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Abstract—Recently much research has been conducted in visual
sensor networks. Compared to traditional sensor networks, vision
networks differ in various aspects such as the amount of data to be
processed and transmitted, the requirements on quality-of-service,
and the level of collaboration among the sensor nodes.

This paper deals with sensor fusion on visual sensor networks.
We focus here on methods for fusing data from various distributed
sensors and present a generic framework for fusion on embedded
sensor nodes. This paper extends our previous work on distributed
smart cameras and presents our approach toward the transforma-
tion of smart cameras into a distributed, embedded multisensor
network.

Our generic fusion model has been completely implemented on a
distributed embedded system. It provides a middleware which sup-
ports automatic mapping of our fusion model to the target hard-
ware. This middleware features dynamic reconfiguration to sup-
port modification of the fusion application at runtime without loss
of sensor data. The feasibility and reusability of the I-SENSE con-
cept is demonstrated with experimental results of two case studies:
vehicle classification and bulk good separation. Qualitative and
quantitative benefits of multilevel information fusion are outlined
in this article.

Index Terms—Distributed embedded systems, middleware,
sensor fusion, vehicle classification.

I. INTRODUCTION

P ROGRESS in technology has facilitated the development
of advanced distributed sensor networks. Recently much

research has been conducted in visual sensor networks which
perform image processing on distributed sensor nodes. Com-
pared to traditional sensor networks visual sensor networks
differ in various aspects such as i) the amount of data to be pro-
cessed is much higher, ii) data is streamed through the network
requiring specific quality-of-service (QoS), and iii) high-level
collaboration among nodes is performed. By migrating resource
intensive preprocessing tasks directly to the sensor nodes, the
requirements concerning the communication bandwidth and
delay may be relaxed compared to centralized architectures.
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This paper deals with sensor fusion on visual sensor net-
works. Fusing data from various sensors helps to improve ro-
bustness and confidence, to extend spatial and temporal cov-
erage as well as to reduce ambiguity and uncertainty of the pro-
cessed data. We focus here on methods for fusing data from
various distributed sensors and present a generic framework for
sensor fusion on embedded systems. This paper extends our pre-
vious work on distributed smart cameras [1], [2] and presents
our approach toward the transformation of smart cameras into
a distributed, embedded multisensor network. Preliminary re-
sults of parts of this work have been presented at conferences
([3], [4]), however this paper comprehensively reports on this
research for the first time.

There exist a large variety of multisensor fusion systems, but
most of them are very application-specific (e.g., [5], [6]) or sup-
port only centralized data fusion (e.g., [7]). Our approach is fo-
cused on distributed sensor fusion performed in a network of
embedded sensor nodes. However, our embedded nodes provide
higher performance than typically found in sensor networks [8]
but have tighter resource limitations than on general-purpose
platforms.

The main contributions of this research can be summarized
as follows:

• We introduce a generic fusion model—referred to as
I-SENSE—which supports fusion at multiple levels, i.e.,
raw-data fusion, feature-based fusion and decision fusion.
Our fusion model further considers the data flow in the
sensor network as well as the resource restrictions on
embedded systems. More specifically, the I-SENSE model
accounts for data transfer costs in the distributed sensor
network and provides a classifier dedicated for embedded
systems, i.e., a least-square support vector machine with
preselection of training data.

• The I-SENSE model represents the fusion application by
a target hardware model and a software model. We have
developed a light-weight middleware which supports the
automatic mapping of our fusion model to the distributed
embedded system. This middleware makes distributed pro-
cessing transparent to the user and further features dy-
namic reconfiguration, i.e., the mapping of fusion tasks on
the processing elements can be modified during runtime
without loss of sensor data.

• We have evaluated our approach in two case studies,
namely a traffic monitoring system and a bulk good sep-
aration. In these case studies we fuse visual data with
other sensory data at multiple levels of data abstraction,
distinguished by the amount of information they pro-
vide, and demonstrate the advantage of multisensor over
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Fig. 1. Overview of the most popular models for data fusion. (a) JDL model; (b) Multi-sensor integration model; (c) Waterfall model.

single-sensor detection and classification. In our vehicle
classification case study, this approach achieves an im-
provement from 90% to 96% compared to single sensor
classification out of a data set of about 4000 vehicles.
Applied to bulk good separation, our I-SENSE concept
increases the overall classification accuracy from 86.8%
to 98%.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work in the area of fusion models and
frameworks. Section III presents our I-SENSE fusion model and
briefly describes feature extraction, selection as well as fusion
and decision modeling focusing on resource-constrained em-
bedded systems. In Section IV, we present the I-SENSE mid-
dleware starting with an introduction of the available middle-
ware services and some performance results. We then describe
the specification of the hardware and software models as well as
the applied method for optimizing the configuration on the dis-
tributed embedded system. Section V reports on the case studies
of the I-SENSE framework to vehicle classification and bulk
good separation. Section VI concludes the paper with a brief
discussion and an outlook for future research.

II. RELATED WORK

Over the last decades various data fusion models and frame-
works have been developed—both in commercial as well as in
research environments.

In the early years of data fusion the Joint Directors of Lab-
oratories (JDL) within the US Department of Defense defined
the JDL data fusion framework [9] (cp. Fig. 1(a)) which has
been widely used. The main goal was to aid the developments
in military applications. The JDL model describes a number of
levels for data fusion. These levels include i) the location and
identification of objects, ii) the construction of an image from
incomplete information, iii) the provision of possible opportu-
nities (i.e., prediction of effects on situations), and iv) the opti-
mization of sensor allocations. A data management system for
storage and human interaction is included as well.

In [10] an architecture for data fusion consisting of three mod-
ules, called Thomopoulos architecture, is proposed. These mod-
ules integrate data at three different levels, namely (i) signal
level fusion where data correlation takes place through learning

due to the lack of a mathematical model, (ii) evidence level fu-
sion where data is combined based on a statistical model and
the assessment required by the user and (iii) dynamic level fu-
sion where fusion is performed with the aid of mathematical
models.

[11] presents a multisensor integration fusion model (cp.
Fig. 1(b)). In this system, data from various sources is com-
bined in a hierarchical way within embedded fusion centers. A
clear distinction between multisensor fusion and multisensor
integration is stressed. Data collected at the sensor level is
transferred to the fusion centers where the fusion process takes
place. An information system, containing the relevant libraries
and databases, facilitates the fusion process. The level of repre-
sentation is increased from raw data to more abstract symbolic
representations as the information is combined at the different
fusion centers.

The waterfall model [12] (cp. Fig. 1(c)) is another example of
a hierarchical architecture commonly used. The flow of data op-
erates from the basic data level to the abstract decision making
level. The system is therefore updated continuously with feed-
back information from the decision making model. These feed-
back elements advise the system on reconfiguration, recalibra-
tion and data gathering aspects. At the basic level information
about the environment is gathered based on models of the sen-
sors and whenever possible of the observed phenomena. Ex-
perimental analysis or physical laws are fundamental for those
models. A symbolic level of inference about the data is obtained
by means of feature extraction and accurate fusion. The aim of
this stage is to minimize the data content while maximizing the
delivered information. The output are estimates with associated
probabilities of the observed objects. The highest level relates
objects to events based on human interaction, databases and li-
braries.

Two interesting aspects regarding data fusion systems are
given in the distributed blackboard data fusion architecture
[13]. First, it assigns confidence levels to each sensor. Second,
it refers to situations where conflicting sensor measurements
occur. In this architecture, the sensors have a supervisor that
controls the fusion process. The method for combining the
statistical information provided by the sensor supervisors is
taken from a database.
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Fig. 2. The I-SENSE data-oriented fusion model. The functional units (blocks) and their input/output data are shown using two sensors S1 and S2.

The Dasarathy model [14] is based on fusion functions. These
functions are characterized by the types of input and output data.
Many researchers have identified the three main levels of ab-
straction during the data fusion process as decisions (symbols
or belief values), features (intermediate-level information), and
data (more specifically sensor data). Dasarathy pointed out that
fusion not only occurs within these levels but also as a means of
transformation between them.

The Omnibus model [15] is a hybrid model that overcomes
some of the main limitations of the previous models while
emphasizing on their advantages. The Omnibus model is used
in two ways. First, it characterizes and subdivides the overall
system aims to provide an ordered list of tasks. Second, the
same structure may be used to organize the functional objectives
of each such task. The cyclic nature of the data fusion process
is made explicit. The constancy of representation expressed by
the Waterfall model is incorporated into process tasks.

All presented models have one major drawback. There is no
specification given how to handle factors such as the delay in
the transmission of data, transmission errors as well the as spa-
tial/temporal alignment of data to be fused. Our proposed ap-
proach supports data-fusion based on a light-weight middle-
ware, specially designed to meet the needs of distributed data
fusion applications on embedded systems based on raw-data
level, feature level and decision level. The implementation of
a specific data fusion application based on our architecture is
simplified by providing methods for communication and con-
figuration.

III. FUSION FRAMEWORK

In this section we describe our multilevel fusion framework
in detail. First we present the fusion model—specifying the
dataflow and characterizing the software tasks based on the

types of input and output data. Essential parts are identified as
fusion tasks; a detailed description is given in the following
sections.

A. Fusion Model

Fig. 2 presents the detailed, data-oriented software fusion
model in our I-SENSE approach [16] for two physical sensors,
labeled with and (e.g., an audio and a visual sensor).
This model combines the ideas of the JDL model [9], [17],
Dasarathy’s functional model [14] and the waterfall model
[12] to a generic and reusable model of a multilevel data-fusion
process. Our model basically consists of three different layers:
the sensing unit, the fusion layer and the sensor control &
management unit. The first two units are shown in Fig. 2.

As the name implies the sensor control & management unit is
responsible for the sensor identification as well as for providing
the interface to other sensing nodes, human observers and actu-
ators. Furthermore, this unit controls the overall fusion process
and provides access to a database where resource requirements
for the different fusion tasks are stored. This layer provides on-
line refinement of the overall fusion process which is based on i)
the generated output decisions and ii) the generated output fea-
tures.

The sensing units represent the intelligent sensors which
consist of physical sensors and a suitable data preprocessors
(e.g., resolution based down-sampling, automatic gain control,
etc.). A local feature extraction unit (LFE) is used to extract a
single-source feature vector of an observed object. This means,
that each sensor provides an estimate of the position of an
object with extracted features based only on its own single
source data. These individual feature vectors are input to a
data fusion process, namely the feature in feature out (FIFO)
process, in order to achieve a joint feature vector estimate based
on multiple sensors. A local decision extraction unit (LDE) is
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used to extract local decision from the individual objectives
features (e.g., classification of objectives identity).

The heart of the framework is the fusion layer including the
following five functional units:

• Data in data out unit (DIDO). This functional unit is also
called raw-data fusion unit (RDF) where raw uncorrelated
data is fused from different and/or similar multiple sensors.
These raw data streams are labeled RDi. For example, in
our framework we apply wavelet based image fusion tech-
niques for images from visual sensor and infrared spectral
camera. The output of this unit is labelled DbD.

• Data in feature out unit (DIFO). This is our so called fea-
ture extraction II unit (FEII), where raw data from the indi-
vidual sensors and/or fused raw-data is used to extract suit-
able features of the individual tracked objects. These fea-
tures are identified by experimental analysis and/or phys-
ical modeling and are described in more detail in our case
studies (Section V). The output data are feature vectors
(FbD) for each detected object in the observed area.

• Feature in feature out unit (FIFO). This is our so called
feature fusion unit (FF), where features are fused to an
overall feature vector based on individual objects. Corre-
sponding objects are found by simple computations of ob-
ject overlaps for similar sensor types and time stamping for
different sensors. The output data of this fusion process are
fused feature vectors based on features (FbF) extracted by
the LFE unit (Fi) or features extracted by the DIFO unit
with an accurate feature selection stage.

• Feature in decision out unit (FIDeO). This functional
unit is part of our decision fusion unit (DF), where a clas-
sifier based on support vector machines (SVM, cp. Sec-
tion III-D) is trained with previously recorded and classi-
fied sequences. In the fusion step this SVM is used as a
classifier to derive classification decisions based on previ-
ously extracted single source feature vectors or joint fea-
ture vectors from the FIFO unit. Decisions based on fea-
tures and a probability interval of this decision serve as
output of this stage (DebF).

• Decision in decision out unit (DeIDeO). This functional
unit is the second part of our decision fusion unit, where
extracted decisions are fused from multiple sensors from
the LDE unit (Di) with fused data from FIDeO based on
Dempster-Shafer methods [18]. The output of this unit rep-
resents the overall output of our fusion model (DebDe).

B. Feature Extraction

Usually the raw data delivered by a sensor consists of much
irrelevant information. By means of feature extraction, the input
data is transformed into a reduced representation—the so called
feature vector. If the appropriate set of features is chosen, the
feature vector extracts the relevant information from the input
data.

One of the main questions that arise is the aim of a feature
extractor in the entire system. Usually a different set of features
has to be used for object classification and object tracking. For
example, if the task is to track a vehicle visually, color might be
a very powerful feature. On the other hand, for vehicle classifi-
cation color is often irrelevant.

C. Feature Selection—Feature Fusion

This section deals with the fusion of features from different
sensors (cp. Sections V-A and V-C) and the selection of a suit-
able set out of a pool of candidate features. After feature gen-
eration often a very large number of candidate features must be
reduced to a sufficiently small set as the SVM classifier can only
handle a limited number of input features. Some of these can-
didate features may provide reliable class discriminatory infor-
mation while others do not carry any relevant information and,
hence, must be excluded as they could mislead the classifier.
This task is not trivial since features that provide good classifi-
cation information may only achieve little improvement when
combined in a feature vector, due to high mutual correlation. In
contrast, the combination of features with little class discrimi-
natory abilities may achieve good results.

A genetic algorithm (GA) [19] is used as a search method.
We provide two feature selection fitness algorithms based on (i)
class separability criteria calculated for feature subsets and (ii)
based on the classification result of the classifier itself.

1) Class Separability Measures: Different class separability
measures have been developed as efficient feature selection cri-
teria in various feature subset searching methods. The major
drawback is that they do not always reflect the classifier be-
havior, and thus yield in only a suboptimal classification result.
Better performance is usually achieved by including the classi-
fier into the selection process and using the classification error
rate directly as separability criterion. However, this step also in-
cludes a high computational cost. Therefore, separability mea-
sures are especially important when preselecting features out of
a large set of candidate features. Two different measures are im-
plemented in our model.

• Bhattacharyya Distance: The Bhattacharyya distance is
derived from Bayes decision theory, which assumes a mul-
tivariate Gaussian distribution for the underlying proba-
bility densities.

• Scatter Matrices: Unlike the Bhattacharyya based mea-
sure, the scatter matrices criterion does not assume
Gaussian probability distribution for individual features,
but investigates how feature vector samples are scattered
in the feature vector space.

2) SVM Classifier Error Measures: Our experiments have
shown that the best way to select suitable class separation fea-
tures from a set of candidate features is to use the classifier it-
self to obtain the classification error minimized by a GA. This
method works as follows: For each feature vector combination,
the classification error probability of the classifier is estimated
and the one with minimum error is selected. That means in-
creased complexity and computational demand for the feature
selection process, but on the other hand direct inclusion of the
classifier into the optimization process.

As the fitness function is minimized by the GA, the error rate
of the classifier is interpreted as a reciprocal measure for the
fitness. For each individual, the SVM is trained with a part of
the database samples and then tested with the remaining part,
yielding the error rate as fitness value. A single training and test
run of the SVM does not necessarily lead to a reliable classi-
fication result, since feature data can be overlapped by noise
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Fig. 3. Classification behavior in feature space of (a) standard SVM with the margin for the separating hyperplane and the misclassification measure � and (b)
LS-SVM with two parallel hyperplanes and the error e attached to each point.

and the result highly depends on the selected training samples.
Hence, the SVM must be trained and tested several times with
randomly chosen samples from the database to ensure an accu-
rate average result for the selected features. Using this method
instead of class separability measures (CSM) leads to better re-
sults while boosting the training time by two orders of magni-
tude.

D. SVM—Feature Based Decision Modeling

The decision modeling process is provided as a generic soft-
ware framework which allows online data fusion on a distributed
embedded system with limited memory resources. In our mul-
tilevel data fusion framework support vector machines (SVM)
[20] are used as classification method for feature based decision
modeling. For , where is the number of training
data sets, common SVM learning strategies are often not fea-
sible, especially on our embedded platform (cp. Table II, avail-
able memory) because of their memory usage and required time.
The memory requirement for common SVM learning strategies
can be characterized by the standard measure memory com-
plexity, which is given by , caused by the storage of a
Hessian matrix which is needed in the optimization process in-
volved in training this kernel models.1 Hence, a modified ver-
sion of the original SVM, the so called Least Squares Sup-
port Vector Machine (LS-SVM) [21], [22] is used for decision
modeling in the I-SENSE framework. The main characteristic
of LS-SVMs is the lower computational complexity compared
with original SVMs, without any quality loss in the classifi-
cation results. A very attractive feature of SVM, namely the
sparseness was lost by the LS-SVM formulation. In standard
SVM a lot of the Lagrange multipliers are zero, leading to a
smaller subset of learning data in order to build the decision

1For example, a simple calculation reveals that a training data set of 4100
samples—as used in one of our case studies—exceeds the memory capacity
on our platform. For 4100 data points, the required memory is (4:1 � 10 ) �

8 Byte(for double precision) =134:5 M Byte, which exceeds the physical
limits of the I-SENSE platform.

boundary between the two involved classes. In LS-SVM al-
most all multipliers are non-zero, indicating that all training data
sets will be used as support vectors. This fact implies slower
classification computation and a higher demand of expensive
non-volatile memory to store the support vectors. We present in
the subsequent sections a method for a intelligent preselection
of learning data, in order to reduce the training set and therefore
reduce the number of support vectors which will be used by the
LS-SVM classifier.

However, a training data set is given by with
the inputs and class labels . The idea
of SVM classifier is to find the linear separating hyper surface

in the feature space that separates the mapped
data . According to statistical
learning theory [20], [23] a good generalization is given if one
demands that both classes are separated with a certain margin.
The goal is to find the appropriate weight vector and the scalar
bias term , such that the relations hold :

if
if

(1)

Instead of building a single hyperplane as in standard SVM
[cp. Fig. 3(a)], LS-SVM builds two parallel hyperplanes; one
for the positive class and one for the negative class as it is in-
dicated in Fig. 3(b). The distance between these hyperplanes

and in the feature
space is called the separating margin. Finding the separating
hyperplane deals with the problem that this margin has to be
maximized. Using Vapniks formalism [20], [23] from standard
SVM, this will lead to a constraint quadratic programming (QP)
problem. In order to avoid this sometimes hard to solve opti-
mization problem LS-SVM uses equality constraints instead of
inequality constraints to find the decision hyperplanes. The dif-
ference is compensated by adding an extra term to the cost func-
tion that penalizes the deviations from the two hyperplanes for
each point of the learning data. The deviations are given by the
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scalar error . The training problem is given
by:

(2)

where plays the role of a regularization parameter between
the two quadratic terms in the primal problem formulation [see
(2)], and characterizes the relative importance of the terms. The
first term aims to maximize the distance between the two hy-
perplanes, while the second term aims to minimize the slack
variable . This addition of the two quadratic terms is also re-
sponsible for the name least squares SVM. Since the dimen-
sion of the feature space is high, possibly infinite, this problem
is difficult to solve. Constructing the Lagrangian and using the
Karush–Kuhn–Tucker conditions yields in a dual optimization
problem. This formulation is advantageous because the dimen-
sionality of the optimization problem is equal to the number of
data points, indicating that the training process is dependent nei-
ther on the dimension of the feature space nor on the dimension
of the input space. Furthermore, these optimization problems
are convex. After finding the optimal parameters the classifier
is given in the form

(3)

Note that in LS-SVM all Lagrangian multipliers are non-zero,
because all training data sets are used as support vectors for
identifying the class separation surface. This main disadvantage
is compensated in our approach as described in the following
section.

1) LS-SVM Approach for Embedded Systems: In this section
we describe a method for selecting vectors out of the training
dataset which are likely to be support vectors in a LS-SVM
and, therefore, describe best the individual classes. This is done
by a data preselection algorithm based on a modified nearest
neighbor technique, leading to a smaller set of samples which
have to be stored for the classification task.

After this preselection, the remaining datasets are used as
support vectors for a LS-SVM classifier to find the decision
boundary between two classes in the learning process. Using our
approach leads to a sparse LS-SVM classifier with good classi-
fication results and lower computational and memory require-
ments than standard SVM. In embedded systems, the memory
resources are quite restricted and, therefore, the proposed ap-
proach is advantageous in comparison to a standard SVM.

The training data preselection algorithm (PTD) consists of
three main stages as described in the following: A given training
dataset is given by the training samples . The training sam-
ples can be divided into two subsets and

characterizing the two involved classes.
• Stage 1: The goal of this stage is to find the samples nearest

to the decision boundary which are needed to classify all
samples in . Therefore, for each sample out of , the

nearest neighbor sample from and vice versa is identified
by computing the Euclidean distance for all sample com-
binations until this distance is a minimum. These distance
tuples are sorted and verified with the nearest neighbor rule
in order to check if they are required to classify all samples
in . The resulting subset is called .

• Stage 2: The reduced nearest neighbor rule [24] is used to
obtain the reduced subset from . Therefore, each
sample of is deleted and the nearest neighbor is used
again to check if all samples are classified correctly in
without the deleted ones. If all patterns are classified cor-
rectly the next pattern is removed. Otherwise the previous
deletion is undone. The remaining subset is built by re-
moving those samples from .

• Stage 3: At the last stage the final preselection subset
is computed to obtain the -nearest samples from which
are closest to the reduced subset .

The value influences the size of the required training data
and the quality of the classification result. It can be set by the
user, but our experiments have shown that 3% from the number
of samples in is a good initial value for . The resulting subset
of the training data, namely , is provided to the LS-SVM
classifier. Fig. 4 shows an example random Gaussian distribu-
tion and the reduced subset after Stage 2 of the proposed
algorithm. Fig. 5 shows the overall results of the training data
preselection algorithm with different values of .

2) Performance of the LS-SVM With Preselection of Training
Data: To demonstrate the performance of our PTD LS-SVM
approach we present the obtained results of two different ex-
periments. First, we generate two random Gaussian distribu-
tions, one for each individual class. The distributions show a
tendency to a higher level of overlap as indicated in Fig. 4(a). In
this experiment we compare the necessary training time, classi-
fication result and number of necessary support vectors of four
different SVM based approaches under a constant amount of
training samples: i) standard SVM, ii) least squares SVM, iii)
LS-SVM with training data preselection (PTD-SVM), and iv) a
sparse LS-SVM, called [25]. Second, we use again
two random Gaussian distributions with increasing amount of
data points for each class. We evaluate three different implemen-
tations in order to obtain a training time result. For all experi-
ments we used a radial basis function (RBF) as kernel function.
The results presented in the following are average values of a
20 times repeated experiment with random selection of training
datasets.

Table I indicates that the standard SVM has the best training
accuracy. Our proposed approach (PTD LS-SVM) deviates only
about 3.1% from the standard SVM, while being 45% faster in
training than the standard approach. The results presented in
this table also show that the training accuracy is quite similar
for all training approaches. The fastest training strategy is the
LS-SVM approach, followed by the approach. Our
proposed training data preselection LS-SVM approach is about
3 times slower than the fastest approach. The last column in this
table shows that our algorithm has detected a smaller amount
of support vectors (SV) even in comparison with the standard
SVM approach. In comparison to the LS-SVM approach, which
considers all training datasets as support vectors, our algorithm
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Fig. 4. Effect of our data preselection algorithm demonstrated on normalized, 2-dimensional random Gaussian distribution: (a) inital data set (100 samples) and
(b) reduced remaining subset 
 .

Fig. 5. Results of the training data preselection algorithm for the distribution shown in Fig. 4(a) with (a) k = 1 and (b) k = 3.

TABLE I
PERFORMANCE OF DIFFERENT SVM-BASED CLASSIFIERS WITH RESPECT TO TRAINING TIME, CLASSIFICATION QUALITY,

NECESSARY SUPPORT VECTORS AND REQUIRED MEMORY DURING THE LEARNING PHASE

needed only 45% of support vectors for a quite similar clas-
sification result. According to Table I our PTD LS-SVM ap-
proach requires only 23% memory compared to the standard
SVM during the learning process.

Fig. 6 shows the required training time as an averaged value
of 10 experiments. The standard SVM approach is the slowest
and is therefore not advisable for large training sets. The fastest
approach is the LS-SVM approach, followed by our proposed

approach. Both algorithms might be used for large training data
sets, however our PTD-SVM approach requires much less sup-
port vectors (cp. Table I) which makes it superior for embedded
systems with memory restrictions.

E. DS Combination—Decision Based Decision Modeling

This section deals with the fusion of decisions from individual
sensors based on Dempster-Shafer (DS) theory of evidence [18].
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Fig. 6. Comparison of three different learning strategies with regard to required
training time versus number of training samples: SVM-QP approach (standard
SVM), LS-SVM approach (least squares SVM) and PTD-SVM approach (pre-
selection of training data LS-SVM).

The main objective is to use the complementary information
from different single-source classifiers to fuse these classifica-
tion results into a single decision or more precisely into a matrix
of uncertainty intervals for each possible proposition—the so
called “frame of discernment .” Here we use a distance mass
function of our SVM based classifier as our DS belief function.

The common DS rule of combination implies that we trust all
sensors equally. This approach can cause problems if the DS fu-
sion system is not properly designed and is, therefore, suitable
only for situations where all sensors have the same accuracy es-
timates or in situations where the basic belief assignments over
the frame of discernment can reflect the ignorance going with
the observations. Due to building a generalizable sensor fusion
framework working with sensors of different accuracy we in-
troduce a weighted combination rule [4]. The basic idea is to
exploit the knowledge of the sensor from similar situations, i.e.,
we can use the historical performance rates to decide how much
we trust in a sensor’s actual estimation. By using this approach
we modify the original DS combination rule to handle cases of
sensors with unequal confidence.

IV. I-SENSE MIDDLEWARE

The main goal of the I-SENSE middleware is to provide ser-
vices for i) mapping and executing a fusion application on a
distributed embedded system, ii) optimizing the allocation of fu-
sion tasks onto processing elements, and iii) modifying the task
allocation during runtime without loosing sensor data during
the reconfiguration process. Much care has been taken on an
open and portable design of this middleware. As a result, the
I-SENSE middleware can be executed on various distributed
embedded platforms with sufficient computation and commu-
nication power [26].

Fig. 7 presents the internal structure of our sensor nodes.
For our experiments this node consists of an “ePCI 101” em-
bedded computing platform equipped with an Intel Pentium M
processor running at 1.6 GHz. This platform can be extended by
several DSP boards equipped with TMS320C6000 DSPs from

Fig. 7. Internal structure of a sensor node. Such nodes are connected via Eth-
ernet among each other to form a distributed data fusion application.

Texas Instruments. The DSP boards are connected with the em-
bedded platform via PCI.

As operating system Windows XP Embedded has been
chosen, simply because of the premium driver support and its
plug and play features. However, the core functionality of the
middleware is independent of the operating system and, due
to the layered concept, it should be easy to port it to any other
operating system or hardware.

The sensor nodes used for the I-SENSE system do not require
user interactions, display capabilities or a permanent storage de-
vice. However, there has to be one extraordinary node, the so
called master node where the user of the system can specify
and change the functionality of the entire network. The master
node is in charge of finding and loading a configuration onto the
network, doing reconfigurations during runtime and handling
problems and exceptions in the system. A repository of all fu-
sion tasks must be installed on this node.

Note that the data fusion application runs on the distributed
embedded fusion nodes. Only the configuration is handled by
the centralized master node.

A. Services of the Middleware

During initialization, the middleware first scans the PCI bus
for supported DSP boards and installs the DSP-based part of the
middleware on them. After all instances have been initialized,
the node is ready to accept commands and execute fusion tasks.

In Fig. 8 the internal structures of the I-SENSE middleware is
illustrated. The message router is responsible for a correct and
efficient data transfer from one fusion task to another, either on
the same processor via shared memory, the same node via PCI or
on a distant node via Ethernet. Furthermore, the message router
supports message forwarding if a fusion task has been migrated
to another processor.

Each processor in the I-SENSE network offers a service
called task loader. It accepts requests to load, start, stop, mi-
grate and remove fusion tasks. Loading a task involves basically
the following steps: First, the fusion controller transfers the
image of the fusion task, if it is not yet available at the node.
After that the task environment is transferred and installed. In
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Fig. 8. Internal structure and main services of the I-SENSE middleware.

TABLE II
FOOTPRINT SIZE OF MIDDLEWARE AND AVAILABLE MEMORY

ON (a) DSP (TMS320DM642) AND (b) PENTIUM-M

the next step the communication links are established and reg-
istered. If all previous steps have been completed successfully,
the task’s main routine is started in an own thread.

It is the responsibility of the resource monitor to keep record
of all consumed resources by the tasks (memory blocks, DMA
channels, etc.). This is required for freeing the resources after a
fusion tasks has been removed.

Distributed sensor data fusion implies a uniform timebase for
all nodes. Without a system wide synchronized clock, it would
be impossible to combine results from different sensors. There-
fore, each processor has its own task which keeps the local clock
synchronized with the system time.

To detect software- and hardware-failures, each node period-
ically checks its state, and the connection to its neighbor nodes.
This functionality is summarized in the DSP Monitor and diag-
nosis unit blocks, respectively.

In Table II the memory requirements of the middleware are
shown. On-chip memory refers to the fast internal memory of
the signal processor while Off-Chip memory refers to the ex-
ternal connected DRAM memory.

The buffer sizes for the communication are adjustable; we
currently use a total of 4 MB for these buffers. The communi-
cation buffers are dynamically organized and are required for
inter-task communication as well as for storing the sensor data
during the reconfiguration process. Thus, the size of the buffers
influences the maximum time required for the reconfiguration
(such that no data is lost). When porting to other platforms, these
buffers must be adapted to the actual requirements and can be
dimensioned much smaller.

B. Performance of the Middleware

To test the performance of the middleware and estimate the
time that it takes to configure and reconfigure the system, we
constructed some simple software models consisting of at most
four tasks. Table III presents the time required to load specific
tasks. In this experiment all code and data have been completely
loaded over the network; no local caching has been performed.

In a second test, we measured the time required to migrate
a task from one processor to another. The results of this exper-
iment can be seen in Table IV. In principal two different sce-
narios have to be considered. Either the task migrates from one
sensor node to another via Ethernet (remote destination) or the
task just moves between processors on the same node via PCI
(local destination).

C. Definition of Fusion Tasks

There are two parts required to describe a fusion task: The
first part provides the functionality of the task which is a
dynamic loadable library written in C/C++ and has access to
the I-SENSE API. The second part provides meta-information
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TABLE III
TIME REQUIRED TO LOAD A TASK ON THE SYSTEM WITHOUT CACHING

TABLE IV
TIME REQUIRED TO MIGRATE A TASK BETWEEN PROCESSORS

about the task specified in a separate XML file. This meta-in-
formation is required for two reasons: First, the automatic
task assignment module needs to know the resources and the
runtime of each task to find an optimal mapping of tasks onto
CPUs. Second, when this configuration is loaded onto the dis-
tributed system, this meta-information is used to initialize the
communication buffers and memory segments for every task.

To build an overall fusion application, individual fusion tasks
have to be connected. Thus, each fusion task has a number of
ports where it can be connected to other tasks, as defined in the
software model. These communication links are bidirectional.
The number of available ports and the number of available mes-
sage slots as well as the size of the message slots for outgoing
and incoming messages have to be declared in the task’s meta-
data.

In addition to a simple message passing system, the I-SENSE
API provides other very useful functions to ease the devel-
opment of distributed fusion applications. Via the timebase
module, tasks can query the system time—which is synchro-
nized over the entire system—whenever they want. They
can fork new threads by using the scheduler module. The
memory management module standardizes and encapsulates
the hardware dependent memory management functions of
the underlying operating system. A DMAmanager provides a
variety of functions to ease the programming of DMA transfers
on DSPs.

D. Configuration Method

Whenever the software model or the hardware model is
changed, a reconfiguration process is triggered. Both models
are the inputs of the so called optimizer which tries to find
a suitable mapping of the fusion tasks onto the processors.
The optimizer distributes the load which has been balanced
by a genetic optimization algorithm [27]. Constraints help
to enforce the mapping of an individual fusion task onto a
dedicated processor. As soon as a valid configuration is found,
the configuration synthesizer distributes and runs the fusion
tasks on the network of distributed embedded platforms.

There are three possible situations that require the master
node to trigger a reconfiguration: i) the user modifies the hard-

Fig. 9. Hardware topology of an I-SENSE network.

ware or software model, ii) a fusion task detects a relevant event
and decides to adapt the software model to better capture this
event, or iii) a hardware failure has been detected.

1) Hardware Model: The hardware model describes the dis-
tributed embedded system where the fusion application should
run on. In our case it consists of a set of connected hardware
nodes ( , cp. Fig. 9). Each hardware node has at least
one general purpose CPU (parent) and optionally some digital
signal processors (children) coupled via PCI, and various ports
to interface sensors.

Every processing node allows to query and use its free re-
sources (i.e., computing power, on/off chip memory, different
sensors, etc.) for fusion tasks. A middleware module explores
the embedded system automatically. This has two advantages:
i) faulty or missing hardware nodes can be found during start
up and ii) the hardware model can be built and parameterized
during the initialization process.

2) Software Model: The software model describes the
functionality of the distributed fusion application. It is ob-
tained from the fusion model (cp. Fig. 2) by increasing the
level of detail up to a set of communicating tasks which may
be represented as a task graph . It is assumed
to be a weighted directed acyclic graph, consisting of nodes

which represent the fusion tasks and the
edges which represent the data flow
between those tasks.

Each node of the graph has some properties, describing the
(hardware/resource-) requirements of a task. The weights of
each edge from node to node indicates the required
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Fig. 10. Simple software model.

Fig. 11. Mapping of tasks on processors.

communication bandwidth between those two tasks. A quite
simple example of a software model is shown in Fig. 10.

E. Genetic Algorithm for Task Allocation

As mentioned before, a genetic algorithm is used to allocate
tasks and their interconnections, represented by the software

model , on a distributed embedded system con-
sisting of heterogeneous processors, described by the hard-
ware model.

1) Encoding of Chromosomes: To solve a problem by ge-
netic algorithms, it is necessary to find a mapping of a potential
candidate for a solution onto a sequence of binary digits, the
so called chromosome. In our case, however, it is more suitable
and efficient to represent chromosomes as strings of integers.
The length of the chromosomes is given by the number of tasks

that should be allocated. Every gene in the chromosome rep-
resents the processor where the task is running on. Fig. 11
presents an example mapping of tasks on processors.

2) Fitness Function Definition: A problem with a straight
forward implementation of a genetic algorithm in our case is that
in a randomly generated initial population almost all combina-
tions are invalid. Either the CPU utilization of any processor in
the system is exceeded or a communication link is overloaded.
As proposed in [28], a penalty in the fitness score for those vio-
lations has proved to be a good approach in our work.

The fitness score of a CPU is calculated by a polynomial func-
tion of second order. A processor work load of 50% gets the

TABLE V
FITNESS FUNCTION EVALUATIONS REQUIRED TO FIND A VALID CONFIGURATION

highest possible fitness score. More or less utilization causes the
fitness score to decrease. If a processor is overloaded (more than
90% usage) the chromosome gets a punishment value that is
higher than the highest possible score of a perfect chromosome.
If more than one CPU in the chromosome is overloaded, this
punishment value is subtracted for each violation. The fitness
of the communication is calculated in a similar way. The main
difference is that a communication utilization of 35% results in
the best possible fitness score. The settings of a preferred 35%
network load and 50% CPU load have been determined empir-
ically.2 The overall fitness score of a chromosome is simply a
weighted sum of the processor- and communication-fitness.

Table V presents the number of fitness function evaluations
necessary to find a valid configuration for many different soft-
ware and hardware models. All presented values have been av-
eraged over 200 runs. The population size was fixed at 80 el-
ements. All examples have been classified by its complexity.
Problems classified as ‘easy’ have a large number of valid so-
lutions while in “hard” problems the fraction of valid combina-
tions is very small. For the example classified as “very hard,” a
special hardware model has been constructed which utilizes all
processors close at their limit.

The presented Table V reflects the assumed cluster size of
several dozen computation nodes. Currently a single node is re-
sponsible for managing a moderate number of slaves. Adopting
a hierarchical network approach, similar to [29] might be a solu-
tion for managing reconfigurations for larger networks (several
hundred to many thousand nodes).

The quotation of fitness function evaluations is quite popular
when dealing with genetic algorithms since it is independent of
the actual implementation and used processor. However, it says
nothing about the expected execution time. On our development
computer (Intel Pentium 4, 1.9 GHz) it takes approximately 0.3
s to find a solution for the problem specified as “very hard.”

F. Applying Model Changes at Runtime

A special feature of I-SENSE is the capability to apply small
and medium changes in the software model or in the hardware
model while the system is running. Therefore, the light-weight
I-SENSE middleware supports loading, unloading as well as mi-
gration of tasks and the update of communication links during
runtime. So it is possible to change an existing configuration
gradually into a modified one by applying those four operations.
Similar to the famous fifteen puzzle where squares are moved

2This is a pragmatic approach to keep these system resources available for
other applications and to allow the computation and the deployment of new
configurations in the background.
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Fig. 12. Example for a transfer in the common solution-space.

around to obtain a specific pattern, we move tasks on the dis-
tributed system to transform an existing configuration into the
desired modified one.

The number of sequential task migrations directly correlates
with the time required for the reconfiguration. To keep this
number low, paying attention to the similarity of the new con-
figuration is essential. Therefore, in case of a reconfiguration,
the fitness score of a gene is extended by a third weight which
expresses the difference between the existing configuration and
the potential new one. Thus, similar configurations are preferred
by the genetic algorithm and the search for a reconfiguration
sequence is eased.

Since a changed configuration may differ in the number of
tasks and the number of processing nodes, both configurations
must be transferred into a common solution space before a path
search algorithm can be invoked (cp. Fig. 12).

Finally, an search algorithm [30] tries to find a sequence
of valid configurations to transform the current configuration
into the new one. The two heuristic functions and for the

algorithm are currently the following:

In cases where a valid sequence for an online reconfigura-
tion can not be found in an adequate time, the system reverts to
a offline reconfiguration process automatically. This means all
fusion tasks may be halted during the reconfiguration process
and the data acquisition from the environment is suspended for
this time.

V. CASE STUDIES ON VEHICLE CLASSIFICATION

AND BULK GOOD SEPARATION

In this section we present the case studies which focus
on vehicle classification and granulated material separation.
Vehicle classification is performed by exploiting visual and
acoustic data. In our experiments we collected a database
consisting of about 4100 vehicles which are mainly assigned
to three different classes: large trucks, small trucks and cars.
Further vehicle classes (motorcycles and buses) are possible
but the number of samples in these classes are rather low in
comparison to the other classes and we, therefore, decided to
use only these three classes to demonstrate the feasibility of our

multilevel data fusion approach. A screenshot of the I-SENSE
user interface is depicted in Fig. 14. Bulk good separation is
focused on visual data extended by infrared spectral imaging
data. In the subsequent sections we focus on feature extraction
for these case studies.

A. Feature Extraction for Vehicle Classification

For our visual feature extractor we adopted the ideas of Viola
and Jones [31] to build a multiclass extractor and improved it by
using RealBoost [32]. The feature set is built by Haar-features
and additional gradient-based information which are calculated
in real-time on an embedded platform. The boosting approach
is mainly used to extract the most powerful features. Further
details are presented in [3].

For our acoustic feature extractor various signal processing
algorithms have been implemented in order to collect a pool
of candidate features able to distinguish between vehicle cat-
egories. Each of the algorithms extracts several features from
the raw input data. Features in time domain are generated from
short time energies, zero crossing rates and correlation analysis
algorithms. Spectral features include signal attributes that de-
scribe average energies, positions and spreads in frequency do-
main, such as the spectral centroid, signal bandwidth, spectral
flux, or band energy ratios. Cepstral coefficients are popular fea-
ture candidates as they provide very good information packing
properties: Low order coefficients capture information about the
slowly varying properties of the spectrum, also referred to as
spectral envelope. A more comprehensive overview is presented
in [33].

B. Audio–Visual Vehicle Classification Results

We have implemented a simple multiclass classifier by ap-
plying the One-against-All technique. 30% of the vehicle data-
base is selected for training and the other 70% is used for evalua-
tion purposes. The results presented in the following are average
values from 20 runs of our LS-SVM with support vector prese-
lection and a radial basis function (RBF) as the kernel function.

First, we demonstrate the vehicle classification results based
on a single sensor estimation only. The box plots shown in
Fig. 13(a) indicate that class separation with acoustic fea-
tures only is quite difficult. Using a confusion matrix (cp.
Table VI—audio features only) for this experiment reveals that
the classification system achieves a quite reliable distinction
between cars and other vehicles but has serious problems in
distinguishing between the two types of trucks.
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Fig. 13. Classification result with PTD LS-SVM based on (a) acoustic features only, (b) visual features only, (c) DS fused decisions from individual sensors and
(d) fused features from both sensors and accurate feature selection. The lines indicate the lower, median and upper quartile values; whiskers show the extent of the
rest of the data.

Fig. 13(b) demonstrates quite the same classification perfor-
mance for vision-only sensor data as for a acoustic-only classi-
fication. Higher absolute classification rates are the main differ-
ence between the two single sensor classifiers.

In Fig. 13(c) and Table VI (cp. decision level fusion), we show
that our approach for fusing data at the decision level is ad-
vantageous in comparison to single sensor classification in the
overall classification result as well as the individual class sepa-
ration abilities. In our case study we use a weight in
order to trust in both sensors equally.

According to Fig. 13(d) and Table VI (cp. feature level
fusion), fusing data at feature level is superior to the Demp-
ster–Shafer approach, discussed in Section III-E. Note, that
classification based on single sensor decisions needs less
memory and communication requirements than using feature
based classification. Therefore, both approaches are suitable
in an multilevel sensor fusion framework—depending on the
current situation and the available computational and memory
resources.

While Fig. 13 visualizes the overall performance of our PTD
LS-SVM classifier, the confusion matrix (cp. Table VI) shows

detailed information about the actual and predicted classifica-
tions of our presented classifier. A comparison between the
vision-only classification [cp. Fig. 13(a)] and the classification
based on fused features from audio and visual sensors [cp.
Figs. 13(c) and 13(d)] can be interpreted as follows: The
vision-only classifier predicts cars very well (95.3%), but it
tends to have problems in distinguishing between small trucks
(74.6%) and large trucks (82.3%). Quite similar behavior is
achieved by using acoustic features only (91.7%, 64.0%, and
63.2%, respectively). However, fusing data from both sen-
sors either at the feature level or the decision level leads to
good classification performance for all three vehicle classes
(97.3%, 84.1%, and 95.0%, respectively) while decreasing the
false-positive rates (by a factor of 3.3 for cars, by a factor of
2.1 for small trucks and by a factor of 1.6 for large trucks).

C. Feature Extraction for Bulk Good Separation

This section presents the feature extraction for the bulk good
separation case study (cp. Fig. 15) which focuses on granulated
material classification (e.g., rocks, minerals, glasses, etc.).
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Fig. 14. Screenshot of our online vehicle classification build on the I-SENSE middleware.

TABLE VI
CONFUSION MATRICES OF THE VEHICLE CLASSIFICATION BASED ON I)

ACOUSTIC FEATURES, II) VISUAL FEATURES, III) DECISION FUSION, AND IV)
FEATURE FUSION

D. Visual Feature Extraction

Fundamental properties of granulated materials are size,
shape, texture and physical composition. Color properties can
provide useful information about the composition of materials.
Surface texture gives clues to its crystal content. These prop-
erties are characterized from images of granulated material,
summarized in the following paragraphs.

a) Color features: The most common colors of granu-
lated material used in this case study are red, brown and yellow
which are typically due to the presence of ferric oxide cement,
gray–black which reflects the presence of carbonaceous mate-
rial, and colorless, such as quartz, which contains neither ferric
oxide nor free carbon. Color is an especially important charac-
teristic for shale. The implemented algorithm in the I-SENSE

framework is to normalize each intensity image (taken from
granulated materials on a conveyor belt) to zero mean and unit
variance for pixel intensities to help to account for changes
in camera parameters when the image was taken. Scenes with
highly directional lighting cause highlights and shadows, the
computed intensity variance for a given material is larger than
the true value, compensated by an adaptive histogram equaliza-
tion.

The simplest method of extracting suitable features is charac-
terizing granulated material albedo or color which involves two
statistical measures: mean and variance. The mean pixel inten-
sity represents the reflectivity of the material, while the variance
in intensity provides a measure of how uniform the material re-
flectivity is. In the I-SENSE feature extraction unit two statistical
features are obtained based on mean and variance of the objects
intensity.

The second method is focused on a histogram of intensities,
a method which gives a more complete representation of the
reflectivity of a material. Often a granulated material will con-
sist of regions of different reflectivity, which intensity mean and
variance alone cannot accurately characterize. Pixel intensity
ranges from zero to one. In the I-SENSE framework this range is
divided into eight bins to compute the histogram and then nor-
malize so that the elements of the resulting vector sum to one.
The values of the eight bins serve as eight numerical features in
the I-SENSE feature extractor.

The third method is focused on the color representation of a
material, a method which involves determining the reflectivity at
all wavelengths. However, the I-SENSE project is dealing with
images of granulated materials which provide the intensity for
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Fig. 15. Example materials for granulated material separation: (a) precious rubble (referred to class 1) and (b) worthless rubble (referred to class 2).

each pixel at three different wavelengths. Pixel color is com-
monly represented in Hue Saturation Value (HSV) [34]. How-
ever, neither the RGB or HSV color space is uniform in that the
numerical distance between colors does not correspond to the
distance perceived by humans. However, to characterize granu-
lated material, the mean and variance over each color channel
are computed, as was previously done for intensity. For a more
complete color representation, a color histogram is used. The
previously explained method of intensity histograms can be ap-
plied to each color channel, resulting in a 2-D histogram and 24
color features.

b) Texture features: The surface texture is the size, shape
and arrangement of the component elements of granulated ma-
terials as well as surface markings such as polish, striations and
pits. Properties of crystals within the material, such as grain-
size, distribution, sorting, permeability, shape and orientation
are also important characteristics of materials identity. In the
I-SENSE framework two methods for obtaining suitable features
based on object texture analysis are provided.

First, features from co-occurrence statistics are obtained. The
gray-level co-occurrence matrix (GLCM) measures spatial re-
lationships of pixels in an object image. The matrix is defined
as follows:

(4)
where is the distance at an angle between pixels of intensi-
ties and and is the cardinality of a set. In other words, entry

is the number of occurrences of the pair of gray levels
and at a distance and angle apart. This is computed for

, 45 , 90 , 135 and 1 to 5, averaged over these
values for pixel intensities divided into eight bins. From this,
the following features are computed:

(5)

(6)

(7)

(8)

These features are computed in the I-SENSE framework and
form a vector to represent the texture.

The second method for feature extraction based on texture
involve the most common approach to texture analysis in com-
puter vision, a method convolving the texture with a set of fil-
ters and clustering the responses to form textons. In this work
the Maximum Response 8 (MR8) filter bank is used. The MR8
filter bank, originally introduced by Varma and Zisserman in
[35], is based on an edge filter (first derivative of a Gaussian)
and a bar filter (second derivative of a Gaussian) at six orien-
tations and three scales, and two spot filters (a Gaussian and a
Laplacian of a Gaussian). The unique trick with this approach
is that for each filter, the maximum response is taken across the
six orientations. This reduces the response vector down to eight
dimensions. Each response vector is normalized according to

(9)

where is the vector and is each element. Once the filter
bank is convolved with the texture to form a response vector for
each pixel using MR8 filter bank, a set of textons is computed.
The response vectors from all textures in the set are aggregated
into a matrix of size where is the total number
of pixels in the images and is the dimensionality of the re-
sponse vector. In the I-SENSE approach the response vectors are
clustered using k-means [36].3 Each texton is displayed as the
linear combination of the filters and represents a form of primi-
tive structure in the set of textured object images. From this the
closest texton for the response vector is computed at each image
pixel, forming a texton map. This distribution of textons within
an granulated material is represented with a histogram, counting
the number of occurrences of each texton in the image. Texture
features are extracted based on these representative histograms.

1) Spectral Imaging Feature Extraction: Features based
on spectral imaging can provide useful information about the
composition of granulated materials. The overall aim is to
extract features with sufficient class discriminatory abilities

3In this work 32 clusters are used, with each cluster representing a texton.
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Fig. 16. Infrared spectra (range: 1100 nm–1700 nm) of different minerals with defined regions of interest (indicated by “ ”), where statistical features are extracted.

from infrared spectra of the objects of interests. Therefore,
in the I-SENSE framework various materials were analyzed
heuristically for the specific application and regions of interest
(ROI) were extracted during the evaluation stage (cp. Fig. 16).
The method of extracting suitable features is based on two
statistical measures (mean and variance) for each obtained
pixel, in order to characterize the ROI of granulated material’s
spectra. Therefore, measures as min-value, max-value and
mean-value are obtained from objectives spectra. Furthermore,
the first derivative is computed, where the slope is an additional
feasible feature. These features are computed in the I-SENSE
framework and form a vector to represent the information
obtained from granulated materials infrared spectra.

E. Granulated Materials Classification Results

Bulk good separation or more precise granulated materials
classification is an important task in industrial applications. To
keep this demonstration application as simple as possible sev-
eral autonomous experiments were conducted. For simplicity
reason the segmentation task is not further considered in this
section. Only the quantitative results of the conducted experi-
ment are presented in the following. In this case study texture
and color features are extracted as described in Section V-C in
order to distinguish between two classes of granulated material,
e.g., as indicated by Fig. 15.

The results shown in the following tables (cp. Table VII)
present the classification behavior for separating granulated ma-
terial. Therefore, the confusion matrix, which contains informa-
tion about actual and predicted classifications done by a classifi-
cation system, is built. From the confusion matrix for each indi-
vidual involved class, statistical measures as accuracy, true-pos-
itive rate and false-positive rate are computed. Whereby, the ac-
curacy is the proportion of the total number of predictions that
were correct, the true-positive rate (TP) is the proportion of pos-

itive cases that were correctly identified, the false-positive rate
(FP) is defined as the proportion of negatives cases that were
incorrectly classified as positive. To evaluate the feasibility of
I-SENSE approach the following experiments were conducted:
a) color based feature extraction and feature selection and PTD
LS-SVM classifier, b) color and spectral imaging based feature
extraction and feature selection and PTD LS-SVM classifier, c)
color and spectral imaging based feature extraction and feature
selection and PTD LS-SVM classifier and Fusion based on mul-
tiple decisions (weights were set to 0.5 for each individual clas-
sifier), d) color and spectral imaging based feature extraction
and PTD LS-SVM classifier without feature selection, and e)
color and spectral imaging based feature extraction and classifi-
cation based on k-means clustering as described in [37]. The ta-
bles given below are obtained from 40 times randomly repeated
selection of learning and evaluation examples out of the pool of
objects in order to consider the generalization behavior.

The results presented in Table VII show the classification be-
havior based on single-sensor color information. The overall
classification accuracy is about 87%, and therefore quite high,
while both involved classes are classified with similar true-pos-
itive rates. Adding new types of sensors may have very sig-
nificant impact in classification capability, because of an addi-
tional added dimensionality of sensed data, an fact which is indi-
cated in Table VII(b). Additional features from spectral imaging
sensor increase the overall accuracy by approx. 11%, due to the
integration of a suitable feature selection stage. Quite similar to
these results are the results obtained by multiple single-sensor
classifiers and a decision based fusion (i.e., weighted DS com-
bination), as given in Table VII(c). In this case it seems that the
final classifier tends to have problems treat both involved classes
similarly. Table VII(d), demonstrate the main difficulties in fea-
ture based information fusion. Without a suitable feature selec-
tion process the classifier is mislead, caused by the high mutual
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TABLE VII
GRANULATED MATERIAL SEPARATION RESULTS BASED ON PTD LS-SVM CLASSIFIER AND UNSUPERVISED K-MEANS CLUSTERING

correlation of features from the two involved sensors. Therefore,
the overall accuracy (i.e., 61%) decreases dramatically. Using a
unsupervised learning strategy, i.e., k-means clustering, is not
feasible in the presented application field, a fact which is illus-
trated by Table VII(e).

Summarizing the results obtained in this granulated material
separation case study beside the qualitative benefits of the pre-
sented multilevel fusion approach another important interpreta-
tion can be done regarding the reusability of the I-SENSE frame-
work. The I-SENSE framework is a generic fusion model suit-
able for a broad range of classification applications. The model
can be easily adapted for numerous applications by simply ex-
changing the feature extraction tasks.

VI. CONCLUSION

In this paper, we have presented I-SENSE—our novel multi
sensor fusion model focusing on multilevel data fusion on
networked embedded systems. The I-SENSE model considers
the data flow in the embedded sensor network and features
a light-weight middleware with dynamic reconfiguration
capabilities. Our framework further provides an enhanced
SVM-based classifier which achieves a good compromise
between computation speed, memory requirements and classi-
fication performance—all of which is important for distributed,
embedded fusion applications.

We have demonstrated the I-SENSE framework in two case
studies. By fusing visual and acoustic data at different levels
of abstraction, we were able to increase the overall accuracy in
our vehicle classification case study from 90% of vision-based
classification to about 96%. This case study also showed that the
discrimination among the classes for small and large trucks can
be significantly improved by combining (weak) single sensor
classifiers. A further case study demonstrates the reusability of
the generic fusion model and confirms the tendencies obtained
in the first case study.

Sensor fusion is an important technique to improve the
quality and robustness of many applications. Since sensor,
computing and communication devices are getting more ca-
pable, smaller and cheaper at a very fast pace, fusion will
become an enabling technology for many embedded applica-
tions. By providing a middleware which considers important

parameters for distributed embedded systems, our I-SENSE
framework may help to develop embedded fusion applications.

However, there is still a long road ahead to support the de-
velopment process to a full extend. Thus, our future work will
focus on the following issues.

• Exploit the fusion refinement. This introduces some
adaptivity such that individual units in our fusion model
(Fig. 2) can be adapted for example due to changed envi-
ronmental conditions.

• Perform distributed sensor fusion. In the current case
studies we do not exploit the spatial and temporal relation-
ship among multiple sensors. However, it is natural to do
so to further improve the quality.

• Integrate different sensors. We plan to integrate addi-
tional sensors for our case study such as lasers for capturing
the height profiles or inductive loops. An important ques-
tion is to determine the tradeoff between increased hard-
ware costs and increased performance.

• Implement sophisticated error handling. The entire con-
cept permits error handling on various levels. But up to now
there is no intelligent error handling implemented. We are
planning to use a policy based approach, similar to [38].
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