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Abstract

In this paper, we introduce a fully autonomous vehicle
classification system that continuously learns from large
amounts of unlabeled data. For that purpose, we propose
a novel on-line co-training method based on visual and
acoustic information. Our system does not need compli-
cated microphone arrays or video calibration and automat-
ically adapts to specific traffic scenes. These specialized de-
tectors are more accurate and more compact than general
classifiers, which allows for light-weight usage in low-cost
and portable embedded systems. Hence, we implemented
our system on an off-the-shelf embedded platform. In the ex-
perimental part, we show that the proposed method is able
to cover the desired task and outperforms single-cue sys-
tems. Furthermore, our co-training framework minimizes
the labeling effort without degrading the overall system per-
formance.

1. Introduction
Automated traffic monitoring plays an important role in

increasing safety and throughput on the existing road infras-
tructure. Due to a steadily increasing number of such sys-
tems, human inspection of the acquired data will no longer
be feasible in the near future. Nowadays there already ex-
ist powerful high-level traffic monitoring systems that al-
low for traffic jam prediction or toll collection. However,
in order to deliver reliable predictions, these systems de-
mand highly accurate vehicle detections and classifications.
These classifiers should be based - at least partly - on video
information, because this eases verification by human oper-
ators.

Training of visual object detectors is an active field of re-
search and there already exist a huge variety of approaches.
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The most popular approaches use simple image filters such
as Haar-like features [28] or histograms of oriented Gaus-
sian [7] and then apply powerful machine learning tech-
niques such as boosting or SVMs. Although these meth-
ods are able to deliver excellent results, they demand large
amounts of usually hand-labeled data - a problem often ne-
glected in the literature. Hand-labeling data is a tedious and
cost-intensive task and handicaps the vast deployment and
maintenance of modern detection systems. Furthermore,
these detectors are usually trained in order to be applica-
ble on a general class of scenes. In contrast, scene-specific
classifiers have to solve an easier task and are thus more
accurate and less complex which enables their applicability
on low-cost embedded systems. Thus, the preferred system
should be able to perform highly accurate, scene specific
and adaptive classification by using only a minimal amount
of labeled data for training.

To meet all these requirements, we propose an au-
tonomous vehicle classification and detection system based
on audio-visual co-training using low-cost consumer sen-
sors that, additionally, avoids complicated calibration and
expensive microphone arrays. Therefore, we train two het-
erogeneous classifiers on a small amount of labeled data and
to co-train them on a continuous stream of unlabeled data in
order to yield scene-specific and highly adaptive classifiers.
Fusing audio and video information for traffic monitoring
is not new and has been frequently proposed [15, 30, 14].
In these systems, typically information is combined at var-
ious levels of data abstraction such as raw data, features or
decisions. The main objective is to exploit heterogeneous
sensors to increase the robustness, confidence and the spa-
tial as well as temporal coverage [25, 12]. Due to limited
resource availability of our co-training framework a careful
selection of appropriate algorithms has been performed.

Our system differs to most of the previous ones in terms
that we do not use a fusion strategy on the decision level
but to exploit the power of multiple sensors in order to per-
form robust autonomous learning. The most similar ap-
proach to ours is the recent work of Christoudias et al. [6]
who performed audio-video co-training in order to learn hu-
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man gesture recognition systems. However, [6] used off-
line learning strategies which means that they exploit the
entire training set at once which eases optimization and typ-
ically yields good results. In contrast, our approach is de-
signed for learning from streaming data such as video and is
hence based on on-line learning. Additionally, we propose
a multi-class co-training approach which allows to also dis-
criminate between the different vehicle classes and against
the background. Furthermore, using on-line learning, we
do not need to store any data which together with the re-
duced complexity due to scene-specific training enables our
method to be implement on hardware-constrained embed-
ded systems.

2. Audio-Visual Co-Training
In supervised learning one deals with

a labeled dataset DL ⊆ X × Y =
{(x1, y1), . . . , (x|DL|, y|DL|)}, where xi ∈ X = IRP

and yi ∈ Y = {+1,−1}. In contrast, unsupervised meth-
ods aim to find an interesting (natural) structure in X using
only unlabeled input data DU ⊆ X = {x1, . . . , x|DU |}.
Co-training [3] is an approach that exploits both labeled
DL and unlabeled DU data.

In co-training, the main idea is that two initial classifiers
h1 and h2 are trained on labeled data (xi, yi), (xj , yj) ∈
DL. Then, these classifiers update each other using the un-
labeled data set DU , if one classifier is confident on a sam-
ple whereas the other one is not. The approach has proven
to converge [3], if two assumptions hold: (i) the error rate
of each classifier is low and (ii) the views are conditionally
independent. However, the second condition, which is hard
to fulfill in practice, was later relaxed (e.g., [2, 1, 29]). For
practical usage, this means that co-training can even be ap-
plied, if the learners are only slightly correlated.

Co-training needs two distinct views on the classifica-
tion problem in order to work. Using audio and video
sensors naturally offers “real-world” views, which can be
exploited by co-training. Existing co-training approaches
used for learning visual classifiers combined different sim-
ple cues based on shape, appearance, or motion (e.g.,
[17, 13, 23, 19]). Thus, starting with Levin et al. [17],
who indented to train a car detector, co-training was applied
for various different applications such as learning a person
detector (e.g., [23, 19]), tracking (e.g., [13]), estimating a
background model (e.g., [31]).

As it was shown in [29], co-training needs non-coherent
views onto the input samples. This can be accomplished by,
first, using different sensor sources and, second, by using
different classifiers. Additionally, in systems that train from
unlabeled data without human supervision, class-label noise
can never be avoided. This means that robust co-training
classifiers have to be also resistant up to a certain amount of
label noise.

In the following, we present a system that uses on-line
random naı̈ve Bayes classifiers for the audio data and on-
line multi-class boosting based on a logistic loss function
for the visual classifier. Both classifiers are inherently
multi-class, on-line compatible and noise-robust.

2.1. On-line Random Naı̈ve Bayes

Naı̈ve Bayes classifiers are the simplest kind of Bayesian
networks [9] that assume conditional independence of fea-
tures given a certain class. Thus, the estimation of the un-
known joint probability distribution is essentially simpli-
fied, i.e., a product of independent likelihoods and a clas-
sifier can be formulated as

f̂(x) = arg max
i

∏
k

p(xk|ci), (1)

where p(xk|ci) is the ith likelihood given class ci, p(x|ci)
is the joint probability distribution of feature vector x given
class ci assuming a uniform class label distribution.

Since single naı̈ve Bayes classifiers are rather weak in
accuracy, we build an ensemble of several classifiers sim-
ilar to [5, 21]. To increase the robustness and stability of
bagging [4], we perform random input and random fea-
ture selection, which increases the diversity of the classi-
fiers. Using such a random naı̈ve Bayes classifier for visual
on-line learning has been recently proposed in [10], where
equally binned histograms have been used to estimate the
probability distribution for a given feature xk. We adapt
this approach to be used for on-line learning of our audio
classifier.

2.2. On-line Multi-class GradientBoost

Boosting [8] additively combines several weak classi-
fiers to a strong one in the form

F (x) =
M∑
i=1

αifi(x), (2)

where αi determines the influence of the ith weak learner.
During learning, boosting keeps a weight distribution over
the training samples. Grabner et al. [11] adapted the on-
line boosting approach of Oza and Russell [20] to perform
on-line feature selection, which is useful in many vision ap-
plications that deal with highly overcomplete feature sets.

Since boosting is highly susceptible to class-label
noise [18], we adapt the recent approach of Leistner et
al. [16] which allows the use of robust loss-functions within
an on-line gradient boosting framework. To increase the
robustness of our classifier, we implement the logit loss
log(1 + e−ft,yt (xt)) within the boosting framework. Re-
cently, Saffari et al. [26] developed an on-line variant of LP-
Boost, which is applicable to multi-class classification. For
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comparison, they also transformed the approach of Zou et
al. [32] to the on-line domain, which is the same as extend-
ing [16] to the multi-class case. Finally, this gives us a ro-
bust, multi-class on-line feature selection algorithm which
we use for training our visual detector.

2.3. On-line Co-Training System

In off-line co-training, both classifiers are first trained
with labeled data. Subsequently, all unlabeled samples
are evaluated by both classifiers and ranked by their con-
fidences. Confident samples of classifier A are then inte-
grated into the labeled training set of classifier B and vice
versa. This procedure is repeated several times. In the on-
line domain, we have to evaluate each sample xt individu-
ally. If one classifier makes a confident decision on a sam-
ple, it predicts a pseudo label ŷt

1 and updates the second one
with the according view on the data.

Algorithm 2.1 On-line Audio-Visual Co-Training
Require: classifiers F 0

1 and F 0
2

Require: labeled data {x, y}N
Require: unlabeled data {x}M

1: Train classifiers on labeled data {x, y}N
2: for each unlabeled input sample xt ∈ {x}M do
3: // Evaluate classifiers and estimate pseudo labels
ŷt
1,2

4: ŷt
1← eval(F t−1

1 , xt)
5: ŷt

2← eval(F t−1
2 , xt)

6: // On-line Learning
7: F t

1 ← update(F t−1
1 , xt, ŷ

t
2)

8: F t
2 ← update(F t−1

2 , xt, ŷ
t
1)

9: // Classifiers are available anytime
10: Output: classifiers F t

1 and F t
2

11: end for

2.4. Classifier Synchronization

Our classifiers work on different scopes regarding cap-
ture time and object localization (i.e., still images for vi-
sual classification and audio streams of several seconds
length for audio classification). Thus, we have to synchro-
nize both, the evaluation and the co-training of our classi-
fiers. This is accomplished by using a visual trigger that
robustly delivers points in time, where vehicles are present
within a limited region in the visual view. The visual trigger
uses a robust block-based background model [22], which is
able to handle camera shake caused by wind and vibrations
and permits changing illumination conditions due to on-line
adaption of the model. The background model captures the
mean intensity of the background within small rectangular
blocks and signals foreground objects at positions where the

(a) (b)

Figure 1. Visual trigger

deviation of the mean from one frame to another is larger
than a threshold. We define a small region of interest span-
ning over all lanes for our visual triggering and report a
passing vehicle if some foreground object is detected within
this region (see Figure 1 for two illustrative examples).

The visual classifier then densely evaluates this region
and delivers detections of present vehicles. Since the acous-
tic features are calculated on an extended time range, we
have to process the audio stream 3 seconds forward and
backward in time. Both classifiers then use their classifi-
cation result ŷt to train the other one. Thus, the visual clas-
sifier uses the location that results in the highest confidence
measure according to the class ŷt delivered by the audio
classifier.

2.5. Evaluation

During the classification phase, we unify the visual and
audio cue by linearly combining the confidences of both
classifier types. To classify a scene, we first generate candi-
date regions for both classes, cars and trucks by applying
our visual classifier. We then combine the visual classi-
fiers’ confidences with the confidences provided by the au-
dio classifier. (All confidences are normalized to the range
of [-1, +1] before fusion.) To keep our approach simple, we
use weighting parameters α and β for the combination of
both confidences of the audio fa and the visual fv classifier.
In particular, we use a simple arithmetic mean to weight the
two confidences, both set to 0.5 (better values for α and β
could be found by using cross-correlation on labeled sam-
ples or other weighting techniques.). Finally, by using a
non-maxima suppression, the highest vote is estimated by
providing the according class for the candidate regions.

2.6. Features

In this section, we describe the features we extract on
our platform. Both, visual and acoustic features can be
computed with minimal computational requirements and in
real-time.

Acoustic Features In general, it is a non-trivial task to
end up with a set of robust acoustic features due to the
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non-stationarity of the audio signals. Noise inferences such
as bypassing vehicles on neighboring lanes on highways
are additionally distorting the captured signal. We use a
set of block-based acoustic features recently proposed by
Starzacher et al. [27] which have shown to be suitable for
efficient implementation on our embedded platform and
highly class-discriminative. The selected acoustic features
are short-time energy, spectral roll-off point, spectral band-
width, band energy ratio values and mean cepstral coeffi-
cient. Classifiers exclusively based on these features have
shown to achieve classification accuracy above 90%.

Visual Features Due to the constrained settings of our
platform, i.e., limited memory, computational power and vi-
sual resolution of the camera, Haar-like features [28] have
shown to represent a reasonable trade off. We use an ex-
tended set of 6 different configurations representing edges,
lines and radial structures. For training our classifier, we use
a randomly initialized feature pool. Due to the large num-
ber of classifiers within our classifier bag, a suitable model
can be trained. Additionally, to describe coarse structures
of our object we use Haar-LBP Features [24]. Both feature
types can be computed very fast and efficient using integral
structures.

3. Experimental Evaluation
To demonstrate the performance of our approach, we

conduct several experiments evaluating the co-training. We
have recorded training data on different locations and per-
formed training labeled and unlabeled training.

3.1. Data and Study Locations

The audio-visual co-training framework is applied to
real-world datasets recorded on several different locations
under varying weather conditions (specified as Data1 and
Data2). The vehicles of interest are cars and trucks. Ba-
sically, a consumer microphone and camera were placed
on a bridgeover to record passing vehicles. Data1 consists
of about 500 cars and 300 trucks, whereas Data2 obtains
approximately 160 car and 90 truck samples. The audio
recording was performed with 8 kHz sampling rate, 16bit
resolution, mono format and an average maximum record-
ing duration of 5 seconds. The frame rate of the camera was
set to approximately 20 Hz with a resolution of 640 × 480.

3.2. Embedded Test Platform

A MicroSpace EBX (MSEBX945) embedded computer
board from DigitalLogic serves as our evaluation plat-
form. It offers a compact EBX single-board construction
of 146mm × 203mm and provides several interfaces such
as RS-232, FireWire, USB and LAN 100 Mbit/s. The
SMX945-L7400 CPU module is based on an Intel Core 2

Cars Recall Precision F-Measure
50 Lab. Samples 0.86 0.85 0.85
150 Lab. Samples 0.98 0.97 0.98
200 Lab. Samples 0.96 0.96 0.96
Trucks Recall Precision F-Measure
50 Lab. Samples 0.65 0.48 0.45
150 Lab. Samples 0.89 0.88 0.88
200 Lab. Samples 0.82 0.94 0.88

Table 1. Initial performance using different amounts of labeled
Data.

Cars Recall Precision F-Measure
Initial (100 Lab.) 0.96 0.94 0.95
Initial + 100 Unl. 0.94 0.92 0.93
Initial + 200 Unl. 0.96 0.93 0.94
Trucks Recall Precision F-Measure
Initial (100 Lab.) 0.75 0.58 0.65
Initial + 100 Unl. 0.86 0.85 0.86
Initial + 200 Unl. 0.91 0.80 0.85

Table 2. Co-training performance using different amounts of unla-
beled Data.

Duo processor with 2 × 1500 MHz and a 667 MHz FSB.
It runs Linux from Scratch and the total power consumption
of the platform is about 12 to 15 W.

3.3. Baseline performance

To have a fair comparison, we have to first perform an
evaluation only using labeled data for training. As expected,
the performance for car localization already performs well
after only 100 samples, where truck localization only yields
poor performance. Table 1 depicts detailed results. If we
are using only 50 labeled samples, the visual classifier is
not able to cope with the various truck appearances and only
delivers very poor performance.

3.4. Co-Training Convergence

As our aim is to gain the same performance by using
only a few labeled training data, we use only 100 labeled
samples (initial classifier) and perform co-training [17] sub-
sequently. Figure 2 and Table 2 show that we can achieve
a huge performance improvement for trucks by performing
audio-visual co-training without changing the already suffi-
cient performance for car classification. Of course, the per-
formance for purely supervised training is higher, but there-
fore we would require a larger amount of labeled examples.

3.5. Labeled vs. Unlabeled Samples

An interesting aspect of our approach is the influence of
the amount of labeled samples to the performance of the fi-
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Figure 2. Co-training performance for (a) cars and (b) trucks.

nal classifier. Therefore, we use an amount of 200 samples
to train the classifier, where we vary the number of labeled
samples between 50 and 150 and use the remaining sam-
ples as unlabeled. It is clearly visible (see Table 3), that
we can improve the classifiers performance with unlabeled
data once a certain number of labeled samples has been used
and both classifiers reach a reasonable performance. If we
are only using a very small amount of labeled samples to
train the initial classifier (e.g., 50), we violate one of the
co-training assumptions since then the error rate of the vi-
sual classifier is too high. Performing co-training with such
a weak classifier runs into the risk of degrading the perfor-
mance of both classifiers due to the large amount of noise
(i.e., false predictions ŷt) introduced in the training process.
In our case, the performance does not degrade only due to
the stability of the random naı̈ve Bayes classifier used for
acoustic classification.

Cars Recall Precision F-Measure
50 Lab. + 150 Unl. 0.99 0.97 0.98
100 Lab. + 100 Unl. 0.94 0.92 0.93
150 Lab. + 50 Unl. 0.98 0.97 0.98
Trucks Recall Precision F-Measure
50 Lab. + 150 Unl. 0.67 0.82 0.74
100 Lab. + 100 Unl. 0.86 0.85 0.86
150 Lab. + 50 Unl. 0.91 0.80 0.85

Table 3. Classifier Performance using different amounts of labeled
and unlabeled training data.

(a) (b)

(c) (d)

Figure 3. Snapshots with groundtruth from dataset (a, b) Data1 and
(c, d) Data2. It is clearly visible that both locations are captured
with different viewing angle and scale.

3.6. Scene Adaption

Usually when performing visual vehicle detection with-
out a priori knowing where the site of operation will be, a
large and complex classifier is trained to discriminate the
target object from every possible background. Since we
are now able to improve our classifier using unlabeled data,
this experiment shows that we can also adapt an already
trained vehicle classifier to a new location. Therefore, we
train our classifier initially with labeled positive data from
a scene (300 labeled sample per class from Data2). Subse-
quently, we use cropped background samples from our new
scene (Data1) for bootstrapping and adapt the classifier dur-
ing runtime by using samples generated by our co-training
approach.

Since both scenes have different camera orientations
(see Figure 3), we resize our visual classifier to satisfy the
new geometry constraints. For the audio classification, the
changed environment only affects the short-time energy fea-
ture, which was simply removed from the used feature set
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Cars Recall Precision F-Measure
Initial (100 Lab.) 0.99 0.94 0.96
Initial + 100 Unl. 0.99 0.97 0.98
Initial + 200 Unl. 0.99 0.99 0.99
Trucks Recall Precision F-Measure
Initial (100 Lab.) 0.48 0.46 0.47
Initial + 100 Unl. 0.63 0.82 0.71
Initial + 200 Unl. 0.70 0.71 0.70

Table 4. Classifier performance for scene adaption after 100 and
200 unlabeled samples from the target scene

Cars Recall Precision F-Measure
Audio-Visual 0.96 0.93 0.94
Visual-Only 0.77 0.64 0.70
Trucks Recall Precision F-Measure
Audio-Visual 0.86 0.85 0.86
Visual-Only 0.75 0.85 0.80

Table 5. Co-training performance using audio-visual and visual-
only classifier combinations.

for this experiment. This decreases the performance of the
acoustic classification only by a few percent. We report the
classifier performance after training our classifier with 100
and 200 unlabeled samples from the new scene. Table 4
depicts the improvement in classification accuracy, by only
using such a small amount of unlabeled data. Even if the
performance for car classification is already quite good, the
co-training process improves the results further. Also for
truck classification a clear improvement in accuracy can be
gained. Since these samples can be generated during run-
time for free, this is an easy way to adapt an already trained
classifier to a new task not having even a single labeled sam-
ple from the new scene.

3.7. Homogeneous vs. heterogeneous Co-training

Finally, we want to compare homogeneous and hetero-
geneous co-training to further emphasize the applicability
of our approach. Therefore, we compare our co-training
approach using acoustic and visual classifiers against co-
training using two visual classifiers selecting features out
of two independent randomized feature pools. We train all
classifiers using 100 labeled training samples and subse-
quently perform audio-visual and visual-visual co-training
respectively. Table 5 depicts the evaluation results compar-
ing visual-only and audio-visual co-training after 100 la-
beled plus 200 unlabeled samples. It is clearly visible, that
the visual-only co-training cannot match the performance
of the mixed approach due to the smaller diversity among
the two visual classifiers.
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Figure 4. Classifier performance for scene adaption for (a) cars and
(b) trucks.

4. Conclusions

In this paper, we introduced a novel on-line co-training
method based on audio and video information. Our system
uses simple, robust and rapid classifiers in order to be imple-
mented on hardware-constrained embedded platforms. In
order to ensure easy deployment and maintenance, we do
not use complicated calibrations or microphone arrays; in-
stead, all of our system components are off-the-shelf con-
sumer products. We propose to use an on-line multi-class
gradient boosting for visual classification which inherently
allows to discriminate between cars and trucks as well as the
local background. For increased diversity between audio
and visual classification, we use an on-line random naı̈ve
Bayes classifier for acoustic classification. In the exper-
iments, we demonstrated that our system robustly adapts
to traffic scenes without using any additional human label-
ing effort. In our Scene Adaption Experiment, we clearly
show that the better the performance of the initial classi-
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fier is, the lower is the number of false predicted labels
for the co-training process and the better the co-training
works. Our work shows that even for a very small amount
of labeled data, we can gain reasonable classification accu-
racy by combining heterogeneous classifiers and improve
the classifier during runtime by on-line co-training. In fu-
ture work, we will try to exploit a significant larger amount
of unlabeled data. Additionally, we will focus on more suit-
able representations for trucks in order to improve the over-
all detection results.
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