
A Resource-Aware Distributed Event Space for Pervasive
Smart Camera Networks

Wolfgang Schriebl
Pervasive Computing/Institute of Networked and

Embedded Systems (NES)
Lakeside B02b

9020 Klagenfurt, Austria
wolfgang.schriebl@uni-klu.ac.at

Bernhard Rinner
Pervasive Computing/Institute of Networked and

Embedded Systems (NES)
Lakeside B02b

9020 Klagenfurt, Austria
bernhard.rinner@uni-klu.ac.at

ABSTRACT
Pervasive smart cameras (PSC) are an emerging technology
with the goal of providing user-centric and ubiquitous visual
sensor networks. System autonomy and resource-awareness
are challenging requirements making local image process-
ing for event-based communication a necessary design con-
straint. In this paper we present the distributed event space
(DES)—a middleware service for the resource-aware man-
agement of distributed event data. The DES architecture
is based on a decentralized tuple space which describes lo-
cal events by tuples consisting of position and time of the
events as well as a set of features describing the detected
objects. The DES supports prompt distribution of detected
local events and application-specific functions for sophisti-
cated event filtering. We present a distributed tracking ap-
plication to demonstrate its applicability.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures; I.4.9 [Image Processing and
Computer Vision]: Applications

General Terms
Design

Keywords
Smart Cameras, Middleware, Event Distribution, Distributed
Person Tracking

1. INTRODUCTION AND MOTIVATION
The concept of Pervasive Smart Cameras (PSC) [6] is

driven by the quest for user-centric applications on ubiq-
uitous camera networks. Evolved from distributed smart
cameras, a PSC network consists of cost effective camera

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDSC 2010 August 31 – September 4, 2010, Atlanta, GA, USA
Copyright 2010 ACM 978-1-4503-0317-0/10/08 ...$10.00.

nodes which can easily be deployed and applied by non-
expert users. Such capabilities require a high autonomy, a
decentralized network architecture and power-aware hard-
ware and software design.

PSCs are related to visual sensor networks; these networks
are typically built from resource-constrained camera nodes
connected over low bandwidth wireless networks [9, 7]. As
a consequence of this strong resource limitation, the image
processing must be distributed in the network and raw data
transfers among nodes must be avoided as much as possible.
Thus in a typical PSC application, the camera nodes per-
form image processing and store the data of detected events
locally. Parts of this local event data is communicated over
the network to derive a global event state which can then be
communicated to the user. Object detection and tracking
is a prominent example for such a PSC application where
the camera nodes perform detection and tracking of objects
within their field of view (FOV). Location and tracks of ob-
jects in the monitored area can then be determined by jointly
checking the local event data stored in the camera nodes.

This paper focuses on the resource-aware management
of event data in PSC networks, i.e., we develop efficient
methods for storing, accessing and distributing event data
on the camera nodes. We integrate these methods in our
middleware framework [8] which is now able to provide a
distributed event space (DES) over the PSC network. To
demonstrate the feasibility of the DES, we have implemented
a distributed person tracker on our PSC network of uncali-
brated cameras. The user interface for this tracking applica-
tion is realized on hand-held devices. Thus, users can send
requests on the DES and check the status of the PSC with
their mobile devices.

The DES is based on the concept of tuple spaces [3, 4].
The local event data is represented by a tuple consisting of
an identifier, a set of features and some meta data describing
the event. To achieve a common event space these event tu-
ples must be distributed in the network. There are two prin-
ciple distribution methods possible: In the push approach,
the camera nodes initiate the tuple distribution whenever
a new event has been detected. In the pull approach, the
transfer is initiated after a request has been received, and
only tuples which match with the request are transferred.
The push approach supports prompt event tuple updates
but may introduce a high network traffic. Our implementa-
tion of the DES is therefore based on the pull approach.

The rest of this paper is organized as follows. Section 2
sketches related work on middleware support for peer-to-

peer communication and object tracking PSC. In Section 3
we present the architecture of the PSC platform used in
this paper, the network architecture and the middleware.
Section 4 describes the architecture of the distributed event
space and introduces available operations. Section 5 presents
a distributed person tracking application on our PSC net-
work to demonstrate the applicability of our DES. Section 6
concludes the paper and gives an outlook to future work.

2. RELATED WORK
For giving an overview of how event distribution is han-

dled in visual sensor networks, we point to selected related
work including camera networks applied for distributed ob-
ject tracking, middleware for camera networks and middle-
ware for sensor network based on tuple-spaces.

In decentralized camera networks, information about dis-
joint views as well as typical object tracks can be used to
coordinate object information in the network. In [10] Veli-
pasalar et al. present a scalable peer-to-peer camera system
for tracking multiple objects. Each camera autonomously
performs tracking of objects in the local FoV and record ob-
ject information in its local storage. Based on FoV lines,
cameras with a joint view are selected, and position and
label of objects are requested when necessary. For com-
munication, non-blocking messages sent via MPI are used.
The communication overhead for the distributed tracking is
small, but as MPI is a statically configured system, it does
not support mobile or semi-static nodes. In [11] very simi-
lar concepts are mapped onto radio-enabled smart cameras.
The nodes are based on CITRIC boards, which are powered
by an ARM processor. TelosB, an MSP430 based sensor
board is attached to the baseboard for enabling 802.15.4-
radio. Short messages are used to exchange label and po-
sition of objects between cameras with a joint view. The
network is evaluated by tracking RC cars and by defining
regions-of-interest for raising events. In [5] Quaritsch et
al. applied a distributed smart camera architecture for au-
tonomous tracking. The camera nodes are equipped with an
ARM and multiple DSP processors, the latter used for im-
age processing and analysis. The middleware of the network
is based on a mobile agent framework, which allows deploy-
ing software agents running autonomously in the network.
For distributed tracking, each detected object is assigned to
an agent which follows the object when moving to another
nodes. For efficient migration, knowledge about the struc-
ture of the network and the path of objects is used. The
evaluation shows substantial overhead for migration, which
makes this approach hardly feasible for resource-constraint
networks.

Tuple spaces [3] are a concept for distributed associative
memory using data tuples as the basic entity for storage.
While the original Linda tuple space was organized using
a central server, several decentralized middleware systems
based on tuple spaces where demonstrated for sensor net-
works. The LIME model [4] proposed by Murphy et al.
adds support for mobile nodes to the Linda tuple space. A
mobile node has access to an interface tuple space, which
contains tuples physically co-located with the host as well
as tuples stored on nodes in communication range. LIME
furthermore defines reactions, which allow to specify a code
segment which is executed when a matching tuple is found
in the shared tuple space. In the TeenyLime model [2] nodes
share tuples within a single hop only, which gives every node

Figure 1: The prototype of the PSC camera node
consists of an embedded board, a VGA camera
and networking peripherals connected via USB. The
camera nodes are further equipped with Ethernet
and Power-over-Ethernet to ease application devel-
opment and testing.

another view on the tuple space. The restriction of the view
to single hop distance maps well to many applications in
wireless sensor networks, but limits applicability for visual
sensor network. In [12] Welsh et al. proposed a middleware
system providing operations for abstracting communication,
data sharing and collective operations. The operations are
applied on abstract regions, which include nodes sharing a
common property, e.g., radio connectivity.

3. PSC NETWORK ARCHITECTURE
The PSC network consists of dedicated camera nodes in-

terconnected in a peer-to-peer manner using wireless short-
and mid-range network technology.

3.1 Node Architecture
The camera nodes (fig. 1) are based on the Beagleboard

extended by off-the-shelf video- and network facilities con-
nected via USB. The principle design is motivated by flexi-
bility and extensibility needed for research and development.

The Beagleboard is powered by an OMAP-3530 dual-core
processor, composed of a 480Mhz Cortex-A8 ARM and a
400MHz C64x+ DSP. The DSP supports relieving the general-
purpose core for image analysis, processing and compression
tasks. The on-board memory comprises 256MB SDRAM
and 8GB of SDHC-type flash memory for storing operating
system, programs and data. Video input is delivered by a
VGA-resolution webcam in YUV422 and Motion-JPEG for-
mats. Our camera node currently provides 802.11 WiFi and
802.15.4 LowPan wireless network connections and runs a
Debian ARM based GNU Linux distribution modified with
an OMAP3 specific kernel and some libraries using the float-
ing point and SIMD capabilities of the ARM.

3.2 Network Architecture
Figure 2 shows the principle architecture of the PSC net-

work. The core network includes semi-static camera nodes
connected in a P2P-manner via ad-hoc WiFi and LowPan
within a single hop. WiFi and LowPan are provided in par-
allel to exploit the advantages of both networks, i.e., lower
start-up time and lower power consumption for LowPan and
higher range and bandwidth for WiFi [13]. A dedicated node
acts as gateway to the Internet and as access point for con-
sumer nodes via 2G/3G services.

To interact with the network, hand-held consumer devices

PSC 2PSC 3

Consumer 1
Smartphone

WiFi
LowPan

2G/3G
WiFi

WiFi

Internet

Ethernet

PSC 4

PSC 1
Gateway

Consumer 2
Internet Tablet

Figure 2: A typical set-up for the PSC network.
The core network consist of PSC nodes (PSC1, ...,
PSC4) connected in a peer-to-peer manner using
WiFi and LowPan. PSC1 also acts as gateway to
the Internet and as an access point for Consumer1
via 2G/3G service such as GSM-SMS. Consumer1
is a smart phone based user device running no com-
patible middleware layer and connects directly with
applications at a camera node. Consumer2 is an In-
ternet tablet device connected via WiFi. It is fully
integrated into the PSC network by running a PSC
compatible middleware.

can be connected with the PSC network. The architecture
of consumer nodes is not restricted to any specific hardware;
they must basically provide network connectivity, input fa-
cilities and a camera for vision-enabled services. We use
(1) x86 notebooks running Linux, (2) Nokia N810 Internet
tablets running Maemo Linux and (3) recent smart phones
running Windows Mobile or Symbian as such hand-held de-
vices. Depending on the provided software environment, the
hand-held devices can either act as camera nodes running
compatible middleware or are connected with the network
via the gateway node at application level.

3.3 Software Architecture
The software of the camera nodes is based on a modified

ARM Linux distribution. On top of the operating system,
a middleware framework provides infrastructure for devel-
oping dataflow-oriented applications. The PSC middleware
framework defines reusable processing blocks which consume
and produce data. Producer and consumer blocks are con-
nected via shared memory which is automatically transmit-
ted when blocks are running on different physical platforms.
In [8] we demonstrated this middleware for distributed per-

son detection, where soft decisions of distributed classifiers
are aggregated on a single camera to get a final hard deci-
sion.

The middleware framework is available for Linux as li-
brary for C/C++ and Python, and can be adopted to new
platforms very easily.

4. DISTRIBUTED EVENT SPACE
Monitoring and security applications for distributed cam-

era networks are usually based on local object detection and
analysis of object tracks. An object detected in the camera’s
FOV is typically represented as an event which contains lo-
cation and time information as well as a description of the
object. In most applications we are not interested in ev-
ery event, but want to select and abstract them based on
some criteria imposed by the application. For example, a
person tracking application can be configured to show only
the trace of a particular person.

In our PSC middleware, applications are currently de-
signed by connecting processing blocks which consume or
produce data. This connection between blocks located on
the same or distant nodes is transparently realized via a
”virtual” shared memory, which is very efficient transmitting
large amounts of data. With this mechanism a consumer-
block can receive data from all cameras, but a data selection
based on some associative matching is not supported.

To support associative memory, we extended the PSC
middleware by a distributed event space (DES). A DES is a
resource-aware distributed storage providing multiple writ-
ers and readers a facility to exchange events.

4.1 Architecture
A DES is a virtual storage, containing event data which

belong to the same class of objects. Physically, the event
data is stored in event spaces located on different nodes in
the network. The DES abstracts all event spaces to a joint
storage, and provides an API to transparently write and read
event data independently of the node they are located on.
For running multiple DES in the PSC network, all related
event spaces share the same name which is also used by
applications to refer to a concrete instance of the DES.

Each event space stores events in a circular buffer. The
size of the circular buffer is defined by the application de-
pending on the number of stored events needed as well as on
the available resources, and can vary for event spaces belong-
ing to the same DES. When inserting a new event into the
circular buffer, the oldest element is automatically overwrit-
ten, which makes a dedicated delete operation unnecessary.
Beyond storing events, the local event space also holds a list
of appending readings from consumer-applications, applied
on newly inserted events for supporting reactions. Event
spaces are never manipulated directly by the application,
but always by the DES.

An event or event-tuple is defined as a set of primitive
data types fitting the requirements of vision-based applica-
tions. Every event contains an unique identifier, the id of the
node, the point of time when the event appeared, a feature
vector identifying the object and metadata with optional
information:

event := 〈uid, nodeid, time, {featv}, metadata〉

Depending on the application, fields can be added to allow
filtering on additional data. Events belonging to the same

class share the same primitive types, as well as the dimension
and the semantics of the feature vector.

Figure 3 shows an example for a network of four nodes, in-
cluding three cameras running person-detectors as producer-
applications and a consumer device running a tracker as the
consumer-applications. The nodes share information about
detected persons using the DES named “Persons”. While in
this example consumer- and producer-roles are assigned to
separate applications, applications can also take both roles
in parallel.

4.2 Operations
The DES adopts two basic operations from the tuple space,

namely out(t) for synchronous writing and rdp(t) for non-
destructive asynchronous reading. Deletion is done auto-
matically by the circular buffer, therefore a dedicated dele-
tion function like in(t) is not provided. This also avoids
updating of events stored in the event space.

Writing Operation.
The writing operation adds an event-tuple to the DES.

The DES directly delegates the tuple to the local event space
without involving the network, thus a blocking call is effi-
cient and eases error handling.

The operation DES.out(event) takes an event as a pa-
rameter, which gives object-related information as well as
location, time and unique-id of the event. By the DES, the
event is forwarded unchanged to the local event space by
calling EventSpace.out(event). Two fields, nodeid and uid
can not be specified by the caller, but are replaced with
the id of the local node and by an automatically generated
value, respectively. Time, which is defined as the number of
seconds past a common origin, can be given explicitly or as
a wildcard *, which is replaced automatically with current
time. After completion, the event-tuple is matched with
persistent readings and added to the circular buffer.

Reading Operation.
The reading operation reads an event from the DES with-

out removing it. In difference to the writing operator, the
reading operator is not limited to the local event space, but
can also be sent to other event spaces in the network. Fur-
thermore, a reading can stay persistently at the event space
allowing reactions on future events. For avoiding blocked ap-
plications while waiting for results, readings are supported
asynchronously only.

A tuple is read by a consumer-application using the oper-
ation DES.rdp(event). Which tuples to read is defined by
event, which contains a template used for matching. The
DES forwards the template to the local event space, as well
as to other event spaces located on nodes in the network.
After receiving a template via EventSpace.rdp(event), the
event space matches all entries in its circular buffer and
sends matching tuples back to the caller.

Each primitive of a template defines a pattern used for
matching the corresponding primitive of an event-tuple. For
a positive match of an event-tuple, all primitives have to
match positively. Beyond concrete values for matching equal-
ity and wildcards known from Linda tuple space, DES also
supports comparative operators and user-defined functions.
User-defined functions are registered at the local event space
at runtime. For example, for comparing feature vectors a
function bd calculating the Bhattacharyya distance of two

vectors can be specified. By using the function bd, the
following template positively matches all events which ap-
peared at node 5, at a point of time prior 7654, with a feature
vector having a Bhattacharyya distance smaller or equal .15
compared to {.11, .15, .89, .12}:

〈∗, 5, < 7654, $bd({.11, .15, .89, .12}) ≤ .15, ∗〉

In a template, the primitives nodeid and time are not only
used for matching, but also influence the way how the read-
ing is distributed and handled. When defining a concrete
node-id then the DES distributes the reading to the speci-
fied node only. Therefore, by setting nodeid to the id of the
local node, sending the reading to the network is avoided.
The time, on the other hand, allows registering persistent
readings for automatic reactions. A template is kept persis-
tently by an event space until the time specified by the tem-
plate does not match the current time or any time in future,
e.g., setting time to < 1000 keeps the template persistent
until current time becomes 1000, setting time to > 10000
keeps the template persistent forever independently of the
current time. Persistent readings can be updated or deleted
by calling reading with the same template but a different
time-primitive to the DES.

5. DISTRIBUTED PERSON TRACKING
To demonstrate the applicability of the DES, we imple-

mented an application for distributed person tracking. In
the network, cameras track persons in their local FoV and
store information about detected persons to the DES. By
querying the DES, a user equipped with a mobile device
can get the current location as well as a cell-based track of
specific persons.

5.1 Distributed Event Space
For realizing the cell-based tracking, the user application

needs information about which person was detected at which
time at which camera. These information can be mapped di-
rectly to the primitives of the event-tuple used by the DES,
which allows to adopt the DES very easily for this applica-
tion. The event tuple is in detail:

〈∗, location, time, {f0 . . . f15}, ∗〉

The name of the DES, PERSTRACK, is shared between
all parts of the application involved by the tracking. The
name allows the local trackers running on the cameras to put
detected events into the DES, as well as the user application
running on a mobile device to consume the events.

5.2 Local Person Tracking
Several prominent approaches for robust tracking in a

multi-camera network can be found in literature, e.g., [5,
11, 14]. When considering the uncalibrated sensors as well
as the resource-constraints of the PSC network, an approach
using simple features for local tracking as well as for person
matching is advisable. We selected color-histogram features
demonstrated in [8] for multi-camera person classification,
and adopted them for meeting the requirements of the track-
ing application.

On each camera, a local tracking application applies ob-
ject detection and feature extraction on QVGA sized in-
put frames. For each frame, foreground blobs are extracted
by frame differencing with a simple running-average back-
ground model. To remove noise pixels and to connect small

rd

Consumer

PersonTracker

EventSpace

„Persons“

rd

o
u

t

o
u

t

PSC 3

PersonDetector

 c

a
llb

a
c
k

EventSpace

„Persons“

rd

o
u

t

o
u

t

PSC 2

PersonDetector

 c

a
llb

a
c
k

EventSpace

„Persons“

rd

o
u

t

o
u

t

PSC 1

PersonDetector

 c

a
llb

a
c
k

D i s t E v e n t S p a c e „ P e r s o n s “

 c

a
llb

a
c
k

Figure 3: A distributed event space used for exchanging information about detected persons. Three person
detectors running on the camera nodes PSC1, PSC2 and PSC3 store events to the DES “Persons”. These
informations are read by the person tracker, running on the consumer node. As the person tracker acts as
consumer only, no local event space is hosted by the consumer node.

foreground objects, opening and closing operators are ap-
plied on the result. Blobs covering a minimum pixel area
are tagged as persons and the feature vector as well as ad-
ditional properties are determined. The final output of the
person detection stage of a frame is a list of person objects.

For each person moving in the FoV, the tracking appli-
cation instantiates a separate tracker handling exactly that
person throughout visibility. The list of person objects of a
new frame is compared to running trackers based on position
(Euclidean distance) and features (Bhattacharyya distance).
When a person object matches a tracker, the tracker updates
its internal state and the person object is removed from the
list. If a person object cannot be matched to any running
tracker, a new tracker handling the person object is instan-
tiated. Running trackers which are not updated within a
frame are deleted.

For cell-based tracking, distributing the position of a per-
son once per node is sufficient. Therefore, the local tracking
application adds an event-tuple to the DES just after a new
person enters the FoV. The feature vectors for persons newly
appearing are usually not very distinctive, which is caused
by having only a partial or very distant view on the per-
son as well as by inaccuracies in segmentation. To improve
discriminativity, the tracker averages the feature vector with
each update, and delays writing to the DES for 6 consecutive
updates.

The tracking application is implemented using the dataflow
model presented in [8], using C++ and the IVT library [1],
an image processing library optimized for fixed-point archi-
tectures.

5.3 Object Features
For local object tracking as well as for feature-based match-

ing in the DES, features derived from the color distribution
of the objects are used. The color of an object is very toler-
ant to scale and rotation and therefore good suitable for a
non-calibrated environment. To reduce the effects of illumi-
nation (amount, distance and direction), features are based
on the chrominance channels without luma component of
the color model.

The feature vector v is composed by the normalized bin
values of the 2D color histogram spanned by chrominance-
blue (Cb) and chrominance-red (Cr) shades of the object.
In difference to a multi-modal histogram which contains sep-
arate histograms for each channel, a multi-dimensional his-
togram combines the distribution of pixels belonging to a
given combination of color-values, e.g., Cr = 0.33, Cb =
0.57, in a single histogram. The resolution for both axis is
defined as 4, leading to 16 bin values. Each value represents
the percentage of the area of the object belonging to an inter-
val of a Cb and Cr combinations, e.g., v0 := #pixels|0.0 ≤
Cbi < 0.25, 0.0 ≤ Cri < 0.25.

5.4 User Application
The user of the distributed object tracking application is

equipped with an vision-enabled mobile device. The device,
a Nokia N810, is connected with the PSC network via ad-hoc
WiFi and runs the same middleware, which enables direct
access to the DES. An application offers the user a graphical
representations of cell-based tracks of persons. Persons can
be selected by taking an image using the integrated camera,
or by loading an image from a file.

After grabbing or loading an image, the user masks the
region containing the person-of-interest. The application de-
termines the feature vector using the color histogram as used
by the local trackers, and creates a tuple-template for read-
ing from DEP. For matching, the Bhattacharyya distance
with a maximum distance of .10 is chosen. For enabling
persistent readings, the time of the event-template is set to
60 seconds in future and is committed to the DEP. After
the event is distributed in the network, the event spaces on
the camera deliver all events with a matching feature vector
to the user application. With help of the node-id and the
time the user application can graphically represent the path
of the object.

6. CONCLUSION AND FUTURE WORK
In this work we presented the distributed event space

(DES), a distributed storage used for exchanging visual events
in resource-constraint visual sensor networks. Inspired by

tuple spaces, the DES stores data organized in event-tuples
which can be managed using simple operations. To demon-
strate the applicability of the DES, we applied it for ex-
changing events in a person tracking application. The ap-
plication is deployed on a PSC network, and is controlled by
a user equipped with a hand-held device running compatible
middleware.

6.1 Future Work
While the DES presented in this paper provides a solid

base for resource-aware data exchange, several questions re-
lated to middleware in PSC networks are open.

Clustering and Data Aggregation. The proposed distributed
event space was designed for single-hop systems, which lim-
its scalability and the size of the monitored area. Ongoing
work deals with multi-hop routing and clustering. While
clusters based on the network topology are essential for net-
work performance, dynamic clustering by a joint view on an
object are interesting for data aggregation and joint process-
ing. In future work clustering and multi-hop communication
are investigated with the aim to extend the DES by cluster-
based addressing and data aggregation.

Resource-Aware Middleware. Even though the distributed
event space is resource-aware in terms of communication
overhead, systemwide concepts for power optimization are
not addressed, e.g., network interfaces of consumers always
stay in listening mode. Starting with an analysis of the en-
ergy consumption of of the current system, in ongoing work
approaches for a power efficient middleware for PSC net-
works are developed.

Middleware Services. The distributed event space is used
for distributing visual events only, but could also be used for
providing data needed for middleware services, e.g., calibra-
tion, network configuration or node management. In future
work we demonstrate reasonable extensions to the DES, sup-
porting exchange of generic data for providing middleware
services.

Multiple Platform Support. The PSC middleware is im-
plemented using C++ and Python and is currently avail-
able for a wide range of Linux-powered devices. To allow
users equipped with general-purpose smart phones interact-
ing with the PSC network, concepts for running the middle-
ware on platforms with a restricted system API are investi-
gated in further work.

7. REFERENCES
[1] P. Azad, T. Gockel, and R. Dillmann. Computer

Vision: Principles and Practice. Elektor-Verlag, 2008.
320 pages.

[2] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco.
TeenyLIME: Transiently Shared Tuple Space
Middleware for Wireless Sensor Networks. In MidSens
’06: Proceedings of the international workshop on
Middleware for sensor networks, pages 43–48, New
York, NY, USA, 2006. ACM.

[3] D. Gelernter. Generative Communication in Linda.
ACM Trans. Program. Lang. Syst., 7(1):80–112, 1985.

[4] A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime:
A Middleware for Physical and Logical Mobility. In
Proceedings of the 21st International Conference on
Distributed Computing Systems (ICDCS-21),
volume 0, page 524, Los Alamitos, CA, USA, April
2001. IEEE Computer Society.

[5] M. Quaritsch, M. Kreuzthaler, B. Rinner, H. Bischof,
and B. Strobl. Autonomous Multicamera Tracking on
Embedded Smart Cameras. EURASIP Journal on
Embedded Systems, 2007, 2007. Article ID 92827, 10
pages.

[6] B. Rinner, T. Winkler, W. Schriebl, M. Quaritsch, and
W. Wolf. The Evolution from Single to Pervasive
Smart Cameras. In Proc. 2nd ACM/IEEE
International Conference on Distributed Smart
Cameras ICDSC ’08, 2008. 10 pages.

[7] B. Rinner and W. Wolf. Introduction to Distributed
Smart Cameras. Proceedings of the IEEE,
96(10):1565–1575, October 2008.

[8] W. Schriebl, T. Winkler, A. Starzacher, and
B. Rinner. A Pervasive Smart Camera Network
Architecture applied for Multi-Camera Object
Classification. In Proc. 3st ACM/IEEE International
Conference on Distributed Smart Cameras ICDSC ’09,
Aug. 2009. 8 pages.

[9] S. Soro and W. Heinzelman. A Survey of Visual Sensor
Networks. Advances in Multimedia, 2009:1–21, 2009.

[10] S. Velipasalar, J. Schlessman, C.-Y. Chen, W. Wolf,
and J. P. Singh. SCCS: A Scalable Clustered Camera
System for Multiple Object Tracking Communicating
Via Message Passing Interface. In Proc. IEEE
International Conference on Multimedia and Expo,
pages 277–280, July 9–12, 2006.

[11] Y. Wang, M. Casares, and S. Velipasalar. Cooperative
Object Tracking and Event Detection with Wireless
Smart Cameras. In Proc. Sixth IEEE International
Conference on Advanced Video and Signal Based
Surveillance AVSS ’09, pages 394–399, Sept. 2–4,
2009.

[12] M. Welsh and G. Mainland. Programming Sensor
Networks using Abstract Regions. In NSDI’04:
Proceedings of the 1st conference on Symposium on
Networked Systems Design and Implementation, pages
3–3, Berkeley, CA, USA, 2004. USENIX Association.

[13] T. Winkler and B. Rinner. Pervasive Smart Camera
Networks Exploiting Heterogeneous Wireless
Channels. In Pervasive Computing and
Communications, 2009. PerCom 2009. IEEE
International Conference on, pages 1–4, Mar. 2009.

[14] W. You, H. Jiang, and Z.-N. Li. Real-time Multiple
Object Tracking in Smart Environments. pages 818
–823, Feb. 2009.

