
Self-aware Middleware for Smart Camera Networks
Herwig Guggi

Pervasive Computing Group
Institute of Networked and Embedded Systems

Klagenfurt University
Email: herwig.guggi@aau.at

Abstract— This paper presents a middleware architecture
for smart camera networks that is based on a pipe-and-filter
model augmented with self-awareness and self-expression. These
properties enable the system to move from a procedural design
methodology towards a self-aware system which is able to
inherently react on changing conditions from the environment.

Index Terms—Smart camera networks; Middleware; Self-
awareness; Self-expression

I. BACKGROUND

During the last years, hardware devices have become more
and more powerful. Smart cameras are one example of this
trend. They combine image-sensing, processing and network-
ing. While single cameras can be used to trigger events and
support a human observer in a surveillance system [1] or
perform vehicle detection and speed estimation [2], distributed
smart camera networks offer an even higher benefit. They can
be used to detect obstacles to avoid collisions [3] or perform
a cooperative tracking with local image analysis [4].

Designing, implementing and deploying applications for
distributed execution is much more complex than for single
device systems. On general-purpose platforms, distributed
applications are often based on a middleware system which
provides services for networking and data transfer [5].

While there are systems that support a developer of a
distributed application to access sensor data like ICE middle-
ware [6], there is no reasonable system-level software available
that is able to support cooperation and collaboration within a
distributed sensor network.

Adaptive middleware systems can be used to implement
applications that adapt to current system requirements. Rah-
nama et. al. [7] describe such an adaptive system and compare
it to a non-adaptive implementation. Another example for is
shown by Hurtado et. al [8]. Their middleware system is based
on the Open Service Gateway Interface (OSGi). This interface
provides a universal publish-subscribe based protocol which
is used to dynamically load and unload components during
runtime. The described systems [7] and [8] do not modify
parameters of single components to adapt to new conditions.
They instead exchange components and modify the behaviour
of the system.

II. MIDDLEWARE STRUCTURE

The idea of the proposed middleware is as described by
Lewis et al. [9] “to move from a procedural design method-
ology wherein the behaviour of the computing system is pre-
programmed or considered beforehead (i.e., at design time),

towards a self-aware system where this is not required and the
system adapts to its context at run-time.”

To achieve this goal, a standard approach is extended by
self-awareness and self-expression-properties as defined by
Parsons et al. [10]: “ To be Self-Aware a node must contain
total information about its internal state along with enough
knowledge of its environment to determine the current state of
the system as a whole. It may either be focused on its own state
or the environments state at any time, but not both at once.
In a systems where some nodes may have more importance
each node must also be aware of its own importance within
the system. [. . . ] A node is said to have Self-Expression if it is
able to assert its behaviours upon either itself or other nodes,
this behaviour is based upon a nodes sense of its personality”

The developer implements the functionality using the pipe-
and-filter concept. This concept is typically used in sensor
network applications. The middleware, if necessary, splits the
software to sub-sets of pipes-and-filters and deploys them to
one or more hardware devices. The middleware splits this
software into sub parts in a way that the overall system
performance is maximized and deploys the filters to the
available hardware devices.

To go a step towards a self-aware system, two additional
filters have been added to each hardware device. They provide
self-awareness and self-expression mechanisms. More details
are given in section III.

The self-awareness and self-expression principles can also
be implemented on a lower level of the system. All filters that
are used within the software can be self-aware on their own.
More details are given in section IV.

III. SELF-AWARE RESOURCE UTILISATION

Fig. 1. Pipes and filters on a single device dark arrows: data-flow, light
arrows: control information



Figure 1 visualizes the part of the software that is executed
on a single hardware-device. The elements named “Filter”
are the parts of the software which is implemented by the
developer using the pipe-and-filter concept. The filter named
“Device Coordination” is responsible for the coordination
of the pipes and filters on this specific device. Its job is
to modify the pipe-and-filter configuration to meet changed
requirements. These modifications include the deployment of
additional pipes and filters and, if necessary, the delegation of
functionality to other devices. The element named “Resource
Monitoring” implements self-awareness properties. These self-
aware properties might provide data like the CPU utilisation,
memory utilisation and available network bandwidth. The
“Device Coordination” can show self-expressive behavior by
taking into account knowledge of the internal system state
which is provided by the “Resource Monitoring” element.

IV. SELF-AWARE FILTERS

A self-aware filter extends the standard filter from the
pipes-and-filter concept by self-awareness and self-expression
mechanisms. Each filter in our approach has a list of input
filters (filters that provide data to the current filter) and
output filters (filters that receive data from the current filter).
After initialisation, the filters work as intended. During the
execution of a dynamic application like in sensor networks,
it will happen that one filter requires a parameter to be
modified (e.g., a change in resolution for image data). This
request is backwarded to the filter which provides the data
and is autonomously processed by that filter. The detection of
this requirement relates to the self-awareness principle. After
detection, the filter itself checks if it is able to meet the new
requirements and in case that it is possible, the parameters
are automatically tuned. This automatic re-configuration of the
parameter represents the self-expressive principle.

Let us assume an imaging application consisting of two
filters on two devices, one image capture filter and one image
display filter. In the initial setup, the images would be captured
and displayed in full resolution. At some point the user might
reduce the window size of the image display. To be resource
efficient, the image should already be transmitted in the
reduced resolution. A state of the art middleware would require
the developer to handle this event and tune the parameter of
all filters (in our case only from the image capture filter) to
adapt to this modification.

In the case of our proposed self-aware filter, the display filter
would automatically detect the modification of the display
area and inform its input filter (in our case the image capture
filter) that a lower image resolution would be sufficient. This
filter recognises the request for a modification of a parameter
and reacts on this request by automatically modifying this
parameter. After the modification, images with a reduced
resolution will be forwarded. This approach allows distributed
automated optimisation of filter parameters to requirements.
This automatic adaption is optimizing the overall performance
of the system as the amount of data is reduced as close to the
data source as possible. This means that no data is transmitted

via the network which would be dropped at the destination.
This self-aware behavior automatically reduces the required
bandwidth to a minimum.

V. CONCLUSION

The middleware architecture presented in this paper extends
the state-of-the-art pipes-and-filter concept by self-aware and
self-expressive properties. These properties are implemented
in two levels of the system. First the individual filters and
second the device coordination. Self-aware filters enable fast
and efficient context-based modification of filter parameters.
Self-aware device coordination supports the developer with
decisions on filter migration or delegation of functionality to
other devices. This enables the system to react inherently on
changing conditions from the environment.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
under grant agreement no 257906. The author would like
to thank Bernhard Rinner and Lukas Esterle for valuable
comments.

REFERENCES

[1] M. Bramberger, J. Brunner, B. Rinner, and H. Schwabach, “Real-time
video analysis on an embedded smart camera for traffic surveillance,”
in Real-Time and Embedded Technology and Applications Symposium,
2004. Proceedings. RTAS 2004. 10th IEEE, may 2004, pp. 174 – 181.

[2] D. Bauer, A. N. Belbachir, N. Donath, G. Gritsch, B. Kohn, M. Litzen-
berger, C. Posch, P. Schön, and S. Schraml, “Embedded vehicle speed
estimation system using an asynchronous temporal contrast vision
sensor,” EURASIP J. Embedded Syst., vol. 2007, pp. 34–34, January
2007.

[3] H. Guggi and B. Rinner, “Distributed smart cameras for hard real-time
obstacle detection in control applications,” in Distributed Smart Cameras
(ICDSC), 2011 Fifth ACM/IEEE International Conference on, aug. 2011,
pp. 1 –6.

[4] M. Bramberger, A. Dobl, A. Maier, and B. Rinner, “Distributed embed-
ded smart cameras for surveillance applications,” Computer, vol. 39, p.
2006, 2006.

[5] D. C. Schmidt, “Middleware for real-time and embedded systems,”
Commun. ACM, vol. 45, pp. 43–48, June 2002.

[6] ICE Middleware. [Online]. Available: http://www.zeroc.com/
[7] H. Rahnama, P. Kramaric, A. Sadeghian, and A. Shepard, “Self-adaptive

middleware for the design of context-aware software applications in pub-
lic transit systems,” in Proceedings of the 13th international conference
on Ubiquitous computing, ser. UbiComp ’11. New York, NY, USA:
ACM, 2011, pp. 491–492.

[8] S. Hurtado, S. Sen, and R. Casallas, “Reusing legacy software in a self-
adaptive middleware framework,” in Adaptive and Reflective Middleware
on Proceedings of the International Workshop, ser. ARM ’11. New
York, NY, USA: ACM, 2011, pp. 29–35.

[9] P. R. Lewis, A. Chandra, S. Parsons, E. Robinson, K. Glette, R. Bahsoon,
J. Torresen, and X. Yao, “A Survey of Self-Awareness and Its Applica-
tion in Computing Systems,” in Proc. Int. Conference on Self-Adaptive
and Self-Organizing Systems (SASO), 2011.

[10] S. Parsons, R. Bahsoon, P. R. Lewis, and X. Yao, “Towards a Better
Understanding of Self-Awareness and Self-Expression within software
systems,” University of Birmingham, School of Computer Science, UK,
Tech. Rep. CSR-11-03, Apr. 2011.


