
Enhanced Least Squares Support Vector Machines for Decision Modeling in a
Multi-Sensor Fusion Framework

Abstract

In this article we introduce a software framework for
embedded online data fusion on different levels of data
abstraction. We present our data oriented fusion model
and introduce the main functional units. The paper is
focused to the decision modeling process. In our
approach we use Support Vector Machines (SVM) as well
as Least Squares SVM (LS-SVM) for decision modeling.
Due to the computation complexity and the necessary
memory requirements we prefer LS-SVM for the
classification tasks. The main disadvantage of LS-SVM is
the loss of sparseness by using equality constraints
instead of inequality constraints in the cost function. We
introduce a novel method for intelligent data preselection
(PTD LS-SVM) to compensate for this short coming.
Experimental results demonstrate the feasibility of this
approach.

1. Introduction

Currently there is a strong trend towards integration of
sensor, computing and communication technology into
everyday life. The ultimate goal is to provide as much
support as possible while concealing the computing
devices from the users. Our I-SENSE project [1]
demonstrates the potential of combining scientific
research areas, multi-sensor data fusion and pervasive
embedded computing. The main idea is to provide a
generic software framework which allows online data
fusion on a distributed embedded system. This software
fusion framework is implemented on an embedded device
and was therefore limited in memory resources. In our
multi-level data fusion framework Support Vector
Machines (SVM), proposed by Vapnik [2,3] are used as
classification method for decision modeling. Necessary
time and memory usage are the main bottlenecks for
training kernel methods, such as SVM. For N>3000,
where N is the number of training data sets, common
SVM learning strategies are not feasible, especially on

embedded platforms because of their memory usage and
the time required. Therefore, a modified version of the
original SVM, the so called Least Squares Support Vector
Machine (LS-SVM) [4,5] is used for decision modeling in
our framework. The main characteristic of LS-SVMs is
the lower computational complexity compared with
original SVMs, without any quality loss in the
classification results. LS-SVM and the original SVM are
based on the same principals. The main difference is, that
LS-SVM formulation uses equality constraints instead of
inequality constraints for the cost function, which have to
be minimized. LS-SVM has the attractive feature, that
training requires solving a set of linear equations, instead
of a quadratic programming (QP) problem, which is
required by standard SVM. Solving these linear equations
is less complex than solving QP problem.

An attractive feature of SVM, namely the sparseness is
lost by the LS-SVM formulation. In standard SVM many
Lagrange multipliers are zero, leading to a smaller subset
of learning data in order to build the decision boundary
between the two classes. In LS-SVM almost all
multipliers are non-zero, indicating that all training data
sets will be used as support vectors. This extraction of
support vectors from a given training dataset is
comparable with the problem formulation of finding the
most significant vectors in a given data set. The optimal
solution for solving this task should combine the
following features. It should (i) be fast, (ii) lead to a
sparse solution (i.e. low number of support vectors) and
(iii) produce good classification results.

We propose a method for an intelligent preselection of
learning data in order to reduce the training set and
therefore reduce the number of support vectors which are
then used by the LS-SVM classifier. Therefore a modified
nearest neighbour rule is used to select an optimized set
of training data which is provided to the LS-SVM. We
show, that using this approach leads to the following
advantages: (i) a reduced number of support vectors,
which have to be stored for the classification task, (ii) the
extraction of support vectors from a given dataset is

Allan Tengg
Institute for Technical

Informatics
Graz University of Technology

Graz, AUSTRIA
tengg@iti.tugraz.at

Bernhard Rinner
Institute of Networked
and Embedded Systems

Klagenfurt University
Klagenfurt, AUSTRIA

bernhard.rinner@uni-klu.ac.at

Andreas Klausner
Institute for Technical

Informatics
Graz University of Technology

Graz, AUSTRIA
klausner@iti.tugraz.at

easier when the number of possible vectors is reduced,
and (iii) the computation time, necessary to evaluate a
new vector, is reduced.

The remainder of the paper is organized as follows:
Section 2 discusses our I-SENSE project as a framework
for multi-sensor data fusion. Section 2.1 deal with the
software fusion framework and introduce the main
functional units. In section 3 we present the decision
modeling process where section 3.1 gives an overview of
common least squares SVM and section 3.2 presents our
scientific contribution, namely the intelligent preselection
of training data in order to compensate the main
disadvantage of standard LS-SVM - the loss of
sparseness. In section 4 we present some experimental
results of our approach, and section 5 concludes the paper
with a short discussion of our approach.

2. The I-SENSE fusion framework

I-SENSE is used as an acronym for intelligent sensing
and our project is targeted at various classification
applications. Case studies in vehicle classification as well
as in waste separation and food classification are used to
demonstrate the feasibility of the proposed fusion
framework. As the name multi-senor data fusion implies,
it is a technique by which data from several sensors are
combined through a data processor to provide
comprehensive and accurate information. Although the
provision of a single data stream from multiple inputs is
advantageous, the powerful potential of this technology
stems from its ability to track changing conditions and
anticipate impacts more consistently than can traditionally
be done with a single data source. Thus, the aim of our
multi-sensor fusion framework is to create a synergistic
process in which the consolidation of individual data
creates a combined resource with a productive value
greater than the sum of its parts.

To achieve this aim, our approach is to perform multi-
level data fusion by combining data from different
sensors at different levels of abstraction. The I-SENSE
fusion-framework supports three basic levels of data
fusion. These fusion levels are differentiated according to
the amount of information they provide. The most basic
level is called raw-data fusion. At this level, only raw,
uncorrelated data is provided to the user. In comparison,
level two data fusion provides a higher level of inference
and delivers additional interpretive meaning suggested
from the raw data and individual features are extracted
from observed objects based on the information of one
sensor. These features from multiple data sources are
fused on feature level in order to obtain a combined
feature vector of an observed object. Therefore this level
is called feature-level fusion. Level three data fusion is
designed to make assessments and provide
recommendations to the user and is called decision fusion.

Thus, each jump between data fusion levels represents a
corresponding leap in technological complexity to
produce increasingly valuable informational detail. In our
approach data fusion is performed on the individual
sensor nodes using data from the local sensors as well as
abstracted sensor data from the adjacent sensor nodes.

2.1. Fusion Model

Figure 1 presents the detailed, data oriented software
fusion model in our I-SENSE approach. This model
consists of three basic levels and functions. Namely, the
Sensor Control & Management Unit, the Sensing Unit
and the Fusion Layer.

Figure 1: Detailed data oriented Fusion Model characterized
by input- and output data

The figure presents an example of two physical sensors
(i.e., audio sensor and visual sensor). The Sensor Control
& Management Unit is responsible for the sensor
identification as well as to provide the interface to other
sensing nodes, human observers and actuators.

Furthermore, this unit controls the overall fusion
process and provides access to a database where resource
requirements for the different fusion computations are
stored.

Three essential functional blocks are identified on this
layer to allow an online refinement of the overall fusion
process:

(i) DeIDeORef: Decision in decision out refinement;
This functional unit allows to refine the decision
extraction and decision fusion algorithms dynamically
during the fusion process, based on the generated output
decisions of FIDeO and DeIDeO. Based on statistical
output information the process of decision modeling can
be modified and refined during runtime.

(ii) DeIFORef: Decision in feature out refinement;
This functional unit allows refining the data allocation
and raw-data based fusion algorithms dynamically during

the fusion process based on the generated output features
of FIDeO and DeIDeO.

(iii) FIDORef: Feature in data out refinement; This
functional unit deals with refining the feature extraction
and feature fusion algorithms dynamically during the
fusion process based on the generated output features of
FIFO and DIFO.

The Sensing Unit represents the intelligent sensor
which consists of the physical sensor itself and a suitable
data pre-processor (e.g. resolution based down-sampling,
automatic gain control, …). A Local feature extraction
Unit (LFE) is used to extract a single-source feature
vector based on color information, structural information,
spectral information or acoustic information of an
observed object. This means, each sensor provides an
estimate of the position of an object with extracted
features, based only on its own single source data. These
individual feature vectors are input to a data fusion
process, namely the Feature in feature out (FIFO)
process, in order to achieve a joint feature vector estimate
based on multiple sensors. A Local decision extraction
Unit (LDE) is used to extract local decision from
individual objectives features (e.g. classification of
objectives identity).

The heart of the framework is the Fusion Layer
including the following five functional units:

(i) DIDO: Data in data out unit; This functional unit is
also called Raw-Data Fusion unit (RDF), and raw
uncorrelated data will be fused from different and/or
similar numerous sensors there. This raw data streams are
labelled with RDx. At raw-data based fusion each sensor
performs a single-source estimate in the sensor state
space. These estimates are then combined to an aggregate
estimate. In our case study for similar sensor types the
data will be combined to single data stream based on
numerous data streams from different sensors (e.g. visual
sensor & infrared spectral imager, …) by using wavelet
based image fusion techniques.

(ii) DIFO: Data in feature out unit; this is our so
called Feature extraction II unit (FEII), where raw data
from the individual sensors and/or fused raw-data (i.e.
DbD: Raw data based on raw data) is used to extract
suitable features of the individual tracked objects. These
features are found by experimental analyses and/or
physical modeling. The output data are feature vectors for
each detected object in the observed area.

(iii) FIFO: Feature in feature out unit; this is our so
called Feature fusion unit (FF), where features will be
fused to a resulting overall feature vector for each
individual detected object. Therefore it is necessary to
find the corresponding objects in the individual sensor
spaces. In our framework we have implemented methods
for similar sensor types, where simple object overlapping
calculation is performed in order to find the
corresponding elements. Furthermore, a time stamping

mechanism was developed to find corresponding
objectives in different sensor spaces. The output data of
this fusion process are feature vectors based on features
(FbF) extracted by the LFE unit or features extracted by
the DIFO unit.

(iv) FIDeO: Feature in decision out unit; this
functional unit is a part of our decision fusion unit (DF),
where, a classifier, based on SVM, is trained with
previously recorded and classified sequences. In the next
step this SVM is used as a classifier to derive
classification decisions based on previously extracted
single source feature vectors ore joint feature vectors
(FbF) from the FIFO unit. Outputs are decisions based
on Features (DbF), and a probability interval of this
decision.

(v) DeIDeO: Decision in decision out unit; this
functional unit is the second part of our decision fusion
unit, where extracted decisions (Dx) will be fused from
multiple sensors from the LDE unit with fused data from
FIDeO, based on statistical methods (i.e. Dempster-
Shafer methods [6,7]). Outputs are decisions, based on
multiple decisions.

3. Decision modeling

In our fusion framework decision modeling is driven

by Support Vector Machines (SVM). LS-SVM is a faster
learning strategy than standard SVM.

3.1. Least squares support vector machines

The least squares support vector machine classifier
[4,8] is a modification of standard SVM. A training data
set is given by (){ }N

iii yx 1, =
 with the inputs d

ix ℜ∈ and
class labels { }1,1−∈iy . The idea of SVM classifier is to
find the linear separating hypersurface () 0=+bxTϕω in
the feature space F that separates the mapped data

()() ()(){ }NN yxyx ,,...,, 11 ϕϕ . According to statistical
learning theory [2,3] a good generalization is given if one
demands that both classes are separated with a certain
margin. The goal is to find the appropriate weight vector
ω and the scalar bias term b, such that the following
relations hold { }Ni ,...,1=∀ :

()
()⎪⎩

⎪
⎨
⎧

−=→−≤+

+=→+≥+

1 if1

1 if1

ii
T

ii
T

ybx

ybx

ϕω

ϕω
 (1)

Instead of building one hyperplane as in standard
SVM (cp. figure 2a), LS-SVM builds two parallel
hyperplanes; one for the positive class and one for the
negative class as is indicated in figure 2b. The distance
between these hyperplanes () 1+=+bxTϕω and

() 1−=+ bxTϕω in the feature space is called the

separating margin. Finding the separating hyperplane
deals with the problem that this margin has to be
maximized.

Figure 2: Classification behavior in Feature Space of (a)
Standard SVM with the margin for the separating hyperplane
and the misclassification measure ζi and (b) LS-SVM with two
parallel hyperplanes and the error ei attached to each point

Using Vapnik’s formalism [2,3] from standard SVM
leads to a constraint quadratic programming (QP)
problem. In order to avoid this optimization problem
which is sometimes difficult to solve, LS-SVM uses
equality constraints instead of inequality constraints to
find the decision hyperplanes. The difference is
compensated by adding an extra term to the cost function
that penalizes the deviations from the two hyperplanes,
for each point of the learning data. The deviations are
given by the scalar error { }Niei ,...,1 ∈∀ . The training
problem is given by:

()() { }⎪⎩

⎪
⎨
⎧

∈∀−=+

+

Niebxy

e

ii
T

i

be

,...,1 1 s.t.
22

1 min 2

2

2

2,,

ϕω

γωω (2)

where γ plays the role of a regularization parameter
between the two quadratic terms in the primal problem
formulation (2), and characterizes the relative importance
of the terms. The first term aims to maximize the distance
between the two hyperplanes, while the second term aims
to minimize the slack variable ei. This addition of the two
quadratic terms is also responsible for the name least
squares SVM.

Since the dimension of the feature space is high,
possibly infinite, this problem is difficult, if not
impossible, to solve. Furthermore, the mapping of ().ϕ ,
corresponding to a kernel, is not always known. For
solving an optimization problem the Lagrangian is
constructed. The optimality conditions of this constrained
optimization problem are given by the saddle point of this
Lagrangian also known as the Karush-Kuhn-Tucker
conditions [9]. The Lagrangian is given by:

()

()()(),1

22
1,,,

1

2

2

2

2

∑
=

+−+−

+=

N

i
ii

T
ii ebxy

eebL

ϕωα

γωαω
 (3)

where α is the vector of the Lagrange multipliers. Using
the Karush-Kuhn-Tucker conditions substituting the
result of the linear equations into (3); ω and b can be
eliminated and the Dual optimization problem is given
by:

()

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎩
⎨
⎧

≠→
=→

==

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

∑

∑ ∑

=

= =

N

i
jiii

N

ji

N

i
ijijijiji

ji
ji

y

xxkyy

1
,

1, 1
,

0
1

 ,0 s.t.

1,
2
1 max

ϑα

αϑ
γ

ααα
 (4)

This formulation has three important advantages. First
we see that the dimensionality of the optimization
problem is equal to the number of data points N,
indicating that the training process is neither dependent
on the dimensionality of the feature space, nor the
dimension of the input space. Second, the kernel is an
inner product in feature space and opens therefore a lot of
opportunities. By applying the kernel trick one can show
that for different kernels the general optimization problem
remains the same. Third, these optimization problems are
convex. The Hessian matrix is a full rank positive definite
matrix, which guarantees a unique solution. The solution
of the dual optimization problem can be given as a linear
system:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

N

T b
y

y
1
00

αH
 (5)

where the matrix H obeys the Mercer theorem [9], that
deals with the conditions a function must have to be a
kernel function, and y denotes the column vector formed
by the labels of the training points. After the optimal
parameters are found the classifier is given in the form:

() ⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

=

N

i
iii bxxkysignxf

1
,)(α (6)

Notice, in LS-SVM all Lagrangian multipliers are non-
zero, because all training data sets are used as support
vectors for identifying the class separation surface.

3.2 Training data preselection for LS-SVM

In this section we describe a method for selecting
vectors out of the training dataset which are likely to be
support vectors in a LS-SVM and therefore describe the
individual classes best. This is done by an intelligent data
preselection algorithm based on a modified nearest
neighbor technique, leading to a smaller set of samples
which have to be stored for the classification task -
resulting in quite similar classification accuracies.

After this preselection, the remaining datasets are used
as support vectors for a LS-SVM classifier to find the
decision boundary between two classes in the learning
process. Using our approach leads to a sparse LS-SVM
classifier with good classification results and lower
computational and memory costs than standard SVM. In
embedded systems the memory resources are quite
restricted and therefore the proposed approach is
advantageous in comparison to standard SVM. The
training data preselection algorithm consists of three main
stages as described in the following:

A given training dataset T is given by the training
samples s. The training samples can be divided into two
subsets A∈{a0,…,an} and B∈{b0,…,bn} characterizing the
two involved classes.
Stage 1:

1. For each sample ai out of A find the nearest
neighbor sample bj from B and vice versa by
computing the Euclidean distance d(ai,bj) ∀ai,bj
until the distance is a minimum.

2. Using the result from the first step, sort the
distance d(ai,bj) in ascending order.

3. The first distance sample is stored in an initially
empty set Ωnn.

4. The next distance samples are iteratively added
to Ωnn and classified with a simple nearest
neighbor rule in the way:
If min(d(s,ai))<min(d(s,bj)) ∀ai,bj ∈ Ωnn and ∀s∈T

s∈A
else

s∈B
If the classification is wrong add the distance
sample to Ωnn else quit.

Stage 2: The reduced nearest neighbor rule [10] is used to
obtain the reduced subset Ωrnn from Ωnn:

1. Initially copy Ωnn to Ωrnn
2. Remove the first/next pattern (ai,bj) of Ωrnn
3. Use nearest neighbor rule to check if Ωrnn

classify all pattern correct in Ωnn
a. If all patterns classified correct go to 4)
b. Else return the removed pattern to Ωrnn

and go to 4)
4. If every pattern has removed once go to 5) else

go to 2) and remove the next pattern
5. The remaining subset is given by: Π=T-Ωrnn

Stage 3: At the last stage the final preselection subset Tps
is computed to obtain the samples Π which are closest to
Ωrnn.

1. Take the first/next pattern (ai,bj)∈ Ωrnn select k-
nearest samples (am,bn)∈ Π in a way that

a. min (d(ai,am))
b. min (d(bj,bn))
c. min (d(ai,bn))
d. min (d(bj,am))

are given.
2. copy k samples to Tps and go to 1) until all

samples from Ωrnn were considered.
The value k can be set by the user, but our experiments

have shown that 3% from the number of samples in T is a
good initial value. The resulting subset of the training
data, namely Tps, is provided to the LS-SVM classifier.

Figure 3 shows an example random Gaussian
distribution and the reduced subset Ωrnn after Stage 2 of
the proposed algorithm. Figure 4 shows the overall results
of the training data preselection algorithm with different
values of k.

Figure 3: (a) Random Gaussian distribution, (b) reduced
remaining subset Ωrnn

Figure 4: Results of the training data preselection algorithm
for the distribution shown in figure 3a with variable k. (a) k=1,
(b) k=2 and (c) k=3

4. Experimental results

In this section we present the results of three different
experiments. Firstly we generate two random Gaussian
distributions, each for an individual class. The
distributions show a tendency to a high level of overlap as
indicated in figure 5. Secondly we use a “real-world
experiment” from our waste separation case study. We
have implemented a simple multiclass classifier by using
One-against-All technique.

Figure 5: Random Gaussian distribution as experimental setup

The database consists of 6 different classes: (i) blue

glass, (ii) green glass, (iii) brown glass, (iv) white glass,
(v) ceramics, stones, porcelains (CSP) and (vi) plastics. In
cooperation with our industrial partner we generate a
database with about 200 samples for each class. Each
sample is characterized by 5 histogram based color
features, 3 structural features and 5 IR-histogram based
features. For the feature extraction 2 different types of
sensors were used: (i) CMOS visual sensors and (ii) IR-
spectral imaging sensors.

Thirdly, we use again two random Gaussian
distribution with increasing amount of data points for
each class. We evaluate three different implementations
in order to obtain a training time result.

For the first and the second experiment we use
MatlabTM implementations of 4 different algorithms: (i)
standard SVM, (ii) Least squares SVM, (iii) LS-SVM
with training data preselection (PTD-SVM) and (iv) a
sparse LS-SVM, called LS2-SVM [11].

The third experiment was performed using C++
implementations and 3 algorithms were compared in the
required time for training by an increasing large number
of data points: (i) standard SVM, (ii) LS-SVM and (iii)
LS-SVM with support vector preselection.

For all experiments we used radial basis function
(RBF) as the kernel function. The results presented in the
following tables (cp. Table 1 and Table 2) are average
values from 20 runs with random selection of training
datasets.

Table 1: Experiment 1 results; random Gaussian distribution
Algorithm Training

time (s)
Wrong

classified
(%)

Nb of
SV

SV (%)

SVM 17.81±1.25 12.4±0.5 50.3±3.6 62.9±4.5
PTD LS-SVM 10.04±1.11 15.3±0.8 36.6±4.4 45.8±5.5
LS-SVM 3.85±0.47 14.2±0.5 80.0±0.0 100±0.0
LS²-SVM 4.13±0.64 12.8±0.6 52.8±4.2 66.0±5.3

Table 1 indicates that the standard SVM has the best

training accuracy. Our proposed approach differs only
about 3.1% from the standard SVM, while being 45%
faster in training than the standard approach. The results
presented in this table also show that the training

accuracy is quite similar for all training approaches. The
fastest training strategy is the LS-SVM approach,
followed by the LS²-SVM approach. Our proposed
training data preselection LS-SVM approach is about 3
times slower than the fastest approach. The last column of
the previous table shows us that our algorithm has
detected a smaller amount of Support Vectors (SV) even
in comparison to the standard SVM approach. In
comparison to the LS-SVM approach our algorithm
needed 45% of Support Vectors for a quite similar
classification result.

Table 2: Experiment 2 results; waste separation

Algorithm Training
time (s)

Wrong
classified

(%)

SV (%)

SVM 328.3±4.4 2.8±0.2 40.8±4.5
PTD LS-SVM 158.4±3.2 3.1±0.3 42.3±3.2
LS-SVM 37.8±2.5 2.2±0.2 100±0.0
LS²-SVM 76.1±2.9 2.5±0.4 66.8±3.3

Table 2 confirms the tendencies from table 1. Our

approach is about 50% faster than the Standard SVM
approach with quite similar classification results. All
presented approaches for training a Support Vector
Machines seem to be high quality solutions for
classification problems. The fastest training strategy is
LS-SVM, followed by LS²-SVM as the table indicates.
Our proposed approach is about 4 times slower than the
fastest but a lower amount of Support Vectors have to be
considered. Both tables show that the LS-SVM approach
consider all training datasets as support vectors, which is
the main disadvantage of this strategy.

Figure 6: Comparison of three different learning strategies in
required training time vs. number of training samples; SVM-QP
approach (standard SVM), LS-SVM approach (least squares
SVM) and PTD-SVM approach (preselection of training data
LS-SVM)

Figure 6 shows a comparison of three training

strategies for an increasing number of training samples.

The required training time is an averaged value of (i) 10
experiments for less than 5000 training samples and (ii) 3
experiments for more than 5000 training samples. The
standard SVM approach is the slowest and is therefore
not advisable for large training sets. The fastest approach
is the LS-SVM approach, followed by our proposed
approach. Both algorithms might be used for large
training data sets.

5. Discussion

In embedded systems, learning of large training

datasets with SVM is difficulty, because of their restricted
memory resources. Our experiments show that training
for over 3000 training samples with a standard SVM is
not feasible because of the memory requirements.

LS-SVM helps to reduce the memory requirements
and is much faster than standard SVM, due to the usage
of equality constraints instead of inequality constraints.
Therefore, training requires the solving of a set linear
equations, instead of solving the quadratic programming
(QP) problem. The main disadvantage of LS-SVM is the
loss of sparseness, indicating that all training samples
have to be stored for the classification task - leading to
high memory requirements and slower classification.

Therefore, we described an algorithm for an intelligent
training data preselection in order to identify a subset of
training data which describes the whole dataset best. This
approach reduces the number of vectors which have to be
stored for later classification. The experimental results
show that our approach leads to a sparse SVM with
accurate classification results and faster training time
than the standard SVM.

Future work will include the implementation of the
proposed approach to a commercial product.

6. Acknowledgements

We thank the Austrian Research Promotion Agency
for partially supporting this project.

7. References

[1] A. Klausner, B. Rinner, A. Tengg. “I-SENSE: Intelligent
Embedded Multi-Sensor Fusion” In Proceedings of the 4th
IEEE International on Intelligent Solutions in Embedded
Systems (WISES 2006). Vienna, Austria. June 2006.

[2] V. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag, New York, 1995.

[3] V. Vapnik. Statistical Learning Theory. Wiley, New York,
1998.

[4] J.A.K Suykens and J. Vandewalle. “Least squares support
vector machine classifier.” Neural Processing Letters, 9(3):293–
300, Jun 1999.

[5] J.A.K Suykens, P. Van Dooren, B. De Moor, and J.
Vandewalle. “Least squares support vector machine classifiers:
a large scale algorithm”. European Conference on Circuit
Theory and Design, ECCTD’99, pages 839–842, 1999.

[6] J.D. Lawrence, and T.D. Garvey “Evidential Reasoning: A
Developing Concept” In Proceedings of the International
Conference on Cybernetics and Society, IEEE, 1982.

[7] A.P. Dempster. “A Generalization of Bayesian Inference”
Journal of the Royal Statistical Society, vol. 30, pages 205-247,
1968.

[8] J.A.K Suykens and J. Vandewalle. “Multiclass least squares
support vector machines”. In IJCNN’99 International Joint
Conference on Neural Networks, Washington, DC, 1999.

[9] J. Nocedal and S. J.Wright. Numerical Optimization.
Springer-Verlag, New York, 1999.

[10] G.W. Gates. “The reduced nearest neighbour rule“. In
IEEE Transactions on Information Theory, 18(3), pages 431-
433, May 1972.

[11] J. Valyon and G. Horvath. “A Sparse Least Squares
Support Vector Machine Classifier“. In IJCNN’04 International
Joint Conference on Neural Networks, 2004.

