
A Socio-Economic Approach to
Online Vision Graph Generation and Handover

in Distributed Smart Camera Networks
Lukas Esterle†, Peter R. Lewis∗, Marcin Bogdanski∗, Bernhard Rinner† and Xin Yao∗

∗ School of Computer Science
University of Birmingham, UK

{mxb039—p.r.lewis—x.yao}@cs.bham.ac.uk
† Institute of Networked and Embedded Systems

Klagenfurt University, Austria
{lukas.esterle—bernhard.rinner}@aau.at

Abstract—In this paper we propose an approach based on self-
interested autonomous cameras, which exchange responsibility
for tracking objects in a market mechanism, in order to maximise
their own utility. A novel ant-colony inspired mechanism is used
to grow the vision graph during runtime, which may then be used
to optimise communication between cameras. The key benefits
of our completely decentralised approach are on the one hand
generating the vision graph online which permits the addition
and removal cameras to the network during runtime and on
the other hand relying only on local information, increasing the
robustness of the system. Since our market-based approach does
not rely on a priori topology information, the need for any multi-
camera calibration can be avoided.

Index Terms—Smart camera networks; multi-camera tracking;
market-based control; topology identification; ant algorithms.

I. INTRODUCTION

Object detection, tracking and activity recognition are im-
portant image analysis tasks in multi-camera networks. Many
approaches have been proposed in the literature over the last
few years (e.g., [1]), most of which rely on either some a
priori knowledge about the network topology or centralised al-
gorithms. Recently, tracking applications have been developed
on smart camera networks where the processing is distributed
among the camera nodes (e.g., [2], [3]). While these distributed
approaches apply different control strategies for managing
the tracking responsibilities, they rely on topology knowl-
edge and/or require iterative information exchange among the
cameras. Our novel approach overcomes these limitations and
is able to achieve robust, flexible and scalable multi-camera
control with low computation and communication overhead.

In this paper we present a socio-economic approach for
online vision graph estimation and tracking handover in smart
camera networks. Self-interested, autonomous cameras ex-
change responsibility for tracking objects in a market mecha-
nism in order to maximise their own utility. When handover
is required, an auction is initiated and cameras observing the
object bid to track it. By observing the trading behaviour
we learn the visual neighbourhood relations in the camera
network and generate the vision graph of the network online.

We apply ant-colony inspired pheromones to grow this vision
graph during runtime, which is then used to optimise the
communication effort among the cameras.

Our approach offers several benefits: It is fully decen-
tralised, requires only the exchange of local information, is
computationally inexpensive, supports online processing and
does not require any a priori knowledge about the camera
network or objects of interest. As a result, our proposed
approach is highly robust and works in dynamic environments
where a camera can be added or removed from the network
at any time without affecting any other parts of the network.

The main contributions of this research include the appli-
cation of market-based principles to coordinate the handover
in multi-object, multi-camera tracking, the online generation
of the vision graph, the exploration of the trade-off between
trading and communication effort and the use of ant inspired
artificial pheromones to direct marketing effort in order effi-
ciently manage this trade-off. Our novel approach has been
evaluated by a simulation study.

The remainder of this paper is structured as follows. Section
II provides a background to distributed smart cameras and the
problems of handover and vision graph generation. Section
III describes our approach, which makes use of local utility
functions to aid the decision process, a market mechanism
to allow cameras to hand over objects in order to maximise
their utility, and pheromone-based rules for automatic vision
graph generation. Section IV describes our experimental study
and summarises key results. Finally, section V discusses the
implications of this work and identifies areas for further study.

II. BACKGROUND AND PROBLEM DEFINITION

A. Object Tracking with Distributed Smart Cameras

In multi-camera tracking, the fundamental tasks of single
camera object detection and tracking must be expanded by a
handover mechanism which refers to finding the next camera
to see the target object once it leaves the FOV of the current
camera [4]. Various mechanisms have been proposed to solve
the handover problem. These mechanisms vary in the required



assumptions of the camera network, the distribution of data
and processing as well as the required resources [2].

In smart camera networks much effort is put on distributed
and resource-aware handover mechanisms due to increased
scalability and robustness [5]. One of the first autonomous
handover approaches on smart cameras has been presented by
Quaritsch et al. [6]. This approach relies on a static and a priori
known vision graph. The neighbourhood structure is encoded
in so-called migration regions which assign neighbouring cam-
eras to specific areas in the cameras’ FOVs. Whenever a target
object enters a migration region, a tracker is then started on
the neighbouring camera(s). Li and Bhanu [7] present a game-
theoretic camera handover; as in our market-based approach,
the next camera selection is based on a utility function which is
computed by a bargaining approach among cameras ”seeing”
the tracking object. However, the bargaining requires several
iterations among the involved cameras. The algorithm has been
implemented in a centralised way, which does not provide
good scalability or robustness. Qureshi and Terzopoulos [8]
introduce a distributed camera coalition formation scheme
for perceptive scene coverage and persistent surveillance by
smart camera sensor networks. They demonstrate the camera
selection and handover in a virtual environment.

The topology of a camera network is important for a number
of higher-level functions such as multi-camera tracking, target
following or camera placement optimization [9]. Observing
moving objects within the network is often used to learn the
topology over time (e.g., [10], [11], [12]). The estimation
approaches vary in the topology assumptions (e.g., overlap-
ping or non-overlapping FOVs), topology modelling and the
extraction relevant information from individual camera views.
In our approach, the trading of an object provides an implicit
snapshot on the network topology, i.e., the “selling” and the
“buying” by cameras represent a neighbourhood relationship.

B. Problem Formulation

Our primary objective is to track up to m distinct objects
within the aggregated FOV of n fixed cameras in the network.
Although an object might be “seen” by several cameras, a
single camera is responsible for tracking this object. Thus, the
network must distribute the tracking responsibility for at most
m objects among the n cameras at any time. This tracking
responsibility of camera i for object j can be expressed by j
being a member of the set of objects “owned” by i, which we
denote as Oi. When we say that camera i owns object j, we
mean that it is responsible for tracking it, has the right to track
it, and that it may sell it to other cameras. However, since our
cameras are controlled by autonomous software agents, they
make independent decisions about which object(s) in Oi to
attempt to track. Camera i’s decision to attempt to track object
j is expressed as the binary function φi(j).

We assume that a camera can track up to k objects simulta-
neously without exceeding its resource limitations and hence
without any degradation of the tracking performance. In our
analysis we assume that the number of objects tracked by a
camera is less than k. Thus, a conservative limit on the number

of objects would be m ≤ k. When camera i attempts to track
object j (φi(j) = 1), a tracking module is initialized with
a description of that object and is detecting and tracking the
object within the camera’s FOV. The tracking performance
depends on various factors such as object descriptor, distance,
orientation, partial occlusion and so on. In our study we
simplify single camera tracking and subsume all these factors
in a visibility parameter vj which is determined by the distance
and angle of the observed object to the observing camera. The
tracking performance is estimated by a confidence value cj .
Both values cj and vj are between 0 and 1 as soon as the
observed object is within the FOV of a camera, 0 otherwise.

III. A SOCIO-ECONOMIC INSPIRED APPROACH

The approach presented in this paper takes inspiration from
both social and economic systems, and is based on two distinct
concepts. Firstly, the allocation of objects to cameras makes
use of a market-based approach, similarly to those described
in [13]. Secondly, a pheromone-based mechanism inspired by
social interactions in ant colonies is used to build the vision
graph online, based on trading activity. This is then used to
determine communication between cameras. The ant inspired
approach is similar to ant colony optimisation [14], however
our novel use of artificial pheromones to enable targeted
marketing is a previously unexplored idea, which enables the
efficient management of the trade-off between communication
and utility. Additionally, the approach is robust to dynamics
and inherently scalable. We therefore believe it has signif-
icant potential for a range of decentralised applications, of
which distributed smart cameras are one example. The socio-
economic algorithm is implemented locally in each camera.

A. Utility and Market Mechanism

For a given camera i and its set of owned objects Oi, we
say that the instantaneous utility of camera i is given by

Ui(Oi, p, r) =
∑
j∈Oi

ui(j)− p+ r (1)

=
∑
j∈Oi

[cj · vj · φi(j)]− p+ r (2)

where φi : Oi → {0, 1} and is 1 if camera i attempts to
track object j and 0 otherwise. In addition to utility earned by
tracking objects, a camera b may make a payment to another
camera s in order to “buy” the right to track an object from
that camera. This requires that the “selling” camera s already
itself owns the object. If an exchange is agreed, then the object
is removed from Os and added to Ob. p denotes the sum of
all payments made in trades in that iteration, and r conversely
denotes the sum of all payments received.

To facilitate the exchange of objects, we propose the use of
Vickrey auctions [15] hosted by the selling camera. The Vick-
rey auction, also known as the second price sealed bid auction
is a single sided auction where bidders make one sealed bid
for a single item. The auctioneer awards the item to the highest
bidder, but at the price bid by the second highest bidder.
The advantage of the Vickrey auction from an implementation



perspective is that it has a dominant strategy for bidders: to
bid one’s truthful valuation, regardless of the strategies of the
other bidders. In contrast with other mechanisms, this removes
the need for cameras to possess adaptive bidding strategies,
or be required to learn a high performing context-dependent
strategy. In common with other market-based control systems
(e.g. [16]), currency is an artificial construct used as a tool for
system management; no real money is used.

Therefore, in our model each camera, in the absence of
any vision graph information, broadcasts information about
the objects it is currently tracking at in order to solicit bids.
Each camera i, upon observing such a broadcast, determines
the likely value of having the right to track the object (i.e.
having it in Oi) and if this value is positive, subsequently
responds privately to the broadcasting camera with its bid.
Since we use a Vickrey auction, each camera may place only
one bid and the dominant strategy of each camera is to set
this bid equal to its truthful valuation of the object in terms
of its contribution to the camera’s utility (see equation 2).

B. Pheromone-based Vision Graph Generation

One of the key advantages of our approach is that it
does not require the vision graph to be known a priori,
since cameras’ relative utility is used to determine which
camera the object should be handed over to. However, the
broadcast method used to support this decision is inefficient
in terms of communication overhead. For this reason, we
use a pheromone-based method for building the vision graph
online, from the trading activity occurring in the market. As
the cameras learn the vision graph, they may scale down the
amount of communication while still achieving high utility,
by announcing their objects only to cameras which are their
neighbours in the vision graph.

This use of artificial pheromones, built from previous trad-
ing activity to guide future marketing activity, is a novel
and highly useful method to achieve efficient outcomes in
the trade-off between communication and performance. Since
the pheromones both are reinforced and evaporate over time,
changes in the topology of the underlying vision graph during
runtime can be adapted to in a robust manner, and the loss
of individual cameras does not affect the wider system. Since
marketing communication can be concentrated on only those
small number of relevant camera nodes, our socio-economic
approach allows significantly improved scalability.

In this model, vision graph information is distributed and
local information stored in cameras. We therefore define for
each camera i an adjacency list, Ei, the set of all links (or
edges) local to that camera. Each element of Ei is the tuple
(i, x, τix), where x is another camera in the network and τix
is the strength of the link from camera i to camera x. Each
camera is initialised with an adjacency list containing tuples
from itself to all other cameras in the network, each tuple
with a strength value τix = 0 for all x. Subsequently, each
time camera i successfully sells an object to camera x, the
corresponding strength value is increased by a value ∆. In Ant
Colony Optimisation, the value of ∆ is often determined by the

problem’s properties. Although we have not yet investigated
the effect of different ∆ values in our model, we expect that
the properties of the camera network and objects to be tracked
will similarly affect optimal values for ∆.

However, following the analogy with pheromone evapora-
tion in ant colonies [14], over time the strength of the links
also decreases, allowing the system to overcome changes in
topology or cameras’ fields of view over time. The pheromone
update rule is shown in equation 3.

τix =

{
(1− ρ) · τix if no trade occurs on the edge
(1− ρ) · τix + ∆ if trade occurs on the edge

(3)
As in ant colony optimisation, ρ is the evaporation rate

parameter; higher values lead the pheromone to evaporate
faster, enabling the system to adapt to changes quicker, but at
a penalty of losing more historical vision graph information.
However, our approach here is not ant colony optimisation,
since pheromone information is not used to find optimal routes
through the network, but instead to represent a social network
of cameras with adjacent fields of view.

The initial broadcast behaviour of cameras can then be
dialled down as the vision graph is built up. Specifically, when
advertising an object that other cameras may wish to buy, a
camera i sends a message to camera x with probability P (i, x),
otherwise it does not communicate with camera i at that time.

In this paper we consider two ways of determining these
communication probabilities: firstly proportionally to the
strength of the links, as given in equation 4 and secondly where
the camera always advertises to those in its vision graph, and
with some small probability every other camera in the network,
as given in equation 5. We call these communication schedules
SMOOTH and STEP respectively. This represents a novel use
of ant inspired systems in the computing domain, as a method
of managing communication schedules.

PSMOOTH(i, x) =
1 + τix
1 + τim

(4)

where m is the camera with the highest strength value, e.g.

m = argmax
y

τiy,∀y

PSTEP(i, x) =

{
1 if τix > 0

η otherwise
(5)

C. Autonomous Camera Control

Putting together the aspects of the camera’s utility function,
decision process, trading behaviour and vision graph gener-
ation, we specify that each camera in the system behaves
according to algorithm 1.

As indicated in step 4, the handover algorithm should be
run regularly enough to ensure that objects are handed over
as close as possible to the optimal time, but without spending
unreasonable resources identifying objects in the scene purely
for the purposes of determining optimal bids.



Algorithm 1 The camera handover algorithm
1) Object trading of camera i

a) Advertise owned objects to each other camera x
with probability P (i, x).

b) For each received advertised object j, respond with
a bid at value ui(j) if this is greater than zero.

c) Accept received bids for each object k for which
ui(k) is less than the highest received bid. For each
accepted bid:
i) Remove k from Oi.

ii) Respond to the camera making the highest bid,
informing it of the required payment, the value
of the second highest received bid.

iii) Increment the camera’s utility by the value of
the second highest bid.

d) For each object l for which the bid sent was
accepted, add l to Oi and deduct the payment
amount from the camera’s utility.

2) Vision graph update of camera i: Update τix for all x
according to equation 3.

3) Tracking decisions of camera i: Select which objects in
Oi to track in order to maximise Ui(Oi).

4) Repeat at regular intervals.

IV. EXPERIMENTAL STUDY

To test our approach, we created a 2D simulation framework
with static cameras; the cameras’ fields of view are modelled
as segments (however, visualised as triangles in figures 1
and 3). Each camera is controlled independently, by an au-
tonomous software agent capable of communicating with other
such agents via message passing. At this stage, we assume
perfect tracking (i.e. every object within the FOV is properly
detected and identified) and calculate the visibility of an object
based the inverse Euclidean distance between the camera and
the object and the simulated position of within the FOV.

In each simulation run, the total cumulative utility across
all cameras was recorded (the social welfare) as a measure of
tracking performance. The number of messages sent between
cameras was also measured.

Four qualitatively different test scenarios were defined, and
each of these was used to compare the performance of the
six different variants of the approach presented. These are
illustrated in figure 1. Scenario 1 is the simplest scenario,
consisting of a row of cameras. Scenario 2 is similar though
the object’s path is not allways coverd by cameras. This is used
to illustrate that our approach can deal with non-overlapping
fields of view. Scenario 3 is more complex, simulating a
heavily covered corridor. Scenario 4 is similar, but with more
irregular overlaps.

Furthermore, we tested the approach with different numbers
of objects. Each object moves in a straight line in a certain
direction, which is initially defined such that it moves through
the fields’ of view of the cameras. To keep a constant number
of objects in the simulation, objects cannot leave the simu-

Scenario 1 Scenario 2

Scenario 3 Scenario 4

Fig. 1. Illustrations of the scenarios tested. Each camera is represented by
a circle, with its field of view indicated by the associated triangle.

lation but once they reach the boundary of the environment,
change their direction randomly and continue in that direction
until another boundary is reached.

A. Broadcast Approaches

Initially, two simple broadcast approaches, which we refer
to as active and passive, were tested in the simulation en-
vironment. In both broadcast approaches, each advertisement
message is broadcast to all other cameras in the network. In the
active approach, each camera advertises every object it owns
to the entire network at each simulation time step. This means
that other cameras attempt to gain ownership of objects as
soon as they enter their FOV. On the one hand this results in a
perfect tracking utility since the camera with the highest utility
for an object has ownership of it, but on the other hand the
communication between the cameras is significant. Contrary to
this, the passive approach minimizes the communication by
sending advertisement messages only when an object is about
to leave the FOV of its current owner. Though this reduces
communication, it requires that the camera’s utility from the
object is almost zero before handing over, even though another
camera might have had a better view earlier.

Figure 2 shows the overall system utility (i.e. the tracking
performance of the network) and the communication overhead
for the active and passive algorithms in scenario 1 with a
single object moving from left to right. The spikes in utility
occur when the object moves into the areas of high visibility
in front of each of the cameras. Due to the particular set-up
of this scenario, there is little difference in utility between the
two approaches, other than between the final two cameras,
where the active approach is able to hand over the object
sooner, which increases the objects’ visibility to the network,
and hence system utility. However, it is clear that the active
approach uses significantly more communication.

Since the active approach yields the highest possible levels
of communication and utility, the subsequently presented re-
sults in this paper are normalised in each case by the results
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Fig. 2. System utility (above) and communication usage (below) over time,
during a typical run of scenario 1 with one object. Active and passive broadcast
algorithms are compared.

from the active broadcast approach.

B. Multicast Approaches

It is clear that the market-based approach presented does
not require a vision graph in order to achieve effective object
handover. However, by generating the vision graph during run-
time, the camera network is able to achieve outcomes which
balance the trade-off between communication and tracking
performance. By scheduling the communication intelligently,
as described in section III, the cameras may intelligently
reduce communication, while minimising the associated per-
formance penalty.

The following experiments illustrate the effect of the mul-
ticast approaches SMOOTH and STEP, as described in section
III, when applied to both the active and passive schedules. In
all cases, ρ = 0.005, ∆ = 1.0 and cj = 1 for all cameras.

Figure 3 illustrates the pheromone-based approach to build-
ing the vision graph online during runtime. The state of the
vision graph is shown at four points through the simulation,
from initialisation where no adjacency information is known.
As the objects are traded between cameras, the links (indicated
by thicker red lines) are constructed. Over time, unused links
reduce in strength.

Figure 4 shows the overall performance of each of the six
variants of the approach firstly on scenario 1 and secondly
on scenario 3, with one object in the environment. Due
to the stochastic nature of the object’s trajectory and the

Iteration 0 Iteration 100

Iteration 200 Iteration 300

Fig. 3. The vision graph is built up during runtime through trading
interactions. Red lines indicate links in the vision graph; thickness indicates
strength. A cameras’ FOV turning yellow indicates a detected object.

communication algorithms, mean and standard deviation are
shown for each approach, calculated over 30 independent runs.

These results clearly show that the greatest difference be-
tween outcomes in the simpler scenario is obtained when
switching between active and passive approaches, while the
difference between broadcast and multicast communication
schedules has little effect. However, in the more complex sce-
nario, the different approaches yield different outcomes in the
trade-off between communication and tracking performance. A
Pareto front emerges, allowing the operator to select between
different handover algorithms based on how performance and
communication are valued.

For example, it could be imagined that for a camera network
where high tracking performance is crucial, and cameras
are connected with a high bandwidth connection, the active
broadcast or active SMOOTH approaches would be most suit-
able. However, in a deployment where cameras have limited
communication ability, some tracking performance can be
traded off for communication efficiency by selecting perhaps
passive broadcast or even passive STEP. Similar experiments
with complex environments and larger numbers of objects
yielded qualitatively similar Pareto fronts, indicating that this
is a characteristic of complex tracking tasks.

V. CONCLUSIONS

In this paper, we have presented a socio-economic approach
to identify spatial relations among FOVs in smart camera
networks. This fully decentralised and computationally effi-
cient approach relies on self-interested, autonomous cameras
which trade tracking responsibilities for objects using Vickrey
auctions. As demonstrated in our simulation study, this virtual
market for objects to track achieves scalable and robust
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Fig. 4. Performance (overall utility calculated across 1000 time steps) of
each of the six algorithms in scenario 1 (above) and scenario 3 (below). Both
utility and communication values are normalised by those from the active
broadcast algorithm. The trade-off between performance and communication
is apparent. Due to the stochastic nature of the object paths and algorithms,
the mean and standard deviation are shown, calculated over 30 independent
runs of the simulation.

tracking handover without relying on any a priori topology
knowledge. By observing the trading behaviour we learn the
visual neighbourhood relations in the camera network and
generate the vision graph of the network.

In our experiments we have explored the trade-off between
communication effort and tracking performance. Furthermore,
we have presented a novel ant-inspired method for efficiently
targeting marketing communication effort, such that the asso-
ciated utility penalty in the trade-off is minimised. Our market-
based approach results in a Pareto front for all tracking sce-
narios. Hence, a network operator can choose among different
performance/communication settings.

In simple scenarios, passive approaches achieved a com-
munication reduction of around 75% for a 20% penalty in
tracking performance. Conversely, in more complex scenarios
passive SMOOTH and passive STEP allowed reductions in com-
munication by as much as 90%, but with tracking performance
more than halved. However, active SMOOTH and active STEP
were found to provide reasonable positions within the trade-
off, allowing a 20-40% reduction in communication but with
less than a 10% drop in performance.

We believe that socio-economic methods can fundamentally

help to increase autonomy, robustness and flexibility in smart
camera networks. However, there is still a lot of room for
future work. One direction is to relax some of our assumptions
on tracking performance, networking capabilities and spatial
structure of the environment. Another direction includes the
modelling of the utility function over (future) time periods
and the elaboration of more advanced trading mechanisms.
Finally, we are currently implementing our novel approach in
a real smart camera network.
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