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Abstract 
 

In this article we introduce a software framework for 
embedded online data fusion on different levels of data 
abstraction. We present our data oriented fusion model 
and introduce the main functional units. The paper is 
focused to the decision modeling process. In our 
approach we use Support Vector Machines (SVM) as well 
as Least Squares SVM (LS-SVM) for decision modeling. 
Due to the computation complexity and the necessary 
memory requirements we prefer LS-SVM for the 
classification tasks. The main disadvantage of LS-SVM is 
the loss of sparseness by using equality constraints 
instead of inequality constraints in the cost function. We 
introduce a novel method for intelligent data preselection 
(PTD LS-SVM) to compensate for this short coming. 
Experimental results demonstrate the feasibility of this 
approach. 
 
1. Introduction 
 

Currently there is a strong trend towards integration of 
sensor, computing and communication technology into 
everyday life. The ultimate goal is to provide as much 
support as possible while concealing the computing 
devices from the users. Our I-SENSE project [1] 
demonstrates the potential of combining scientific 
research areas, multi-sensor data fusion and pervasive 
embedded computing. The main idea is to provide a 
generic software framework which allows online data 
fusion on a distributed embedded system. This software 
fusion framework is implemented on an embedded device 
and was therefore limited in memory resources. In our 
multi-level data fusion framework Support Vector 
Machines (SVM), proposed by Vapnik [2,3] are used as 
classification method for decision modeling. Necessary 
time and memory usage are the main bottlenecks for 
training kernel methods, such as SVM. For N>3000, 
where N is the number of training data sets, common 
SVM learning strategies are not feasible, especially on 

embedded platforms because of their memory usage and 
the time required. Therefore, a modified version of the 
original SVM, the so called Least Squares Support Vector 
Machine (LS-SVM) [4,5] is used for decision modeling in 
our framework. The main characteristic of LS-SVMs is 
the lower computational complexity compared with 
original SVMs, without any quality loss in the 
classification results. LS-SVM and the original SVM are 
based on the same principals. The main difference is, that 
LS-SVM formulation uses equality constraints instead of 
inequality constraints for the cost function, which have to 
be minimized. LS-SVM has the attractive feature, that 
training requires solving a set of linear equations, instead 
of a quadratic programming (QP) problem, which is 
required by standard SVM. Solving these linear equations 
is less complex than solving QP problem. 

An attractive feature of SVM, namely the sparseness is 
lost by the LS-SVM formulation. In standard SVM many 
Lagrange multipliers are zero, leading to a smaller subset 
of learning data in order to build the decision boundary 
between the two classes. In LS-SVM almost all 
multipliers are non-zero, indicating that all training data 
sets will be used as support vectors. This extraction of 
support vectors from a given training dataset is 
comparable with the problem formulation of finding the 
most significant vectors in a given data set. The optimal 
solution for solving this task should combine the 
following features. It should (i) be fast, (ii) lead to a 
sparse solution (i.e. low number of support vectors) and 
(iii) produce good classification results. 

We propose a method for an intelligent preselection of 
learning data in order to reduce the training set and 
therefore reduce the number of support vectors which are 
then used by the LS-SVM classifier. Therefore a modified 
nearest neighbour rule is used to select an optimized set 
of training data which is provided to the LS-SVM. We 
show, that using this approach leads to the following 
advantages: (i) a reduced number of support vectors, 
which have to be stored for the classification task, (ii) the 
extraction of support vectors from a given dataset is 
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easier when the number of possible vectors is reduced, 
and (iii) the computation time, necessary to evaluate a 
new vector, is reduced. 

The remainder of the paper is organized as follows: 
Section 2 discusses our I-SENSE project as a framework 
for multi-sensor data fusion. Section 2.1 deal with the 
software fusion framework and introduce the main 
functional units. In section 3 we present the decision 
modeling process where section 3.1 gives an overview of 
common least squares SVM and section 3.2 presents our 
scientific contribution, namely the intelligent preselection 
of training data in order to compensate the main 
disadvantage of standard LS-SVM - the loss of 
sparseness. In section 4 we present some experimental 
results of our approach, and section 5 concludes the paper 
with a short discussion of our approach. 
 
2. The I-SENSE fusion framework 
 

I-SENSE is used as an acronym for intelligent sensing 
and our project is targeted at various classification 
applications. Case studies in vehicle classification as well 
as in waste separation and food classification are used to 
demonstrate the feasibility of the proposed fusion 
framework. As the name multi-senor data fusion implies, 
it is a technique by which data from several sensors are 
combined through a data processor to provide 
comprehensive and accurate information. Although the 
provision of a single data stream from multiple inputs is 
advantageous, the powerful potential of this technology 
stems from its ability to track changing conditions and 
anticipate impacts more consistently than can traditionally 
be done with a single data source. Thus, the aim of our 
multi-sensor fusion framework is to create a synergistic 
process in which the consolidation of individual data 
creates a combined resource with a productive value 
greater than the sum of its parts. 

To achieve this aim, our approach is to perform multi-
level data fusion by combining data from different 
sensors at different levels of abstraction. The I-SENSE 
fusion-framework supports three basic levels of data 
fusion. These fusion levels are differentiated according to 
the amount of information they provide. The most basic 
level is called raw-data fusion. At this level, only raw, 
uncorrelated data is provided to the user. In comparison, 
level two data fusion provides a higher level of inference 
and delivers additional interpretive meaning suggested 
from the raw data and individual features are extracted 
from observed objects based on the information of one 
sensor. These features from multiple data sources are 
fused on feature level in order to obtain a combined 
feature vector of an observed object. Therefore this level 
is called feature-level fusion. Level three data fusion is 
designed to make assessments and provide 
recommendations to the user and is called decision fusion. 

Thus, each jump between data fusion levels represents a 
corresponding leap in technological complexity to 
produce increasingly valuable informational detail. In our 
approach data fusion is performed on the individual 
sensor nodes using data from the local sensors as well as 
abstracted sensor data from the adjacent sensor nodes. 

 
2.1. Fusion Model 
 

Figure 1 presents the detailed, data oriented software 
fusion model in our I-SENSE approach. This model 
consists of three basic levels and functions. Namely, the 
Sensor Control & Management Unit, the Sensing Unit 
and the Fusion Layer.  

 
Figure 1: Detailed data oriented Fusion Model characterized 
by input- and output data  
 
The figure presents an example of two physical sensors 
(i.e., audio sensor and visual sensor). The Sensor Control 
& Management Unit is responsible for the sensor 
identification as well as to provide the interface to other 
sensing nodes, human observers and actuators.  

Furthermore, this unit controls the overall fusion 
process and provides access to a database where resource 
requirements for the different fusion computations are 
stored. 

Three essential functional blocks are identified on this 
layer to allow an online refinement of the overall fusion 
process:  

(i) DeIDeORef: Decision in decision out refinement; 
This functional unit allows to refine the decision 
extraction and decision fusion algorithms dynamically 
during the fusion process, based on the generated output 
decisions of FIDeO and DeIDeO. Based on statistical 
output information the process of decision modeling can 
be modified and refined during runtime. 

(ii) DeIFORef: Decision in feature out refinement; 
This functional unit allows refining the data allocation 
and raw-data based fusion algorithms dynamically during 



the fusion process based on the generated output features 
of FIDeO and DeIDeO.  

(iii) FIDORef: Feature in data out refinement; This 
functional unit deals with refining the feature extraction 
and feature fusion algorithms dynamically during the 
fusion process based on the generated output features of 
FIFO and DIFO.  

The Sensing Unit represents the intelligent sensor 
which consists of the physical sensor itself and a suitable 
data pre-processor (e.g. resolution based down-sampling, 
automatic gain control, …). A Local feature extraction 
Unit (LFE) is used to extract a single-source feature 
vector based on color information, structural information, 
spectral information or acoustic information of an 
observed object. This means, each sensor provides an 
estimate of the position of an object with extracted 
features, based only on its own single source data. These 
individual feature vectors are input to a data fusion 
process, namely the Feature in feature out (FIFO) 
process, in order to achieve a joint feature vector estimate 
based on multiple sensors. A Local decision extraction 
Unit (LDE) is used to extract local decision from 
individual objectives features (e.g. classification of 
objectives identity). 

The heart of the framework is the Fusion Layer 
including the following five functional units: 

(i) DIDO: Data in data out unit; This functional unit is 
also called Raw-Data Fusion unit (RDF), and raw 
uncorrelated data will be fused from different and/or 
similar numerous sensors there. This raw data streams are 
labelled with RDx. At raw-data based fusion each sensor 
performs a single-source estimate in the sensor state 
space. These estimates are then combined to an aggregate 
estimate. In our case study for similar sensor types the 
data will be combined to single data stream based on 
numerous data streams from different sensors (e.g. visual 
sensor & infrared spectral imager, …) by using wavelet 
based image fusion techniques.  

(ii) DIFO:  Data in feature out unit; this is our so 
called Feature extraction II unit (FEII), where raw data 
from the individual sensors and/or fused raw-data (i.e. 
DbD: Raw data based on raw data) is used to extract 
suitable features of the individual tracked objects. These 
features are found by experimental analyses and/or 
physical modeling. The output data are feature vectors for 
each detected object in the observed area. 

(iii) FIFO: Feature in feature out unit; this is our so 
called Feature fusion unit (FF), where features will be 
fused to a resulting overall feature vector for each 
individual detected object. Therefore it is necessary to 
find the corresponding objects in the individual sensor 
spaces. In our framework we have implemented methods 
for similar sensor types, where simple object overlapping 
calculation is performed in order to find the 
corresponding elements. Furthermore, a time stamping 

mechanism was developed to find corresponding 
objectives in different sensor spaces. The output data of 
this fusion process are feature vectors based on features 
(FbF) extracted by the LFE unit or features extracted by 
the DIFO unit. 

(iv) FIDeO: Feature in decision out unit; this 
functional unit is a part of our decision fusion unit (DF), 
where, a classifier, based on SVM, is trained with 
previously recorded and classified sequences. In the next 
step this SVM is used as a classifier to derive 
classification decisions based on previously extracted 
single source feature vectors ore joint feature vectors 
(FbF) from the FIFO unit. Outputs are decisions based 
on Features (DbF), and a probability interval of this 
decision.  

(v) DeIDeO: Decision in decision out unit; this 
functional unit is the second part of our decision fusion 
unit, where extracted decisions (Dx) will be fused from 
multiple sensors from the LDE unit with fused data from 
FIDeO, based on statistical methods (i.e. Dempster-
Shafer methods [6,7]). Outputs are decisions, based on 
multiple decisions.  

 
3. Decision modeling 

 
In our fusion framework decision modeling is driven 

by Support Vector Machines (SVM). LS-SVM is a faster 
learning strategy than standard SVM. 
 
3.1. Least squares support vector machines 
 

The least squares support vector machine classifier 
[4,8] is a modification of standard SVM. A training data 
set is given by ( ){ }N

iii yx 1, =
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ix ℜ∈ and 
class labels { }1,1−∈iy . The idea of SVM classifier is to 
find the linear separating hypersurface ( ) 0=+bxTϕω  in 
the feature space F that separates the mapped data 
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Instead of building one hyperplane as in standard 
SVM (cp. figure 2a), LS-SVM builds two parallel 
hyperplanes; one for the positive class and one for the 
negative class as is indicated in figure 2b. The distance 
between these hyperplanes ( ) 1+=+bxTϕω  and 

( ) 1−=+ bxTϕω  in the feature space is called the 



separating margin. Finding the separating hyperplane 
deals with the problem that this margin has to be 
maximized. 

 
Figure 2: Classification behavior in Feature Space of (a) 
Standard SVM with the margin for the separating hyperplane 
and the misclassification measure ζi and (b) LS-SVM with two 
parallel hyperplanes and the error ei attached to each point 
 

Using Vapnik’s formalism [2,3] from standard SVM 
leads to a constraint quadratic programming (QP) 
problem. In order to avoid this optimization problem 
which is sometimes difficult to solve, LS-SVM uses 
equality constraints instead of inequality constraints to 
find the decision hyperplanes. The difference is 
compensated by adding an extra term to the cost function 
that penalizes the deviations from the two hyperplanes, 
for each point of the learning data. The deviations are 
given by the scalar error { }Niei ,...,1 ∈∀ . The training 
problem is given by: 
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where γ plays the role of a regularization parameter 
between the two quadratic terms in the primal problem 
formulation (2), and characterizes the relative importance 
of the terms. The first term aims to maximize the distance 
between the two hyperplanes, while the second term aims 
to minimize the slack variable ei. This addition of the two 
quadratic terms is also responsible for the name least 
squares SVM. 

Since the dimension of the feature space is high, 
possibly infinite, this problem is difficult, if not 
impossible, to solve. Furthermore, the mapping of ( ).ϕ , 
corresponding to a kernel, is not always known. For 
solving an optimization problem the Lagrangian is 
constructed. The optimality conditions of this constrained 
optimization problem are given by the saddle point of this 
Lagrangian also known as the Karush-Kuhn-Tucker 
conditions [9]. The Lagrangian is given by: 
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where α  is the vector of the Lagrange multipliers. Using 
the Karush-Kuhn-Tucker conditions substituting the 
result of the linear equations into (3); ω  and b can be 
eliminated and the Dual optimization problem is given 
by: 
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This formulation has three important advantages. First 
we see that the dimensionality of the optimization 
problem is equal to the number of data points N, 
indicating that the training process is neither dependent 
on the dimensionality of the feature space, nor the 
dimension of the input space. Second, the kernel is an 
inner product in feature space and opens therefore a lot of 
opportunities. By applying the kernel trick one can show 
that for different kernels the general optimization problem 
remains the same. Third, these optimization problems are 
convex. The Hessian matrix is a full rank positive definite 
matrix, which guarantees a unique solution. The solution 
of the dual optimization problem can be given as a linear 
system: 
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where the matrix H obeys the Mercer theorem [9], that 
deals with the conditions a function must have to be a 
kernel function, and y denotes the column vector formed 
by the labels of the training points. After the optimal 
parameters are found the classifier is given in the form: 
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Notice, in LS-SVM all Lagrangian multipliers are non-
zero, because all training data sets are used as support 
vectors for identifying the class separation surface. 
 
3.2 Training data preselection for LS-SVM 
 

In this section we describe a method for selecting 
vectors out of the training dataset which are likely to be 
support vectors in a LS-SVM and therefore describe the 
individual classes best. This is done by an intelligent data 
preselection algorithm based on a modified nearest 
neighbor technique, leading to a smaller set of samples 
which have to be stored for the classification task - 
resulting in quite similar classification accuracies. 



After this preselection, the remaining datasets are used 
as support vectors for a LS-SVM classifier to find the 
decision boundary between two classes in the learning 
process. Using our approach leads to a sparse LS-SVM 
classifier with good classification results and lower 
computational and memory costs than standard SVM. In 
embedded systems the memory resources are quite 
restricted and therefore the proposed approach is 
advantageous in comparison to standard SVM. The 
training data preselection algorithm consists of three main 
stages as described in the following: 

A given training dataset T is given by the training 
samples s. The training samples can be divided into two 
subsets A∈{a0,…,an} and B∈{b0,…,bn} characterizing the 
two involved classes. 
Stage 1: 

1. For each sample ai out of A find the nearest 
neighbor sample bj from B and vice versa by 
computing the Euclidean distance d(ai,bj) ∀ai,bj 
until the distance is a minimum. 

2. Using the result from the first step, sort the 
distance d(ai,bj) in ascending order. 

3. The first distance sample is stored in an initially 
empty set Ωnn. 

4. The next distance samples are iteratively added 
to Ωnn and classified with a simple nearest 
neighbor rule in the way: 
If min(d(s,ai))<min(d(s,bj)) ∀ai,bj ∈ Ωnn and ∀s∈T 

s∈A 
else  

s∈B 
If the classification is wrong add the distance 
sample to Ωnn else quit. 

Stage 2: The reduced nearest neighbor rule [10] is used to 
obtain the reduced subset Ωrnn from Ωnn: 

1. Initially copy Ωnn to Ωrnn 
2. Remove the first/next pattern (ai,bj) of Ωrnn 
3. Use nearest neighbor rule to check if Ωrnn 

classify all pattern correct in Ωnn 
a. If all patterns classified correct go to 4) 
b. Else return the removed pattern to Ωrnn 

and go to 4) 
4. If every pattern has removed once go to 5) else 

go to 2) and remove the next pattern 
5. The remaining subset is given by: Π=T-Ωrnn 

Stage 3: At the last stage the final preselection subset Tps 
is computed to obtain the samples Π which are closest to 
Ωrnn. 

1. Take the first/next pattern (ai,bj)∈ Ωrnn select k-
nearest samples (am,bn)∈ Π in a way that 

a. min (d(ai,am)) 
b. min (d(bj,bn)) 
c. min (d(ai,bn)) 
d. min (d(bj,am)) 

are given. 
2. copy k samples to Tps and go to 1) until all 

samples from Ωrnn were considered. 
The value k can be set by the user, but our experiments 

have shown that 3% from the number of samples in T is a 
good initial value. The resulting subset of the training 
data, namely Tps, is provided to the LS-SVM classifier.  

Figure 3 shows an example random Gaussian 
distribution and the reduced subset Ωrnn after Stage 2 of 
the proposed algorithm. Figure 4 shows the overall results 
of the training data preselection algorithm with different 
values of k.  

 
Figure 3: (a) Random Gaussian distribution, (b) reduced 
remaining subset Ωrnn 
 

 
Figure 4: Results of the training data preselection algorithm 
for the distribution shown in figure 3a with variable k. (a) k=1, 
(b) k=2 and (c) k=3 
 
4. Experimental results 
 

In this section we present the results of three different 
experiments. Firstly we generate two random Gaussian 
distributions, each for an individual class. The 
distributions show a tendency to a high level of overlap as 
indicated in figure 5. Secondly we use a “real-world 
experiment” from our waste separation case study. We 
have implemented a simple multiclass classifier by using 
One-against-All technique. 



 
Figure 5: Random Gaussian distribution as experimental setup 

 
The database consists of 6 different classes: (i) blue 

glass, (ii) green glass, (iii) brown glass, (iv) white glass, 
(v) ceramics, stones, porcelains (CSP) and (vi) plastics. In 
cooperation with our industrial partner we generate a 
database with about 200 samples for each class. Each 
sample is characterized by 5 histogram based color 
features, 3 structural features and 5 IR-histogram based 
features. For the feature extraction 2 different types of 
sensors were used: (i) CMOS visual sensors and (ii) IR-
spectral imaging sensors. 

Thirdly, we use again two random Gaussian 
distribution with increasing amount of data points for 
each class. We evaluate three different implementations 
in order to obtain a training time result. 

For the first and the second experiment we use 
MatlabTM implementations of 4 different algorithms: (i) 
standard SVM, (ii) Least squares SVM, (iii) LS-SVM 
with training data preselection (PTD-SVM) and (iv) a 
sparse LS-SVM, called LS2-SVM [11]. 

The third experiment was performed using C++ 
implementations and 3 algorithms were compared in the 
required time for training by an increasing large number 
of data points: (i) standard SVM, (ii) LS-SVM and (iii) 
LS-SVM with support vector preselection. 

For all experiments we used radial basis function 
(RBF) as the kernel function. The results presented in the 
following tables (cp. Table 1 and Table 2) are average 
values from 20 runs with random selection of training 
datasets. 
 

Table 1: Experiment 1 results; random Gaussian distribution 
Algorithm Training 

time (s) 
Wrong 

classified 
(%) 

Nb of 
SV 

SV (%) 

SVM 17.81±1.25 12.4±0.5 50.3±3.6 62.9±4.5 
PTD LS-SVM 10.04±1.11 15.3±0.8 36.6±4.4 45.8±5.5 
LS-SVM 3.85±0.47 14.2±0.5 80.0±0.0 100±0.0 
LS²-SVM 4.13±0.64 12.8±0.6 52.8±4.2 66.0±5.3 

 
Table 1 indicates that the standard SVM has the best 

training accuracy. Our proposed approach differs only 
about 3.1% from the standard SVM, while being 45% 
faster in training than the standard approach. The results 
presented in this table also show that the training 

accuracy is quite similar for all training approaches. The 
fastest training strategy is the LS-SVM approach, 
followed by the LS²-SVM approach. Our proposed 
training data preselection LS-SVM approach is about 3 
times slower than the fastest approach. The last column of 
the previous table shows us that our algorithm has 
detected a smaller amount of Support Vectors (SV) even 
in comparison to the standard SVM approach. In 
comparison to the LS-SVM approach our algorithm 
needed 45% of Support Vectors for a quite similar 
classification result. 

 
Table 2: Experiment 2 results; waste separation 

Algorithm Training 
time (s) 

Wrong 
classified 

(%) 

SV (%) 

SVM 328.3±4.4 2.8±0.2 40.8±4.5 
PTD LS-SVM 158.4±3.2 3.1±0.3 42.3±3.2 
LS-SVM 37.8±2.5 2.2±0.2 100±0.0 
LS²-SVM 76.1±2.9 2.5±0.4 66.8±3.3 

 
Table 2 confirms the tendencies from table 1. Our 

approach is about 50% faster than the Standard SVM 
approach with quite similar classification results. All 
presented approaches for training a Support Vector 
Machines seem to be high quality solutions for 
classification problems. The fastest training strategy is 
LS-SVM, followed by LS²-SVM as the table indicates. 
Our proposed approach is about 4 times slower than the 
fastest but a lower amount of Support Vectors have to be 
considered. Both tables show that the LS-SVM approach 
consider all training datasets as support vectors, which is 
the main disadvantage of this strategy. 

Figure 6: Comparison of three different learning strategies in 
required training time vs. number of training samples; SVM-QP 
approach (standard SVM), LS-SVM approach (least squares 
SVM) and PTD-SVM approach (preselection of training data 
LS-SVM) 

 
Figure 6 shows a comparison of three training 

strategies for an increasing number of training samples. 



The required training time is an averaged value of (i) 10 
experiments for less than 5000 training samples and (ii) 3 
experiments for more than 5000 training samples. The 
standard SVM approach is the slowest and is therefore 
not advisable for large training sets. The fastest approach 
is the LS-SVM approach, followed by our proposed 
approach. Both algorithms might be used for large 
training data sets. 

 
5. Discussion 

 
In embedded systems, learning of large training 

datasets with SVM is difficulty, because of their restricted 
memory resources. Our experiments show that training 
for over 3000 training samples with a standard SVM is 
not feasible because of the memory requirements.  

LS-SVM helps to reduce the memory requirements 
and is much faster than standard SVM, due to the usage 
of equality constraints instead of inequality constraints. 
Therefore, training requires the solving of a set linear 
equations, instead of solving the quadratic programming 
(QP) problem. The main disadvantage of LS-SVM is the 
loss of sparseness, indicating that all training samples 
have to be stored for the classification task - leading to 
high memory requirements and slower classification.  

Therefore, we described an algorithm for an intelligent 
training data preselection in order to identify a subset of 
training data which describes the whole dataset best. This 
approach reduces the number of vectors which have to be 
stored for later classification. The experimental results 
show that our approach leads to a sparse SVM with 
accurate classification results and faster training time 
than the standard SVM.  

Future work will include the implementation of the 
proposed approach to a commercial product. 
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