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Abstract

In this article we present our software framework for em-
bedded online data fusion, called I-SENSE. We discuss the
fusion model and the decision modeling approach using
Support Vector Machines. Due to the system complexity and
the genetic approach a data oriented model is introduced.
The main focus of the article is targeted at our techniques
for extracting features of acoustic- and visual-data. Ex-
perimental results of our “traffic surveillance” case study
demonstrate the feasibility of our multi-level data fusion ap-
proach.

1 Introduction

Currently there is a strong trend towards integration of sen-
sor, computing and communication technology into every-
days life. The ultimate goal here is to provide as much
support as possible while concealing the computing devices
from the users. Our I-SENSE project [6] demonstrates the
potential of combining the scientific research areas multi-
sensor data fusion and pervasive embedded computing.I-
SENSEis used as an acronym for intelligent sensing and
our project is targeted at various applications. Classifica-
tion of vehicles is one of the most important tasks in traffic
surveillance systems and therefore, we demonstrate the fea-
sibility of our fusion approach in a classification case study.
The aim of our multi-sensor fusion framework is to create a
synergistic process in which the consolidation of individual
data creates a combined resource with a productive value
greater than the sum of its parts.

To achieve this aim, our approach is to perform multi-
level data fusion by combining data from different sensors
at different levels of abstraction. The I-SENSE fusion-
framework supports three basic levels of data fusion. These
fusion levels are differentiated according to the amount of
information they provide. The most basic level is called
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raw-data fusion. At this level, only raw, uncorrelated data
is provided to the user. In comparison, level two data fusion
provides a higher level of inference and delivers additional
interpretive meaning suggested from the raw data and data
will be fused based on extracted features. Therefore this
level is calledfeature-level fusion. Level three data fusion
is designed to make assessments and provide recommenda-
tions to the user and is calleddecision fusion.

The remainder of the paper is organized as follows: Sec-
tion 2 gives an short review about related activities. Section
3 discusses our I-SENSE project as a framework for multi-
sensor data fusion. Section 4 deals with the visual feature
extraction tasks while section 5 treats the acoustic feature
extraction tasks. In section 6 we discuss the decision mod-
eling process. In section 7 we present some experimental
results of our approach, and section 8 concludes the paper
with a short discussion of our approach.

2 Related work

Our idea of developing a high-performance data fusion ar-
chitecture originates from the SmartCam project [1]. In the
I-SENSE research project we extend the SmartCam to dis-
tributed embedded sensor nodes (consisting of a network
processor and various digital signal processors) capable of
fusing data from various heterogeneous sensors, ranging
from simple sensors such as light barriers and induction
loops over audio sensors to different video sensors. There
exists a large variety of multi sensor fusion applications, but
our proposed approach is different in several ways to these
applications.

“Project Correlation”, funded by the U.S. Air Force, was
the first approach to step back from the many application-
specific and system-specific solutions and developed a set
of generic/reusable engineering guidelines for an effective
data fusion-problem solution. A methodology for fusion
software development, based on the C4ISR architecture [4]
is given. However, this architecture has too much overhead
and is, therefore, not suitable for embedded systems.
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Figure 1:Detailed data oriented Fusion Model characterized by
input- and output data

3 Fusion Model

Figure 1 presents the detailed, data oriented software fusion
model in our I-SENSE approach [7]. This model consists
basically of three levels and functions. Namely, theSen-
sor Control & Management Unit, theSensing Unitand the
Fusion Layer. The figure presents an example of two phys-
ical sensors, labelled withS1 andS2 (i.e. audio sensor and
visual sensor).

The Sensor Control & Management Unitis responsible
for the sensor identification as well as providing the inter-
face to other sensing nodes, human observers and actuators.
Furthermore, this unit controls the overall fusion process
and provides access to a database where resource require-
ments for the different fusion tasks are stored. Three es-
sential functional blocks are identified in this layer to allow
an online refinement of the overall fusion process based on
(i) the generated output decisions ofFIDeO andDeIDeO
(DeIDeORef, Decision in decision out refinementandDe-
IFORef, Decision in feature out refinement) and (ii) gener-
ated output features ofFIFO andDIFO (FIDORef, Feature
in data out refinement).

TheSensing Unitrepresents the intelligent sensor which
consists of the physical sensor itself and a suitable data pre-
processor (e.g. resolution based down-sampling, automatic
gain control, . . . ). ALocal feature extraction Unit (LFE)is
used to extract a single-source feature vector based on color
information, structural information, spectral information or
acoustic information of an observed object. This means,
that each sensor provides an estimate of the position of an
object with extracted features, based only on its own sin-
gle source data. These individual feature vectors are input

to a data fusion process, namely theFeature in feature out
(FIFO) process, in order to achieve a joint feature vector
estimate based on multiple sensors. ALocal decision ex-
traction Unit (LDE) is used to extract local decision from
individual objectives features (e.g. classification of objec-
tives identity).

The heart of the framework is theFusion Layerincluding
the following five functional units:

DIDO: Data in data out unit; This functional unit is also
calledRaw-Data Fusion unit (RDF), and raw uncorre-
lated data will be fused from different and/or similar
numerous sensors there. This raw data streams are la-
belled withRDx. In our framework this method is pro-
vided for similar sensor types by using wavelet based
image fusion techniques of images from visual sensor
& infrared spectral camera.

DIFO: Data in feature out unit; this is our so calledFea-
ture extraction II unit (FEII), where raw data from the
individual sensors and/or fused raw-data (i.e.DbD:
Raw data based on raw data) is used to extract suitable
features of the individual tracked objects. These fea-
tures are found by experimental analyses and/or phys-
ical modeling and described in more detail in sections
4 and 5. The output data are feature vectors for each
detected object in the observed area.

FIFO: Feature in feature out unit; this is our so calledFea-
ture fusion unit (FF), where features will be fused to
a resulting overall feature vector based on individual
objects. Corresponding objects are found by simple
object overlapping calculation for similar sensor types
and time stamping for different sensor spaces. The out-
put data of this fusion process are fused feature vectors
based on features (FbF) extracted by theLFE unit or
features extracted by theDIFO unit.

FIDeO: Feature in decision out unit; this functional unit
is a part of ourdecision fusion unit (DF), where, a
classifier, based on Support Vector Machines (SVM,
cp. section 6), is trained with previously recorded and
classified sequences. In the next step this SVM is used
as a classifier to derive classification decisions based
on previously extracted single source feature vectors
ore joint feature vectors (FbF) from the FIFO unit.
Outputs are decisions based on Features (DbF), and
a probability interval of this decision.

DeIDeO: Decision in decision out unit; this functional unit
is the second part of ourdecision fusion unit, where ex-
tracted decisions (Dx) will be fused from multiple sen-
sors from theLDE unit with fused data fromFIDeO,
based on statistical methods (i.e. Dempster-Shafer
methods [2]). Outputs are decisions, based on multiple
decisions.
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4 Visual Features Extraction

In this section the feature extraction task based on visual
features is explained. For our feature extractor we adopted
the ideas of Viola and Jones [15] to build a multi-class clas-
sificator and improved it usingRealBoost[11]. The feature
set depicted in figure 2 and additional gradient-based in-
formation is used in order to generate robust features and
calculate them in real-time on an embedded platform. The
boosting approach mainly is used to extract the most power-
ful features while during feature regression phase the over-
all interpretation of their values could be left to the fusion
system (cp. section 6).

Figure 2: SimpleHaar-like (a-g) andcenter-surround(h) used
in the implementation. Each feature is composed by two or more
”subrectangles” within light rectangles having positive and dark
rectangles negative weight.

4.1 Histogram Features

As simple Haar-features perform well in describing global
illumination changes and symmetries, they have problems
in describing oval shapes and do not use edge information.
Yet, these drawbacks can be improved by expanding the
feature set with local edge orientation features (EOHs) [8]
which store the gradient information in an image in a his-
togram (cp. figure 3a) depending on the orientation of each
edge (cp. figure 3b).

Shortly, in order to use EOHs in an image it has to be
preprocessed by an edge detector, e.g. Sobel. The strength
of the edge in(x, y) is denoted byG(x, y). Furthermore, a
threshold has to be calculated to ignore noise

G′(x, y) =
{
G(x, y) if G(x, y) ≥ T

0 otherwise.
(1)

Once we have received an edge its orientation can be calcu-
lated as

Φ(x, y) = arctan
(Gy(x, y)
Gx(x, y)

)
(2)

and the edges are added to the correct K bins1 in the his-
togram. The value of the k-th bin is denoted as

ψ(x, y) = G′(x, y) · (1 − d) (3)

Each entry into a bin is multiplied by a weight of(1 − d),
whered ∈ [0, 1] is the distance of the sample from the cen-
tral value of the bin as measured in units of the histogram
bin size. This interpolation has to be done due to bound-
ary effects which may happen if a descriptor or edge shifts
smoothly from being in one histogram bin to another or
from one orientation to another.

(a) (b)

Figure 3: Edge orientation features: (a) First all gradient mag-
nitudes and orientations in a sub-window are calculated and then
accumulated into orientation histograms into K orientation groups
between0 and 2π. (b) The typical histogram representation of
summed gradient magnitudes classified into eight different orien-
tation groups between0 and2π.

4.1.1 Orientation Histogram Features

Once the image has been preprocessed and all edges are
added to certain bins depending on their orientation, fea-
tures can be created which either describe the ratio between
two different orientations or the dominant orientation of
edges describing an object. The first histogram feature type
simply compares two certain bins in the histogram. Equa-
tion 4 shows the summation of edges in a sub-window R in
the image to their corresponding bin.

Ek(R) =
∑

(x,y)∈R

ψk(x, y) (4)

Note, that this calculation can be performed very fast with
four table lookups by using again integral images as de-
scribed [3]. The first set of features is then defined as:

Ak1,k2(R) =
Ek1(R)
Ek2(R)

, (5)

which represents the relation between two orientations in
the sub-window.

1In practice it has been shown that 4, 8 and 16 bins are sufficient in
most cases.
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The second type of orientation features compares one
histogram bin to the summed value of all remaining bins,
hence finding the dominant orientation. Equation 6 defines
the calculation of the second feature set.

Bk(R) =
Ek(R)∑
iEi(R)

(6)

Unlike to simple edge orientation features which only
describe single dominant orientations or the relation be-
tween two edges, it is possible to definefull histogram fea-
tures, where the whole edge information stored in an orien-
tation histogram can be analyzed. These features, though,
need some kind ofreference histogramin order to make
the comparison of one and the same sub-window calcula-
tion in two different images possible. This histogram, for
example, can contain the average histogram values of the
positive trainingset or can be a unit vector, if the histograms
are considered as vectors, respectively. If one feature has
to be evaluated on different samples, all values are calcu-
lated with respect to the reference histogram. Due to this,
the values in the histogram have to be mapped to a single
scalar. This can be done by calculating the Euclid distance,
again considering the histograms to be vectors, of the cur-
rent histogram in a sub-window and the reference histogram
as seen in equation 7.

F (R) = |A−B| =
√∑

k

(Ak −Bk)2, (7)

whereF (R) is the scalar gained from the comparison of the
current histogram A with the reference histogram B at bin
k.

Finally, we use orientation histograms to describe sym-
metries in a sub-window of an image and also to describe
areas where symmetry is missing [12]. The calculation of
this symmetry-feature is given in equation 8.

Symm(R1, R2) =
∑

k∈K |Ek(R1) − E#bins−1−k(R2)|
sizeof(R1)

(8)

4.2 Multi-class Feature extraction

Our multi-class feature extractor is build on a tree structure
consisting of several binary extractors. While one-vs-all
multi-class classifiers sometimes might yield slightly better
results we chose the tree scheme to improve computational
efficiency.

The single feature extractor of the tree are each trained
with positive and negative training examples, where, e.g, in
the first stage motor bikes and cars as positive examples are
trained against small and large trucks as negative examples.
A detailed structure is given in figure 4.

Figure 4:Visual feature extraction tree.

5 Acoustic Feature Extraction

The acoustic feature extractor uses cepstral analysis [10]
for feature generation. In the acoustic part of the database
noise-induced error handling and modelling of non station-
ary signal behavior were major issues. Acoustic signatures
of moving vehicles mostly behaved non stationary due to
variations in engine RPM, gear changes or Doppler effects.
Additional wind or environmental noise degraded signifi-
cantly signal quality. Hence, features from spectral analy-
sis techniques as power spectral estimates [9] or harmonic
line association [5], which achieved good classification per-
formance in military approaches, performed poor in our
recognition scenario as they assume stationary signal be-
havior within the analyzed time interval. Cepstral analysis
offers some advantages in comparison to these techniques,
and it also outperformed other spectral envelope estimation
methods like filter bank analysis (Haar transform, channel
vocoder) and linear predictive coding (LPC).

5.1 Cepstral Features

In the acoustic feature extractor, cepstral analysis is used for
extraction of vehicle characteristic features. Cepstral coeffi-
cients (CC) have been popular feature candidates in speech
recognition and audio genre classification systems, as they
provide very good information packing properties. The cep-
strumc(τ) of a signalx(t) is defined as the inverse Fourier
transform of the logarithm of its spectrum:

c(τ) = F−1 {log |F {x(t)} |} , (9)

whereF denotes the Fourier transform. We use low order
CCs to capture the slowly varying properties of the spec-
trum, i.e. the spectral envelope. The whole signal energy,
for example, is contained only in the first coefficient (c0
term), which yields good class discrimination, as trucks
usually produce more noise than cars.
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CCs are computed either directly using equation 9, or
estimated efficiently via linear predictive analysis by con-
verting LPC coefficients into LP based cepstral coefficients.
The LPC parametersai in an autoregressive (AR) model are
directly obtained as system of equations from the autocor-
relation functionr(k), by solving the so called Yule-Walker
equations:

p∑
i=1

air (|k − i|) = r(k), (10)

where p denotes the selected model order. A recursive
method for solving these equations is the Levinson-Durbin
algorithm [10]. The CCs are then calculated by the follow-
ing recursion:

cm =

{
ln (r(0)) for m = 0
am +

∑m−1
k=1

(
k
m

)
ckam−k for m ≥ 1

(11)

wherea0 = 1 andak = 0 for k > p andp denotes the se-
lected model order. This method avoids any signal transfor-
mation and thus, the computational effort is highly reduced
without significant loss in classification performance. LP
based CCs as feature vector for the classifier afford efficient
use in real time applications.

5.2 Acoustic Processing

The motor noise of vehicles is mainly limited to the fre-
quency range below500Hz. In order to suppress tire noise,
audio data is lowpass filtered and downsampled to1 kHz.
As the vehicles travel quite slowly in our scenario, analysis
frames of 2 seconds are used. The input signals are blocked
into smaller frames ofN = 256 samples with50% overlap.
A hamming window is used to reduce leakage effect and
the AR modelling order is set top = 20 coefficients. For
each block, only the firstp + 1 = 21 autocorrelation coef-
ficients are calculated and the AR parameter set is achieved
by the Levinson-Durbin recursion. The first16 cepstral co-
efficients proved best classification results and hence they
are converted from the LP parameter set with the above de-
scribed equations. The mean values over all frames yield
the final feature vector for SVM based classification.

6 Decision Modeling

The decision modeling process is provided as a generic soft-
ware framework which allows online data fusion on a dis-
tributed embedded system with limited memory resources.
In our multi-level data fusion framework Support Vector
Machines (SVM), proposed by Vapnik [14] are used as clas-
sification method for decision modeling. For large sets of
training data, common SVM learning strategies are not fea-
sible, especially on embedded platforms because of their re-
stricted time and memory resources. Therefore, a modified

version of the original SVM, the so called Least Squares
Support Vector Machine (LS-SVM) [13] is used for deci-
sion modeling in our framework. The main characteristic
of LS-SVMs is the lower computational complexity com-
pared with original SVMs, without any quality loss in the
classification results.

The extraction of support vectors from a given training
dataset is comparable with the problem formulation of find-
ing the most significant vectors in a given data set. The
optimal solution for solving this task should combine the
following features. It should (i) be fast, (ii) lead to a sparse
solution (i.e. low number of support vectors) and (iii) pro-
duce good classification results.

In [7] we propose a modified nearest neighbor technique
for an intelligent preselection of learning data in order to
reduce the training set and therefore reduce the number of
support vectors which are then used by the LS-SVM clas-
sifier. The remaining datasets are used as support vectors
for a LS-SVM classifier to find the decision boundary be-
tween two classes in the learning process. Using our ap-
proach leads to a sparse LS-SVM classifier with good clas-
sification results (about 2% higher error rate compared to
standard SVM) and lower computational costs(about 70%
faster than Standard SVM) and lower memory costs(about
55% less data for storage compared to LS-SVM).

7 Experimental Results

In this section we present the results of our vehicle classi-
fication case study. We have implemented a simple multi-
class classifier by using the One-against-All technique. The
database consists of 3 different classes: (i) large trucks, (ii)
small trucks and (iii) cars. We generate a database with
about 250 samples for each class – about 200 are used as
training samples and about 50 are used as evaluation sam-
ples. The samples for training and evaluation are chosen
randomly from the database. Each sample is characterized
by 4 visual based features (histogram and orientation fea-
tures) and 16 acoustic based features. For the feature extrac-
tion 2 different types of sensors were used: (i) CMOS visual
sensors and (ii) acoustic sensors. For classification we use
our LS-SVM with support vector preselection for these ex-
periment. For all experiments we used radial basis function
(RBF) as the kernel function. The results presented in figure
5 are average values from 100 runs with random selection
of training datasets and random selection of the evaluation
set (Note: Both sets are disjunctive).

The box plots (lines at the lower, median and upper quar-
tile values; whiskers show the extent of the rest of the data)
shown in figure 5 indicate that fusing data from various sen-
sors help to improve the robustness and confidence as well
as to reduce ambiguity and uncertainty of the processed ve-
hicle classification. In case we perform our vehicle clas-
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(a) visual features
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(b) acoustic features
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(c) fused feature vector

Figure 5:Experimental results: vehicle classification with SVM
based on (a), (b) and (c)

sification based on visual features only (with 100% of the
learning database) the mean error rate is about12.9%. In
comparison the same classification based on only acoustic
features lead to6.8% error rate. Fusing data from both in-
formation sources decrease the error rate to6.6%, what is
better than the best single source result. The figure also in-
dicates that using smaller sets of training data increases the
mean error rate. Using 30% of training samples lead to (i)
26.4% error rate in case based on visual features only, (ii)
22.9% error rate in case based on acoustic features only and
(iii) 17.4% error rate in case based on fused features. This
fact indicates that fusing data on feature level allows to de-
crease the number of learning samples in order to gain same
classification results than with single source data.

8 Discussion

Vehicle identification is one of the most important tasks in
traffic surveillance systems. Our approach is to use differ-
ent type of sensors in order to fuse the extracted features
from the individual sensors. We show that our approach is
advantageous in comparison to single source vehicle classi-
fication. The results of our experiment demonstrate that the
advantage is twofold. Firstly, the classification error rate
decreases by using our modified LS-SVM approach. Sec-
ondly, the necessary number of training samples can be re-
duced to obtain quite similar classification results. We use
an algorithm for intelligent training data preselection in or-
der to identify a subset of training data which describes the

whole dataset best, leading to a reduced number of vectors
which have to be stored. These approach makes learning
of large training datasets possible even in embedded system
with restricted memory and time resources.

We plan to extend our database by a bus class. The de-
cision fusion process based on Demster-Shafer theory and
further acoustic feature extraction algorithm will be imple-
mented.
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