows performance values for AES256 encryption

measured on TrustCAM. Typical sizes of JPEG compressed

regions of interest (200x200 pixels, JPEG quality: 80) are

around 8 kB. For zlib compressed, edge-detected ROI, typ-

ical sizes are around 4 kB. Runtimes for AES encryption

hence are less than 2 ms in both cases. After encryption,

the background image , the encrypted ROI im-

ages and and the bound AES

keys and are combined into a

single image. For the prototype, they are embedded into

as custom EXIF data.

Data Size Runtime
TrustCAM Laptop

SHA1
15 kB 0.7 ms 0.09 ms

40 kB 1.9 ms 0.3 ms

80 kB 3.8 ms 2.1 ms

AES 256

8 kB 1.6 ms 0.2 ms

15 kB 2.9 ms 0.3 ms

40 kB 7.6 ms 0.7 ms

80 kB 15.4 ms 1.4 ms

Table 1. Average runtimes (10 runs) for AES 256 encryption and

SHA1 hashing on TrustCAM and a Core2 Duo (1.6 GHz) laptop.

5.3. Image Signing

The next step in the processing chain is the calcula-

tion of the digital signature of the combined image. Image

signing is broken down into the computation of the SHA1

hash sum of the image and the digital signing of the hash

value inside . Table 1 presents typical runtimes for

Atmel (LPC) Atmel (I2C)
(AT97SC3203) (AT97SC3203S)

TPM OIAP 44 ms 47 ms

TPM Sign 793 ms 804 ms

TPM Unbind 827 ms 837 ms

Table 2. Average runtimes (10 runs) for selected TPM commands

(2048 bit RSA key size) of Atmel TPMs on a PC (LPC bus) and

on TrustCAM (I2C bus).

SHA1 calculation on TrustCAM. A JPEG compressed im-

age at 640x480 (JPEG quality: 80) together with the em-

bedded EXIF data has around 30 kB. The resulting run-

time for SHA1 computation is less than 2 ms. Runtimes

for the second set of operations involved in data signing,

TPM Sign and TPM OIAP (TPM session establishment),

are given in table 2. The runtimes on TrustCAM with its

TPM connected to the I2C bus are about 850 ms. For com-

parison, we also measured the runtimes of an Atmel TPM

in a desktop PC where it is connected to the LPC bus (LPC

bus @33 MHz vs. I2C @50 kHz3). The difference of about

3Both, the Atmel I2C TPM and the BeagleBoard support 100 kHz I2C

communication. For stability reasons, we only use 50 kHz.

5

Image Sensor Region of Interest
(ROI) Detection

JPEG Compression

JPEG Compression

Edge Detection zlib Compression

image w/o
ROI

edge
ROI

Region of Interest
(ROI)

image

Encryption with KAES1

Combined Image
Generation

Digital Signature
using TPMC key KSIG

Encryption with KAES2

MJPG Streaming

to
C
on
tro
l

S
ta
tio
n

Multi-Level Privacy Protection

Figure 4. The TrustCAM onboard processing flow. Raw images are read from the sensor and regions of interest (ROI) are detected.

Different privacy levels are achieved by, e.g., performing edge-detection for ROI. Afterwards, ROI images are JPEG compressed and

encrypted with AES session keys bound to ���� of the CS. Combined images are signed with a key protected by the camera’s ���� .

10 ms suggests that the major part of the time is consumed

by the TPM and not by communication. Comparison mea-

surements with TPMs from different manufacturers can be

found in, e.g., [17]. For completeness, table 2 also includes

the runtime for the TPM Unbind command that is used at

the control station for decryption of the AES session keys.

Based on the runtimes, it clearly is impossible to, e.g., sign

every frame of a video stream as this would reduce the fram-

erate to little more than 1 fps. We consequently adapted the

image signing procedure such that sequences of images in-

stead of individual images are signed. We accumulate the

hashes for a group of � frames in a way similar to the

TPM’s PCR Extend operation:

���������������
�������������������������������	����.

The accumulated hash for � frames is signed by
��� :

����	 �
�� ���
���
��������������� �.

As signature computation takes a significant amount of

time, we do not wait for the result but continue with the

processing and streaming of video data. Specifically, the

accumulation of the hash sum for the next group of images

(beginning at frame � � �) is started. This continuous op-

eration is possible since TPM commands are executed in

parallel to the main processor. Once the TPM completes

the sign command, the signature is retrieved and attached

to the next frame to be streamed. Note that the signature

also contains the start and end indices of the group. For the

prototype, signature data is embedded as custom EXIF data.

At this point, the accumulated hash sum of the next image

group is sent to the TPM for signing. The size of the image

groups is automatically adapted to the current frame rate.

The presented approach allows to overcome the problem

of low TPM performance. By signing groups of frames in-

stead of individual images, we can deliver a video stream

without interruptions from TPM operations. At the same

time, the security of the system is not reduced. For videos

that are stored and viewed at a later point in time, integrity

of images can easily be verified. For live video, integrity

guarantees for the currently displayed frame can not be

given since the signature for the current image group is de-

livered at a later point in time. This delay is primarily de-

termined by TPM performance and is less than 1 s for our

system. Another limitation is, that if a frames of a group is

lost, damaged or manipulated, the integrity and authenticity

of the entire group can not be verified. We however believe,

that these limitations are acceptable for most applications.

5.4. Control Station

At the control station, the streamed background images

can be displayed without any further efforts. If however the

ROI included in the EXIF data of the images should be dis-

played, they first need to be decrypted. For that purpose,

the bound AES session keys ��������� and ���������

need to be unbound. As the private keys required for un-

binding never leave
��� , this decryption requires ac-

tual access to the �� and its
��� . While for unbinding

��������� , the usage secret of ������ is sufficient, for

for ��������� the secrets of two binding keys ������

and ������ are required. Assuming that these usage se-

crets are not known by a single system operator, this ensures

that at least two persons have to cooperate to reconstruct

the original image. As previously mentioned, this approach

provides limited protection against insider attacks from sin-

gle operators but can not prevent attacks by collaborating

insiders. Once the AES session keys have been unbound,

the ROI images ������	
� and/or ������	
� can

be decrypted and inserted into the background image. For

6

Input Format Internal Plain Image ROI Encryption ROI Encr. (200x200)

Resol. Type Format Streaming Signing 100x100 200x200 + Image Signing

320x240

YUYV Gray 24.4 fps 24.0 fps 23.6 fps 21.3 fps 20.6 fps

JPEG n/a n/a 18.5 fps 13.8 fps 13.0 fps

YUYV RGB24 23.8 fps 23.2 fps 18.2 fps 12.6 fps 12.1 fps

JPEG 25.0 fps 25.0 fps 14.5 fps 10.5 fps 10.0 fps

640x480

YUYV Gray 12.8 fps 12.3 fps 11.8 fps 9.8 fps 9.6 fps

JPEG n/a n/a 5.7 fps 5.2 fps 5.0 fps

YUYV RGB24 6.5 fps 6.2 fps 5.9 fps 5.2 fps 5.0 fps

JPEG 25.0 fps 25.0 fps 4.5 fps 4.0 fps 3.8 fps

Table 3. Frame rates (avg. over 1000 frames) for different types of video streaming between TrustCAM and CS via WiFi. For plain

streaming, JPEG frames are streamed or YUYV images are, after optional conversion to grayscale, JPEG compressed and streamed. For

image signing, the TPM signature for an image group is computed. ROI encryption shows the frame rates if a region is extracted, encrypted

and streamed together with the background. The last column shows the frames rates for combined ROI encryption and image signing.

Input Format Internal JPEG Color ROI JPEG Comp. zlib Comp. AES256 Encr. SHA1 Total
Resol. Type Format Decomp. Conv. Extract Backgr. Roi Edge ROI Edge Sign.

320x240

YUYV Gray n/a 2.4 ms
9.7 ms 16.1 ms 9.8 ms 5.2 ms 1.6 ms 1.2 ms 1.0 ms

47.0 ms

JPEG 24.7 ms 4.9 ms 74.2 ms

YUYV RGB24 n/a 6.6 ms
12.8 ms 31.8 ms 18.7 ms 5.3 ms 1.8 ms 1.2 ms 1.0 ms

79.2 ms

JPEG 24.8 ms n/a 97.4 ms

640x480

YUYV Gray n/a 8.8 ms
8.9 ms 63.9 ms 9.1 ms 3.9 ms 1.2 ms 0.9 ms 1.7 ms

98.4 ms

JPEG 85.3 ms 18.7 ms 193.6 ms

YUYV RGB24 n/a 27.6 ms
11.5 ms 125.9 ms 17.8 ms 3.8 ms 1.3 ms 0.9 ms 1.9 ms

190.7 ms

JPEG 85.6 ms n/a 248.7 ms

Table 4. Average Runtimes (1000 frames) for the individual processing steps for a single frame. Included are JPEG decompression, color

conversion, extraction, compression and encryption of the ROI (200x200 pixels) and finally SHA1 computation for the combined image.

Figure 5. The live viewer at the CS. On the right is the current

frame with the decrypted, edge-detected ROI. The left window

shows the content of a circular buffer with the last 64 frames. Yet

unverified frames have an orange border, verified ones have a dark

green border. The last frame of a group has a bright green border.

the verification of the image signature, the control sta-

tion computes the hash sum �������
for every incom-

ing frame and stores it in a local cache. Additionally, the

EXIF data of every incoming frame is checked for an image

group signature ������. As the signature data also con-

tains the start and end indices of the image group, the con-

trol station now computes the expected accumulated hash

sum ���	

����������� for the � frames indicated by

the start and end indices. It then loads the public signing

key �	
� that belongs to the expected camera from its lo-

cal database and verifies the signature of the image group:

 ������������
�������� ���	

����������� �. If verifi-

cation is successful, one has assurance that (1) the images

of the group were not modified and (2) the images of the

group come from the expected camera. The live viewer of

the prototype is shown in figure 5. It not only displays the

current image, but also a history of recent frames together

with their verification status. If authenticity and integrity of

an image group could not be verified, a warning message is

shown and playback is interrupted.

5.5. Performance Analysis

Table 3 shows the achieved frame rates for different

streaming modes. For plain streaming, JPEG frames are

read from the sensor and are directly streamed at 25 fps. Al-

ternatively, YUYV frames are read, optionally converted to

grayscale, JPEG compressed and then streamed. Compared

to native JPEG images where no compression in software is

required, frame rates are between 24.4 and 6.5 fps depend-

ing on resolution and color depth. If images are digitally

signed, frame rates decrease by only about 0.5 fps compared

to plain streaming. This relatively small impact is achieved

by signing image groups and the fact that signature compu-

tation runs on the TPM in parallel to the ARM CPU.

The ROI encryption column presents the frame rates if

regions of interest (100x100 or 200x200 pixels) are ex-

tracted and encrypted. If YUYV images are read from the

sensor which then are converted to grayscale, frame rates

7

are reduced between 1 and 3 fps compared to plain stream-

ing depending on resolution and ROI size. If no conversion

to grayscale is done, frame rates are reduced by up to 11 fps

(resolution: 320x240, ROI size: 200x200). Table 4 explains

this observation by giving detailed performance numbers

for the individual processing steps for a single frame. JPEG

compression of the ROI in this case takes 18.7 ms with ad-

ditional 5.3 ms for zlib compression of the binary ROI. This

time is relatively high compared to the runtime for JPEG

compression of the full-size background image (31.8 ms).

In comparison, AES encryption of ROI images and

SHA1 computation of output images have runtimes of less

than 2 ms each. While the direct performance impact by

these security relevant functions is acceptable, the overall

performance still degrades considerably. This primarily re-

sults from the additional effort required for extraction and

compression of ROI images as clearly illustrated by table

4. Improvements could be made by, e.g., deriving regions

of interest directly from the JPEG images delivered by the

sensor as proposed in [4]. If however uncompressed images

are required for further processing on the camera, an alter-

native would be to read YUYV images from the sensor and

use the DSP for image compression.

6. Conclusions and Future Work
In this work we presented TrustCAM, an embedded

smart camera platform equipped with a TPM. We imple-

mented and evaluated digital signing of video streams to

achieve image integrity and authenticity. Additionally, to

preserve privacy of monitored people, we encrypt regions

of interest using cryptographic keys protected by a TPM

only accessible by camera operators. The performance im-

pact of cryptographic operations is relatively small. The

additional overhead for ROI processing and compression

however reduces overall system performance. Future work

therefore will include the integration of the Digital Signal

Processor for JPEG compression and image processing. As

part of that, more advanced codecs for video streaming than

Motion-JPEG could be integrated as well. The potential

use of a TPM in a camera system is not limited to image

integrity, authenticity and privacy protection. In ongoing

work we will extend our prototype to support integrity re-

porting of the full software base of the camera. Moreover,

image timestamping is an important application, e.g., in

traffic monitoring, where the TPM can be used to provide

evidence when an image was taken.

Based on our results and experience, we believe that en-

hancing smart camera security with Trusted Computing is a

viable and promising approach. Readily available Trusted

Platform Modules are a cheap, solid and widely reviewed

basis for custom security solutions. Issues like low TPM

performance can be handled if the TPM computations are

properly integrated into the processing chain.

References
[1] N. Aaraj, A. Raghunathan, and N. K. Jha. Analysis and De-

sign of a Hardware/Software Trusted Platform Module for

Embedded Systems. ACM Transactions Embedded Comput-
ing Systems, 8(1):1–31, 2008. 2

[2] N. Baaziz, N. Lolo, O. Padilla, and F. Petngang. Security

and Privacy Protection for Automated Video Surveillance.

In Proceedings of the IEEE Int. Symposium on Signal Pro-
cessing and Information Technology, pages 17–22, 2007. 2

[3] A. Cavallaro. Privacy in Video Surveillance. IEEE Signal
Processing Magazine, 24(2):168–166, March 2007. 1

[4] A. Chattopadhyay and T. Boult. PrivacyCam: A Privacy Pre-

serving Camera Using uCLinux on the Blackfin DSP. In Pro-
ceedings of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 1–8, 2007. 2, 4, 8

[5] K. Dietrich and J. Winter. Implementation Aspects of Mobile

and Embedded Trusted Computing. In Proceedings of the
Conference on Trusted Computing, pages 29–44, 2009. 2

[6] F. Dufaux and T. Ebrahimi. Scrambling for Video Surveil-

lance with Privacy. In Proceedings of the Computer Vision
and Pattern Recognition Workshop, pages 160–166, 2006. 2

[7] S. Fleck and W. Strasser. Smart Camera Based Monitoring

System and Its Application to Assisted Living. Proceedings
of the IEEE, 96(10):1698–1714, 2008. 1

[8] U. Grossmann, E. Berkhan, L. C. Jatoba, J. Ottenbacher,

W. Stork, and K. D. Mueller-Glaser. Security for Mobile

Low Power Nodes in a Personal Area Network by Means of

Trusted Platform Modules. In Proceedings of the Workshop
on Security and Privacy in Ad hoc and Sensor Networks,

pages 172–186, 2007. 2

[9] W. Hu, P. Corke, W. C. Shih, and L. Overs. secFleck: A Pub-

lic Key Technology Platform for Wireless Sensor Networks.

In Proceedings of the 6th European Conference on Wireless
Sensor Networks, pages 296–311, 2009. 2

[10] S. Moncrieff, S. Venkatesh, and G. A. W. West. Dynamic

Privacy in Public Surveillance. IEEE Computer, 42(9):22–

28, Sept. 2009. 2

[11] A. Senior, S. Pankanti, A. Hampapur, L. Brown, Y.-L. Tian,

A. Ekin, J. Connell, C. F. Shu, and M. Lu. Enabling Video

Privacy through Computer Vision. IEEE Security & Privacy
Magazine, 3(3):50–57, May/June 2005. 1

[12] D. N. Serpanos and A. Papalambrou. Security and Privacy

in Distributed Smart Cameras. Proceedings of the IEEE,

96(10):1678–1687, October 2008. 1

[13] S. Soro and W. Heinzelman. A Survey of Visual Sensor Net-

works. Advances in Multimedia, 2009:1–21, May 2009. 1

[14] S. Tansuriyavong and S. Hanaki. Privacy Protection by con-

cealing Persons in circumstantial Video Image. In Proceed-
ings of the Workshop on Perceptive User Interfaces, pages

1–4, 2001. 2, 4

[15] Trusted Computing Group. TCG Software Stack Specifica-

tion (TSS) Version 1.2, Level 1, Errata A, March 2007. 2

[16] Trusted Computing Group. TPM Main Specification Version

1.2, Level 2, Revision 103, July 2007. 2

[17] T. Winkler and B. Rinner. Applications of Trusted Comput-

ing in Pervasive Smart Camera Networks. In Proceedings of
the Workshop on Embedded System Security, 2009. 3, 6

8

