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Abstract

In this paper we evaluate k-nearest neighbor (KNN), lin-

ear and quadratic discriminant analysis (LDA and QDA,

respectively) for embedded, online feature fusion which poses

strong limitations on computing resources and timing. These

algorithms are implemented on our multisensor data fusion

(MSDF) architecture and are applied to traffic monitoring,

i.e., classifying vehicles using distributed image, acoustic and

laser sensors.

We performed several tests of the algorithms on our embed-

ded platform and evaluated CPU performance and memory

consumption for training as well as classification. The results

obtained are very promising for further use, especially of LDA

and QDA for embedded online fusion at feature-level.

Keywords: multisensor data fusion, embedded system, traf-

fic monitoring

1. INTRODUCTION

Multisensor data fusion (MSDF) is a well-known technique to

combine information originating from multiple homogeneous

and heterogeneous sensors. The main benefit of MSDF is to

achieve significant advantages over single source data, i.e., to

improve robustness and confidence, to extend spatial and tem-

poral coverage as well as to reduce ambiguity and uncertainty

of the processed sensor readings. There is a huge number of

different fusion algorithms known in literature ranging from

estimation methods such as the famous Kalman Filter, to all

kinds of classification and statistical inference methods such

as Bayesian statistics and Dempster-Shafer theory of evidence

[1], [2].

MSDF is typically performed at three different levels of

abstraction [3]. Raw-data fusion is used to correlate data from

sensors which measure the same physical parameters. Feature-

based fusion combines features that have been extracted from

the raw data of the individual sensors. Finally, decision fu-

sion integrates preliminary results derived from the individual

sensor data. Fusion at the top level provides an assessment

of the observed scene such as delivering the identity of an

observed object. Faceli [1] presents a related categorization

into complementary, competitive and cooperative fusion.

In this paper we focus on embedded, online MSDF where

sensory data is processed on dedicated processing nodes in

a streaming manner. The major challenges here are the lim-

ited resources on the embedded processing node (computing

power, memory capacity etc.) and strict timing requirements

on the fusion methods in order to keep pace with the steady

data stream. Embedded, online MSDF is an important en-

abling technology for many applications such as environmental

monitoring, smart environments and pervasive computing. Our

target application is traffic monitoring (e.g. [4]) where we want

to reliably derive important traffic parameters, such as lane

occupancy, speed, vehicle classification and tracking, by fusing

data from heterogeneous, distributed sensors. We currently

exploit image, acoustic and laser sensors. Fusion is performed

in a distributed, embedded, multi-tier architecture [5].

This paper evaluates and compares the algorithms k-nearest

neighbor (KNN), linear and quadratic discriminant analysis

(LDA, QDA) for embedded, online MSDF. These algorithms

are well-known classification algorithms, however they can

also be applied to feature-level fusion. Our evaluation espe-

cially focuses on the limited timing and resource capabilities

of the embedded platforms. This extends our previous work

on embedded MSDF [6], [7] where we applied support vector

machines (SVM) for embedded MSDF.

The remainder of the paper is structured as follows: Sections

2 and 3 briefly present our sensor network structure and three-

layered MSDF architecture approach. Section 4 describes the

selected algorithms for embedded feature fusion. Experimental

results and evaluations of KNN, LDA and QDA on different

simulated training sets on our embedded platform are pre-

sented in section 5. Section 6 concludes the paper with a

summary and an outlook.

2. SENSOR NETWORK

The overall structure of our sensor network is shown in Fig. 1.

It consists of the following components: multiple sensor nodes

(SNi), a single center node (CE) and a ”fusion backbone to

center” node (FBC) which is actually a dedicated SN sending

fused data (decision) to the CE. Thus, the FBC performs the

final fusion processing, i.e., deriving the final decision about a

specific task which may be object detection and identification.

Each SN, CE and FBC has a couple of attributes and

methods defining its state and functionality. Attributes are for

example an ID for unique identification, internal description

and timestamps (logging actions of a SN). Methods that each

sensor node has implemented are for example: send, receive,

fusion methods and methods interfacing external devices (e.g.,

stop lights in traffic monitoring environments).
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Fig. 1: Overall sensor network structure

The SN in our network can be organized in clusters which

perform different fusion tasks on specific regions of the

overall supervised area such as monitoring an intersection area.

Currently, the assignment of SN to clusters is done a-priori.

The clusters in the sensor network are labeled as PFCi in the

second layer of our fusion architecture (more details are given

in section 3-B).

3. FUSION ARCHITECTURE

Our fusion architecture consists of three layers as depicted in

Fig. 2. The main reason for choosing a layered architecture

approach is to abstract and encapsulate the numerous pro-

cessing steps into autonomous processing units. Each layer

is structured in a task-specific way and responsible for a

predefined processing task, hence contributing individually to

the whole fusion process.

A. Layer 1

Layer 1 performs two main tasks: (1) capturing raw data of

the different sensors and (2) performing spatial and temporal

alignment of the captured data. We call this layer the hardware

layer, because it has to deal with interfacing the underlying

hardware with the homo-/heterogeneous sensory devices.

B. Layer 2

Layer 2 corresponds to the inter-cluster fusion tasks within

the sensor network. Furthermore, this layer may be seen

as the first fusion layer in our architecture that performs

competitive (redundant) and complementary integration within

the PFCi. Competitive integration (fusion) means combining

independent sensor data that represent measurements of the

same property [8]. As a result, the objective of competitive in-

tegration is mainly to reduce uncertainty and resolve potential

conflicts concerning the sensor readings. However, if sensors

measure different features of a certain object of interest, it

is called complementary integration. This kind of integration

creates a more complete model in terms of enriching knowl-

edge about the specific universe of discourse [9] (e.g., front-

and backshot images of a certain vehicle) [9]. In this layer

Fig. 2: Three-layered fusion architecture. Legend: SNi (sensor node),
RDNi (raw data acquisition and normalization), ini (observed data from
layer 1), PFCi (partial fusion clusters ), PFRi (partial fusion results), FIS
(fuzzy inference system), FRf (final decision). Explanation of the different
components given in section 3.

Fusion

Node

(PFC)

feature 1

feature n

soft decision

Fig. 3: Fusion process. Input features originate from homo-/heterogeneous
sensors and are fused appropriately forming a soft decision.

KNN, LDA and QDA may be used for heterogeneous feature

fusion. Intra-cluster fusion results into partial fusion results

(PFRi) representing a preliminary decision which we call a

soft decision (see Fig. 3). The PFRi of each cluster is sent to

the third layer for final (hard) decision-fusion.

It is possible that each cluster consists only of a single SN.

In this case no intra-cluster fusion takes place and layer 2 can

be omitted.

C. Layer 3

Within layer 3 (second fusion layer) the PFRi are fused by

means of cooperative integration at decision level resulting in

a final fusion result FRf (hard decision). Well-known meth-

ods to perform high-level fusion are fuzzy logic, statistical

methods such as Bayesian inference or (its generalization)

Dempster-Shafer theory. In our case we may apply fuzzy logic

algorithms to fuse all PFRi. Cooperative integration is the

process of combining autonomous measurements to obtain

additional information about the whole universe of discourse.

Briefly, this means that extra information is achieved from

several sensors that would not have been available with each

single sensor alone. An example of this type of integration

may be the calculation of disparity maps using stereo vision

2



TABLE 1: OVERVIEW OF PROS AND CONS OF KNN, LDA AND QDA

Method Pros Cons

notable classification results time consuming
no (re)training phase classification time

KNN distance metrics memory utilization
error probability bounded finding optimal k

linear decision boundary Gaussian assumptions
LDA fast classification training time

easy to implement complex matrix ops

quadratic decision boundary Gaussian assumptions
fast classification training time

QDA classification more accurate complex matrix ops
outperforms KNN and LDA

[10]. The outcome of the third layer is the final decision (FRf ).

That SN which is elected to act as the FBC sends the FRf to

the CE for further post-processing by responsible executives

(e.g., law enforcement or accounting departments).

There are a lot of different fusion modeling approaches [11],

[3], [12], [6]. The main objective of our MSDF architecture is

to keep the overall structure simple and to develop autonomous

layers (modules) which can be developed separately and

substituted if required.

4. SELECTED ALGORITHMS

To perform intra-cluster fusion in layer 2, we decided to

implement a non-weighted k-nearest neighbor algorithm with

common majority vote as classification rule as well as linear

and quadratic discriminant analysis approaches. Major ad-

vantages and disadvantages of these algorithms are listed in

Table 1. We have chosen these basic algorithms in statistical

classification to extend our previous work on embedded MSDF

[6], [7]. Furthermore, KNN, LDA and QDA are well-known

and show promising results concerning classification rates

(e.g., low false positives rate), but also concerning CPU

performance and memory consumption for the training and

classification step on our embedded platform.

A. K-Nearest Neighbor

K-nearest neighbor classification is a very simple and well-

known technique that has been extensively studied. In the

seminal work of Cover et al. [13] the nearest neighbor decision

rule is explained in detail. They stated that for any number of

classes, the error probability of the nearest neighbor rule has

twice the Bayes probability of error as its supremum. Hence, it

may be generalized that half of the total information needed for

classification purpose (in an infinite sample set) is contained

in the nearest neighbor.

The performance of KNN is determined by two factors [14].

First, it is crucial to find an appropriate k which is a non-

trivial problem. In general, large k’s are less affected by noise,

and class boundaries achieve smoother shapes. Adopting an

optimal k from one application to a different one is nearly

infeasible. The second factor that influences the performance

is the distance metric. There are a lot of approaches found

in literature in order to enhance the performance of KNN

algorithms, e.g., [15], [16], [17], [18].

KNN gives promising classification rates when applied to

large data sets. For online fusion KNN may only be applied

to relatively small training sets due to the high computational

effort in calculating the distances. Therefore, KNN is not ap-

plicable for critical realtime systems if huge training samples

are involved. Whenever new data x has to be classified, all

distances between x and the training data have to be calculated.

As distance metric we have implemented Minkowski distance

Lm (see eq. 1) which allows for flexible change of distance

metrics (e.g., L1 Manhattan and L2 Euclidean distance) and

Mahalanobis distance (eq. 2).

Lm(p, q) = (

n
∑

i=1

(|pi − qi|)
m)

1

m , (1)

Mk(p, q) =
√

(pi − qi)T Σ−1

k (pi − qi) (2)

In eq. 1 and 2 n is the number of features, p, q are n-

dimensional feature vectors and Σ−1 the inverse covariance

matrix of class k.

To avoid KNN to be only applicable to rather small

sets of training samples, we might modify our algorithm to a

Voronoi-based KNN approach as proposed by Kolahdouzan

and Shahabi [19]. In this case, a Voronoi diagram with

respect to the training data available is calculated only once

(training). Each data (generator) generates a Voronoi polygon.

New data x is classified according to the class label of the

generator which generated the Voronoi polygon in which

x is located. In contrast to the common KNN approach

Voronoi-based KNN has to perform retraining (re-calculating

the Voronoi diagram) if new training samples are to be added

to the existing training set.

B. Linear and Quadratic Discriminant Analysis

Linear discriminant analysis [20] may be used to reduce the

dimensionality of data and for classification purposes. Many

applications have taken advantage of LDA [21]. LDA projects

data onto a lower-dimensional space. This space provides

maximum class separability [22]. Features that are derived

from LDA are linear combinations of the original ones.

In classical LDA the optimal projection of features is

achieved as follows: The within-class distance is minimized

and, contrary, the between-class distance is maximized. This

obviously results in a maximum class separability. An im-

portant observation concerning two-class classification is that

LDA is equivalent to linear regression. Thus, LDA can be

formulated as a least squares problem [21]. Quadratic dis-

criminant analysis is quite similar to LDA, but it allows

for quadratic decision boundaries between classes. There are

also lots of different variants of QDA such as the Bayesian

quadratic discrimint analysis. Srivastava et al. [23] present

theoretical as well as algorithmic contributions to Bayesian

estimation for QDA and describe several variants of QDA.
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We perform feature fusion simulations within the binary-

class problem framework even though our algorithm imple-

mentations allow for multi-class classification as well. The

estimated discriminant functions d̂k(x) for LDA and QDA are
given in equation 3 and 4, respectively. The assumptions for

LDA and QDA hold that the training data follow a multivariate

normal distribution. With LDA all classes are assumed to

have the same covariance matrices, whereas with QDA the

covariance matrices are assumed to be different for each class.

Furthermore, it is claimed that prior probabilities of class-

membership are known or can be estimated beforehand.

d̂k(x) = log p̂k −
1

2
µ̂T

k Σ̂−1µ̂k + xT Σ̂−1µ̂k (3)

The discriminant functions for LDA are specified by equa-

tion 3 where k = 1...#classes, x is the new feature vector that

is to be classified, p̂k the estimated prior probability of class

k, µ̂k the estimated mean of class k and Σ̂−1 the estimated

inverse pooled covariance matrix.

d̂k(x) = log p̂k −
1

2
log |Σ̂k| −

1

2
(x− µ̂k)T Σ̂−1

k (x− µ̂k) (4)

The discriminant functions for QDA are specified by

equation 4 where k and x are as in eq. 3. Σ̂k (Σ̂
−1

k ) is the

estimated (inverse) covariance matrix of class k.

The classification rule as given in eq. 5 is the same

for both LDA and QDA.

D̂(x) = k∗ :⇔ k∗ = arg max
k

d̂k(x) (5)

The classification rule for LDA and QDA is very intuitive.

The major computational effort though is the training phase,

meaning the computation of the discriminant functions and

their parameters (see section 5). Once the training phase is

completed, new data x can be classified simply by solving the

appropriate discriminant function for each class k and applying

the classification rule (eq. 5).

In section 5 we will see that the computational bottleneck of

the algorithms lies in the training phase which is the estimation

of all the parameters needed for the discriminant functions.

Concerning computational efforts, the classification process

is independent of the size of the training set. Obviously, the

classification task is performed using only the discriminant

function values. Thus, if the training set is too large for being

trained on a dedicated embedded device, the training phase

may be performed off-line (e.g., on back office workstations).

In our case we performed the training as well as the classifica-

tion task on our embedded platform described in section 5-A.

5. EXPERIMENTS

In this section we present and discuss several performance

tests and results concerning the execution time of KNN,

LDA and QDA for training and classification and resource

Fig. 4: High-performance embedded platform

capacity utilization of the embedded platform. Additionally,

a comparison between these algorithms is accomplished and

discussed as well.

Before we present our experimental results, we describe

our embedded platform on which we performed all of our

simulated tests (section 5-A).

A. High-performance embedded platform

As test and evaluation platform we use a MICROSPACE EBX

(MSEBX945), an embedded computer board from DigitalLogic

AG (see Fig. 4) serving as a multi-sensor data fusion platform.

It has a compact EBX single-board construction (146mm ×
203mm) with several interfaces such as RS-232, LAN 100MB,

FireWire over MiniPCI and USB. The SMX945-L7400 CPU

module includes an Intel Core 2 Duo with 2 × 1500 MHz and
a 667 MHz FSB. Besides interfaces, the MSEBX945 board has

the following main characteristics: 2048MB DRAM, USB 2.0,

RS232C, COM-Interface, 10/100BASE-T, 1GB-LAN PCIe,

MiniPCI slot and PS/2 interface. The total power consumption

is approximately between 12–15 W.

Currently, we successfully interfaced the following sen-

sors: Noptel CM3-30 (single-beam laser for distance mea-

surements and altitude profile generation), acoustic sensor (for

mono/stereo audio recordings), Baumer FWX14-K08 camera

(for taking single shots and continuous recording) and ELV

ST-2232 (an environmental sensor for recoring LUX, Cel-

sius/Fahrenheit, dB). Basically, the sensor interface reflects the

implementation of the first layer in our MSDF architecture.

B. Performance evaluations

Our test and evaluation focus lies on testing the execution time

of KNN, LDA and QDA for training and classification, the

scalability concerning number of training data and features

used and the resource capacity utilization of the embedded

platform during execution of the algorithms. The number of

training samples and features are varied throughout the tests

to evaluate which numbers are feasible for later online fusion

on our embedded board. KNN is always performed with
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Fig. 5: Increasing number of training data with number of features set to
100 (constant)

Minkowski distance L2, namely the Euclidean distance. Ma-

halanobis distance is too expensive and not feasible for online

fusion on our platform. For testing resource capacity utilization

we have chosen to analyze idle, system and user CPU load as

well as free RAM available during classification. All our data

is simulated by sampling from Gaussian distributions to fulfill

one of the assumptions of LDA and QDA (see section 4-B).

TABLE 2: KNN STATISTICS

nts tinit tc̄ tvar tct ttot

100 3.288 5.51487 0.0015 551.487 554.775

500 16.357 51.0812 11.0781 5108.12 5124.48

1000 30.263 155.216 1.5836 15521.6 15551.9

1500 45.13 318.344 58.0989 31834.4 31879.5

2000 63.383 540.49 599.161 54049 54112.4

First, we evaluated the initialization and classification per-

formance of KNN, LDA and QDA by increasing the number of

training data for each class from small to large values whereas

the number of features is kept constant to 100 (scalability
concerning various sizes of training data). The results are

summarized in Tables 2, 3 and 4 where nts is the number

of training samples available for each class (all classes have

same nts), tinit represents the execution time for the training

(initialization) phase (in case of KNN this is solely the time

for generating test data), tc̄ gives the empirical mean execution

time for classifying a single data, tvar is the execution time

variance and tct is the total execution time for classifying 100
test data. Each test data is a vector comprising 100 features.
The sum of tinit and tct equals ttot (total execution time of

training and classifying 100 new test data with training data
of size nts for each class). Time is measured in milliseconds.

As expected, LDA and QDA outperform KNN only with

respect to classification time (as KNN actually has no train-

ing). A graphical comparison of the classification time for each

algorithm is given in Fig. 5 (see Table 2 with nts = 2000
and Table 3 and 4 with nts = 50000). As a first observation,
KNN is not suitable for online fusion if the training data

Fig. 6: LDA and QDA - CPU load and RAM usage (nts = 100000)
where CPU and RAM parameters are recorded starting approx. 2s before and
stopping approx. 2s after executing the algorithms (hence the ”transitions”)

gets very large — even if the number of features is relatively

small. For example, with nts = 2000, KNN spends 540.49ms

to classify a single test data, whereas LDA only spends

2.70278ms and QDA 2.26568ms, respectively. Additionally,

LDA and QDA spend most of the time for training, i.e.,

the estimation of the parameters. Therefore, if online training

is not required, we may perform training offline at a high-

performance workstation. Fig. 6 (a) and (b) exemplifies the

CPU load and memory utilization with discriminant analysis.

The CPU load is very high, whereas the memory utilization

is neglectable (as with KNN).

TABLE 3: LDA STATISTICS

nts tinit tc̄ tvar tct ttot

2000 488.898 2.7028 0.0005 270.278 759.176

4000 913.976 2.6831 0.0004 268.304 1182.28

10000 2131.87 2.6856 0.0003 268.561 2400.43

50000 10420.3 2.6793 0.0004 267.931 10688.2

100000 21338.9 2.67792 0.00033 267.792 21606.7

TABLE 4: QDA STATISTICS

nts tinit tc̄ tvar tct ttot

2000 414.945 2.2657 0.0007 226.567 641.513

4000 809.703 2.2407 0.00079 224.07 1033.77

10000 1991.07 2.4401 0.00059 244.01 2235.07

50000 10218.6 2.423 0.000779 242.3 10473.2

100000 20956 2.4618 0.00048 246.18 21202.2

Second, we focused on the evaluation of the scalability

concerning the number of features. As tc̄ of KNN with large

nts and lots of features is much greater than of LDA and

QDA (with factors of several hundred ms), we discuss only

LDA and QDA. We fixed nts to 1000 during execution and
successively increased the number of features. Fig. 7 shows the

classification time needed to classify new data consisting of

different numbers of features (50, 100, 200 and 400). Even
in case of test data consisting of 400 features, the mean
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Fig. 7: Increasing number of features with datasets of 1000 entries (constant)

classification time spent is quite promising for applying LDA

and QDA to online MSDF problems (LDA tc̄ = 37.9ms

and QDA tc̄ = 33.7ms). Additionally, it is worth mentioning

that QDA slightly outperforms LDA in two aspects. First, the

classification time tc̄ of QDA was always less than of LDA

and second, the false positives rate is also less than with LDA

(actually this is a matter of statistical classification theory and

not discussed in this paper).

As a result, LDA and QDA may be used for further online

feature fusion. This is because of the scalability concerning the

number of training data and features, promising classification

times and low complexity concerning implementation. Since

KNN may only be used with relatively small nts, k and

numbers of features, we will rather not use KNN for online

feature fusion. This is because KNN needs to have large

training data to achieve acceptable classification results and

in a MSDF process, however, we must be able to handle huge

datasets and large numbers of features.

6. CONCLUSION

The objective of this paper was to evaluate the feasibil-

ity of KNN, LDA and QDA for embedded online feature

fusion. These evaluations extended our previous work on

embedded MSDF where we applied SVMs. The algorithms

are implemented on our MSDF architecture and applied to

traffic monitoring. We described our architecture and selected

feature fusion algorithms in detail. In order to evaluate the

feasibility of using these algorithms for online feature fusion,

we performed several tests on our embedded platform. Within

these tests we evaluated CPU performance and memory con-

sumption for training as well as classification. Additionally, we

investigated the scalability concerning number of training data

and features for each algorithm. The results obtained turned

out to be very promising for further use of LDA and QDA for

embedded online feature fusion.
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