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ABSTRACT other vehicle categories such as motorcycles, but the system

. . an easily be adapted for distinction of further categories.
Vehicles may be recognized from the sound they emit The reminder of the paper is organized as follows: Sec-

S i 1o Grecerac acouse 109%hon 2 prerts the unized expermenta setp and o
business of exsting video based vefile racking and claC1e COMTOUACn fo ourresearc, Secton 3 iscusses
sification algorithms. Using this information in a multi- PP

sensor sureilance System felps o mprove variousparer £ SCCUS(C vebile tackng. In secton S diferent fature
eters such as recognition rates, detection times and robusg 9 P ’

: eatures from the input data. In section 6 it is utilized for dis-
ness. We propose a two-fold approach, where vehicle dete inction between the three vehicle categories together with a

tion and classification are handled separately. We demong . o .

strate the feasibility of the proposed rﬁethodyusing outdoop UPPO™ Vector Machine (SVM) classifier. Section 7 presents

audio sequences of traffic situations he experimental results and shows the feasibility of our ap-
q ’ proach. Section 8 concludes the paper with a summary and

an outlook on future work.
1. INTRODUCTION

In the I-SENSE project [1] we develop an intelligent multi- 2. ACOUSTIC TRAFFIC SURVEILLANCE SETUP

sensor fusion framework for embedded online data fusionrhe setup for our acoustic traffic surveillance consists of two
Fusing data from various sensors helps to improve the rqyicrophones next to the road. The distance between the sen-
bustness and confidence, to extend the spatial and tempokg],g (microphone base) is set torlin order to permit a
coverage as well as to reduce ambiguity and uncertainty Qfross correlation analysis (see section 5, and the height above
the processed sensor data. In the I-SENSE project we explgftound is 1m. Traffic sounds have been recorded at a sample
these characteristics to improve the quality of traffic surveilfrequencyfsz 8 kHzin 16bit resolution together with video
Iance_. _ _ data in order to ease the evaluation.

Since current traffic surveillance systems (e$mart- These recorded traffic sounds have then been utilized for
Cam(2]) are primarily based on video, integration of datathe development of the vehicle detection and classification
from audio, infrared, supersonic and inductive loop seNmethods in MATLAB. For real-time detection and classifica-
sors helps to improve various parameters such as recogijon these algorithms have been ported to and optimized for
tion rates, detection times, robustness and quality of service. TMS320DM642 signal processor from Texas Instruments.
While acoustic surveillance systems have been well studied
(e.g., recognition of vehicles [3, 4], machines and dropping 3. EVENT AND VEHICLE DETECTION
objects [5]), multi-sensor data fusion approaches are cur- '
rently driven by automatic speech and gesture recognitio@ur approach for vehicle detection is two-fold. To keep
systems [6]. the required computation resources low, we have decided

Almost all vehicles emit characteristic sounds whento separate the detection of vehicles from their classifica-
moving on a road. The sound is mainly composed of (i) rotion. For the vehicle detection we use a simple and fast al-
tational parts and vibrations in the engine (ii), noise causedorithm as presented in the following. If this simple algo-
by the exhaust tube (iii), friction between the tires and thegithm determines an interesting acoustic event, the complex
pavement and (iv) broad band noise caused by the air streaand time consuming classification algorithm is triggered for
of moving vehicles. In this article we describe our ongo-an in depth analysis of the observed object.
ing research on robust acoustic feature extraction methods In order to find out, if a vehicle is in range of the mi-
to support real-time traffic surveillance. Currently, recordeccrophone pair, an index is needed that describes the energy
traffic sounds are analyzed with respect to four criterionsdensity of the input signal as function of time. A pure en-
(i) the presence of a vehicle (ii), the characteristic acoustiergy analysis in time domain is not suitable for that, since the
fingerprint of a vehicle used to track an object (iii), the av-index must be particularly robust against background noise
erage velocity together with the driving direction, and (iv) from the (e.g., noise caused by the wind) environment. In
the vehicle category a detected object belongs to. Our acouaddition the method should offer a quantity for the probabil-
tic classification system is designed for distinction betweerity of a valid vehicle passing. In our approach we group the
three different vehicle categories car, van and truck. In oumnput samples into hamming windowed blocks, apply a short-
recording data only these classes appear without presencetwhe FFT analysis and sum up the logarithm of the spectral



line amplitudes:

1100

Efi] = Zlog(Xi L) 1
whereX; [K] is the Fourier transform of thé input block

xi[n] andE; denotes the corresponding energy index. A good
tradeoff between required processing power and accuracy of
the energy index is given by a blocksike= 256 samples.
The hopsize between adjacent blocks depends on the actue
setup and expected disturbances. The index is shown during
a vehicle passing in figure 1. In order to detect a vehicle, it
is necessary to find significant maxima in this energy func
tion. Applying a smoothing filter eases the implementatio
of an algorithm which is capable of finding local maxima. A
butterworth structure best smoothes the energy course.
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Figure 2: Energy indek[i] with conditions for vehicle de-
Ttection

Symbols Description

unfitered Energy Index tored Eneray Indox Thres Threshold for peak

T T W dMx Window size
il - Dif f Difference of min. and max
) ALY N MinArea | Minimal area of valid peaks
W - Dif MM Measure for symmetry
* . LocMxWd| Suppressor of peak ripple
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Table 1: Parameters for our experimental setup
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(a) according to equation 1 (b) filtered with Butterworth

) ) ) ) ] and air disturbances, (ii) the reduced time slot for vehicle
Figure 1: Energy indexg; during same vehicle passing by: recording and thus, less accurate fingerprint information and
(a) unfiltered and (b) filtered (iii) the Doppler effect. All three influences always occur

i i , ) together and significantly complicate extraction of reliable

On the first view (cp. figure 1) the group detay(in our  fingerprints. Distinct harmonic peaks from the motor sound

case of &Hz, tq = 0.29%) of the butterworth filter may look  ¢can be recognized from individual FET spectra only in rare
problematic. But this delay is relatively small compared tocgses.

the peak detectors retention, described in the following. Our so called audio fingerprints are calculated from char-

__There are many events that result in a peak in the energyeieristic FFT spectra of vehicles. In order to obtain more
index. So it is necessary to extract discriminating features 18 ecise information about spectral composition of engine
decide whether a peak is caused by an object of interest (e.

than a specified threshol@hres(cp. fig. 2, (1)) are ignored.
They must have a duration in a certain time ranggMx(cp.

fig. 2, (4)). Furthermore, the raise-time (cp. fig. 2, from (2)
to (1)) and the fall-time (cp. fig. 2, from (1) to (3)) must
be lower than a predefined valaf f. Vehicles typically

cause a symmetric peak, which distinguishes them from di
turbances. ParametBif fMM is defined as the difference

of a vehicle, should be as large as possible. For building the
average spectra, the time window is centered around the de-
tected energy peak. For the implemented algorithm, a time
period of approximately .bs around the maximum has been
chosen. To avoid a loss of information the input signal is win-
Slowed by 50% overlapping Hann windows. A longer time
period has to be avoided for the audio fingerprint, since in

between the left and the right minimum in the time window. o556 of 4 high traffic density there might be a temporal over-
The last criterion that must be fulfilled is the area below thelap with adjacent vehicles.

energy graph in the specified time window. It must exceed The Do .
: . : . ppler effect smears the spectrum of passing ve-
the parameteiinArea Trucks with trailers typically create hicles proportional with increasing velocity, which theoreti-

peaks with more than one local maximum. Therefore, a img., \eans that a correct evaluation of FFT spectra can only
span parametdrocMxW dis introduced to prevent multiple be carried out during their approach
detections caused by a single vehicle. . Lo -
In order to track a vehicle over multiple sensors, it is re-
4. VEHICLE TRACKING quired to recognize it on other audio channels. Within small
spatial ranges an acoustic fingerprint can be used for this
In contrast to vehicle detection, vehicle tracking based omecognition and is an easy objective for an algorithm by us-
acoustic fingerprinting requires substantial computation. ling the average spectra to compute a numeric value which
our approach a fingerprint is generated if a vehicle passindescribes the similarity of two spectra. This similarity mea-
the microphones has been detected. Problems, which hasare is calculated by cumulative summation of the weighted
to be considered, especially when dealing with vehicles adifference between each frequency bin when comparing two
higher speed are (i) the increased noise caused by the tirasoustic fingerprints. The weighting coefficiemisdecrease
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Figure 3: Averaged spectrum of vehicle (&ph) recorded with 50n spatial difference

proportional to the frequency bin index k withy = % In measure for the noisiness of a signal. As cars produce more
this way, lower frequencies from the motor noise of vehicledire noise than trucks at higher frequencies (typical frequency

are more weighted. range 5001z-2kH2), this measure provides useful class dis-
crimination properties, especially with higher vehicle veloc-
5. VEHICLE FEATURE EXTRACTION ity. Cross-correlation analysis can be performed with our two

. . , ) ) __microphones placed along the road side. Point like sound
Various signal processing algorithms were implemented Wity ;rces produce interference patterns in a two dimensional
MATLAB in order to collect a pool of candidate features able giagram, where the cross-correlation function is plotted over
to dlstlng_wsh between our three vehicle categories. Ea_ch Qme. By applying image processing algorithms, vehicle
the algorithms extracts several features from the raw inpYiharacteristic information can be extracted from these traces:

data and returns so called candidate features. They are Usede speed can be estimated, the number of axles and their
as input to an optimization stage of the system design, wher, acing. '

the subset with best class discrimination ability is selecte
out of the candidates. This optimization procedure is per
formed with a genetic algorithm (GA) [7] that utilizes the _ ) _ )
classification performance (percentage of correctly classifie§pectral features include signal attributes that describe av-
vehicles) of the classifier from section 6 as quality measur€rage energies, positions and spreads in frequency domain,
for class discrimination properties of a selected feature sutsuch as the spectral centroid, signal bandwidth, spectral flux,
set. The goal of the optimization is to find the feature subOr band energy ratios. Mathematical definitions can be found
set with best classification properties. Extracted candidatt® [8]. They are commonly used in speech recognition, envi-
features are calculated with the algorithms described in thEonmental sound recognition and audio genre classification,

5.2 Spectral Features

following. and provide feature candidates with useful information about
spectral signal properties. Because single spectral bins do not
5.1 Time Domain Features contain relevant information for classification purposes, and

are also mutually correlated (i.e. they are linearly dependent

Features in time domain are generated from short time enegy, gach other), spectral bins that provide good classification

gies, zero crossing rates and correlation analysis algorithmdéerformance achieve only little performance improve when
Due to block processing of the audio signals, spectral fed:ompined together in a feature vector. As single feature val-
tures are always given as feature vectors which reflect sigyeg provide only local information for distinct blocks, again

nal behavior over time. Thus, statistical moments such f%atistical moments must be calculated to capture long term

mean, variance and median values must always be utilizefgna| characteristics from the analysis window of a passing
to reduce feature data and to include information about NONjehicle.

stationary feature behavior. In speech recognition short time
energy is.used to discrimin&}te bet_ween voipged qnd unvoice§.3 Cepstral Features

speech signals. For acoustic vehicle classification the mean

energy within the analysis window is an important feature,The Cepstrunt(t) of a signalx(t) is defined as the inverse

as large trucks usually produce much more noise than oth&ourier transform of the logarithm of its spectrum:

vehicles. The crucial step is to find a suitable length for the

analyzed signal. If the analysis window is chosen too long, in c(t) = F H{log|F {x(t)} |}, 2
dense traffic situations adjacent vehicles appear in the energy

course. Conversely if it is too short, non-stationary signal bewhere F denotes the Fourier transform. Cepstral coeffi-
havior and noise effects may scatter feature data. Thus, tliéents (CCs) are popular feature candidates in speech recog-
analysis time interval is selected depending on on the presenition systems, as they provide very good information pack-
traffic scenario with expected disturbances and vehicle vang properties: Low order CCs capture information about the

locities. The zero crossing rate counts the number of zerslowly varying properties of the spectrum, also referred to as
crossings of a signal within the specified time interval. It is aspectral envelope. Multiplication of the signal by a constant




gain for example, only affects the first cepstral coefficiept (  [->cenarc | Velicles [ dLC | dRC [ FP-ok | FPnok | Rafe
term), feature vectors can thus be made invariant to changes| 2 36 28 | 32 27 5 750%
of gain by exclusion of this term. Higher order cepstral coef- 3 = ot s oo
. . 0
ficients can also be used to detect the fundamental frequency

of a periodic signal, because harmonic line sets in the log- Table 2: Experimental results object detection
arithmic spectrum coincide as single peaks in the cepstral

domain.

CCs are computed either directly using equation 2, or es-
timated via linear predictive analysis by converting LPC co-features able to keep class discriminative capabilities when
efficients into LP based cepstral coefficients. The LPC padtilized in different traffic scenarios. Therefore the present
rametersy in an autoregressive (AR) model are directly ob-database combines vehicles recorded on both urban roads
tained as system of equations from the autocorrelation fun@and suburban highways, and thus, vehicles moving with low
tionr(k), by solving the so called Yule-Walker equations: and high speed in a range fromigthto 10kph During
the optimized feature subset search this let to features which
P i achieve reliable classification performance for both traffic
‘Za@f (Ik=if) =r(k), () situations. Hence, they are generally able to discriminate be-
1= tween the vehicle classes without influence of different ve-

wherep denotes the selected model order, which must be sé‘i}cg'feez‘u];g'z;ggg?'que Is also referred to as generalization

high enough to provide a detailed signal information. The se?
of linear prediction coefficients (LPCs) is converted into
LP based cepstral coefficients by the following recursion: 7. EXPERIMENTAL EVALUATION

Different algorithms have been developed for the real-time

~ [In(r(0)) form=0 4 analysis of traffic sounds at the DSP. The vehicle detection is

™ lam+ ka:ll (%) C@m_k form>1 ) a C-implementation of the algorithm described in section 3.

B The highly optimized code for data acquisition and the event

whereag = 1 anda, = 0 fork > p. detection causes a utilization of approximately 10% of the

This method avoids any signal transformation and thusPSP. The identification assigns a characteristic fingerprint
offers highly reduced computational effort, provided thatwhich is compared with all stored fingerprints of a certain
only a few cepstral coefficients are needed — which is théime span on the other channel. In case of matching finger
case. LP based CCs as features afford efficient use in reBlints the event is counted and the average velocity is esti-
time environments. |n our traffic scenario case Study bot}ﬁnated..Furthermore, the dr|V|ng direction of vehicles can be
FFT and LP based CCs proved good classification results arftetermined. L
outperformed other spectral envelope estimates, such as filter In the following we demonstrate the feasibility of our ap-
bank analysis (Haar transform, channel vocoder) and diregtroach based on four different test scenarios:
utilization of LP parameters;. Figure 4 shows the class sep- Scenario 1: urban one-way street (max. 50 kph)
aration based only ogy. Scenario 2: urban street, two driving directions

Scenario 3: suburban two lane street (max. 70kph)
0% Scenario 4: highway (max. 100kph)

The second column of table 2 contains the quantity of
vehicles during the scenaridLC and dRC comprise the
o detected events at the left and the right channel. The fol-

02 lowing two columns EP-ok, FP-nok) present the correct as
. well as the incorrect matches of the implemented fingerprint
algorithm.
o A major problem when evaluating our classification sys-
2 03 0.4 EIE-l|j| 0.

0.3

Prohability Density

tem is the scattering of the results, when using randomly se-
Hﬂﬂ ‘ lected training data sets. Since vehicle features may contain
oyt A strong outliers, the classifier can easily be confused when
trained with noised learning samples. Hence, classification
error rate highly depends on the utilized learning data. A so-
Figure 4:Histograms for feature values of. Car (left) and truck  1Ution to this problem is to train and test the SVM several
(right) classes are almost completely separated. times, each with different learning samples chosen randomly
from the database and to present the resulting data scattering
as shown in figures 5. This procedure leads to more accurate
6. VEHICLE CLASSIEICATION evaluation results, as the spread of classification performance
' is estimated. In figure 5a performance evaluation of the opti-
The vehicle classification is performed with a support vecmized feature subset is carried out by exploring the error rate
tor machine (SVM) classifier which is trained with a given when trained with different percentages of the database size,
amount of vehicle samples before switched to decision modéere referred to as learning fraction. If the database contains
In order to evaluate classification performance, a vehicl00 vehicles from each class, and the SVM for example is
database provides 200 vehicle samples per class. An intrained at 40% learning fraction, this corresponds to 80 vehi-
portant goal for our acoustic classification system is to finctles from each of the categories used for learning and the rest

Feature Yalue
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Figure 5: Error rate evaluation for (a) different learning data size, and (b) classifier performance at 50% learning fraction.

for evaluation. In order to show the scattering of error rate, the International Conference on Intelligent Sensors, Sen-
evaluation is performed 100 times with randomly selected sor Networks and Information Processing ISSNWfl-
learning data. Figure 5b contains the percentage of correct bourne, Australia, Dec. 2004.

decisions in each of the classes achieved at 50% learning] A. Harma, M.F McKinney, and J. Skowronek, “Auto-
fraction. As we can see, the truck class is well distinguish- ~ matic surveillance of the acoustic activity in our living
able, while car and van classes can't be fully separated from  enyironment,” inProceedings of the International Con-

each other. ference on Multimedia and Expémsterdam, Nether-
lands, Jul. 2005.

8. CONCLUSION [6] M.N. Kaynak, Zhi Qi, A.D. Cheok, K. Sengupta, and

As shown in the table 2 the implemented algorithm for event Ko Chi Chung, Ang:hO-Vlsua_I modeling for bimodal
detection (vehicle detection) is suitable in test cases with an sépeefch recogmtéon,t |ﬁ>roc'\jed|ngsdoéthbe Inte{nauonal
average velocity below 7Rph Increased background noise Uggeggtcgggl ys elrgi’_l;g’ and Lybernefiasson,
(e.g., caused by wind) makes proper vehicle detection more ’ : K PP ) ' ) ]
complicated. The fingerprint algorithm works best for slow[7] M. Mitchell, An introduction to genetic algorithms1IT
moving vehicles and one-way driving direction. If the char- ~ Press, Cambridge, MA, 1996.

acteristic sounds of vehicles overlap, as it is the case on tw§8] G. Tzanetakis and P. Cook, “Musical genre classifica-
lane streets, the number of identified vehicles drops. Since tion of audio signals,IEEE Trans. on Speech and Audio
the proposed acoustic vehicle classification method is used Processingvol. 7, pp. 293-302, 2002.

in a multi-sensor system, it is a well suited extension to other

sensory data (e.g., video, inductive loops).
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