
Final Version

A Novel Software Framework for Embedded
Multiprocessor Smart Cameras

ANDREAS DOBLANDER, Allgemeines Rechenzentrum GmbH, Austria

and

ANDREAS ZOUFAL, Austrian Research Centers GmbH, Austria

and

BERNHARD RINNER, Klagenfurt University, Austria

Distributed smart cameras (DSC) are an emerging technology for a broad range of important
applications including smart rooms, surveillance, entertainment, tracking and motion analysis.
By having access to many views and through cooperation among the individual cameras, these
DSCs have the potential to realize many more complex and challenging applications than single
camera systems.

This paper focuses on the system-level software required for efficient streaming applications
on single smart cameras as well as on networks of DSCs. Embedded platforms with limited
resources do not provide middleware services well-known on general-purpose platforms. Our
software framework supports transparent intra- and inter-processor communication while keeping
the memory and computation overhead very low. The software framework is based on a publisher-
subscriber architecture and provides mechanisms for dynamically loading and unloading software
components as well as for graceful degradation in case of software- and hardware-related faults.
The software framework has been completely implemented and tested on our embedded smart
cameras consisting of an ARM-based network processor and several digital signal processors. Two
case studies demonstrate the feasibility of our approach.

Categories and Subject Descriptors: D.2.11 [Domain-specific architectures]: Patterns; C.3
[Real-time and embedded systems]:

General Terms: design; performance; reliability

Additional Key Words and Phrases: smart cameras; publisher-subscriber; fault tolerance; video
surveillance; distributed embedded systems

Authors’ addresses: A. Doblander, Allgemeines Rechenzentrum GmbH, Tschamlerstraße 2, A-
6020 Innsbruck, Austria. E-Mail: andreas.doblander@arz.at

A. Zoufal, Austrian Research Centers GmbH, Donau-City-Straße 1, A-1220 Wien, Austria. E-
Mail: andreas.zoufal@arcs.ac.at
B. Rinner, Institute of Networked and Embedded Systems, Klagenfurt University, Lakeside B02b,
A-9020 Klagenfurt, Austria. E-Mail: bernhard.rinner@uni-klu.ac.at
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20TBD ACM 0000-0000/20TBD/0000-0001 $5.00

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD, Pages 1–29.

2 · Andreas Doblander et al.

1. INTRODUCTION

Recently much effort has been put into the development of distributed vision sys-
tems with smart cameras [Wolf et al. 2002; Bramberger et al. 2006] as key compo-
nents. Smart cameras combine video sensing, processing and communication within
a single embedded device and are equipped with a high-performance onboard com-
puting and communication infrastructure. Instead of streaming raw video data
they typically deliver abstracted information such as color or geometric features,
segmented objects or rather high-level decisions from the observed scene.

Networks of distributed smart cameras (DSC) [Aghajan and Kleihorst 2007; Rin-
ner and Wolf 2008a] are an emerging technology for a broad range of important
applications including smart rooms, surveillance, entertainment, tracking and mo-
tion analysis. By having access to many views and through cooperation among the
individual cameras, these networks have the potential to realize many more com-
plex and challenging applications than single camera systems. DSCs exemplify two
recent trends in visual computing research: distributed processing and embedded
computing. Thus, DSC systems use distributed algorithms to perform complex
vision tasks across multiple cameras in real time.

Designing, implementing and deploying applications on DSC networks is much
more complex than for single-camera systems. On general-purpose platforms, dis-
tributed applications are often developed based on a middleware system which pro-
vides services for networking and data transfer. On DSC networks we would like
to take advantage of middleware services as well. However, the requirements of a
middleware for distributed image processing on embedded devices are significantly
different. Component-based middleware such as DCOM or CORBA are targeted for
general-purpose computing and are not suitable for resource limited devices. The
CORBA technology has been adapted to resource constrained real-time systems,
e.g., by the Real-Time CORBA (RT-CORBA) specification and its TAO imple-
mentation [Schmidt 2002]. However, this approach is still very resource consuming.
On the other hand, recent research in wireless sensor networks (WSN) has come up
with some interesting middleware concepts as well [Akyildiz et al. 2002]. Due to
the nature of WSNs these middleware systems especially focus on reliable services
for ad-hoc networks and energy awareness [Molla and Ahamed 2006].

DSC networks differ from WSNs in various aspects as well. First, the amount
of data to be processed is much higher in DSC networks than in WSNs. Second,
individual processing nodes in a DSC network are more capable than in WSNs.
While resource constraints on the embedded smart cameras are important, the
resource limitations, especially energy, are of top priority in WSN. Third, due to
ad-hoc networking, communication in WSN has a very dynamic nature. DSCs,
on the other hand, are typically connected via wired networks providing higher
communication bandwidths.

This paper focuses on the system-level software required for efficient video pro-
cessing applications on single smart cameras as well as on networks of DSCs. We
describe the architecture of this middleware, discuss the design and implementation
alternatives, present performance data and demonstrate its applicability towards
fault tolerance. The main contributions of this research can be summarized as
follows:
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras · 3

Software framework for embedded multi-processor platforms. The devel-
oped software framework is based on a publisher-subscriber model designed for
real-time multimedia applications. This software framework supports transparent
intra- and inter-processor communication and scales well with the number of pro-
cessors on the embedded platform. Our software framework introduces very little
overhead concerning memory requirements and communications times compared to
an implementation using standard operating system calls.

Dynamic component composition. Our software framework supports dynamic
component composition—a feature typically known only on general-purpose plat-
forms. Algorithms can be specified using a component model which includes the
algorithm’s binary, the resource requirements, the performance ratings and the re-
configurable algorithm attributes. By monitoring the available system resources
and by exploiting dynamic loading and reconfiguration, software components can
be loaded and unloaded on the embedded platform during runtime. Thus, dynamic
component composition provides the mechanism to change the functionality (code
and QoS) on demand and during runtime.

Simple but effective fault tolerance mechanisms. The software framework in-
cludes simple but effective mechanisms for fault tolerance as well. Various software-
and hardware-related faults can be detected by monitoring the resource utilization
and by applying simple fault detection mechanisms such as alive messaging and
watchdog timers. By exploiting dynamic reconfiguration, detected faults can be
eluded and the services may then still be available—potentially at a lower QoS-
level.

Implementation and case studies. The software framework has been completely
implemented on our embedded smart camera platform (SmartCam). Although our
smart camera is a dedicated hardware platform consisting of a network processors
and several digital signal processors, the software framework can be easily ported
to other platforms. Several case studies have been conducted to demonstrate the
feasibility of our approach.

The remainder of this paper is organized as follows. Section 2 reviews related
work on middleware and frameworks as well as component models and technology.
This review on related work focuses on embedded systems with their inherent strong
resource limitations. Section 3 briefly summarizes our embedded multi-processor
SmartCam architecture which provides the hardware and basic software platform
for the implementation of our novel software framework. Section 4 presents our
middleware architecture in detail. We first describe the design of the publisher-
subscriber (PS) architecture for single camera applications and then focus on dy-
namic component composition based on our PS architecture. Section 5 describes our
fault tolerance approach for graceful degradation in networks of distributed smart
cameras. Section 6 presents experimental results concerning the performance of the
PS middleware as well as an evaluation of the fault tolerance architecture using two
fault scenarios. Section 7 concludes this paper with a discussion and an outlook for
future work.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

4 · Andreas Doblander et al.

2. RELATED WORK

2.1 Middleware and Frameworks for Embedded Systems

2.1.1 CORBA-based general purpose middleware. Middleware for distributed
and embedded systems is a very active research field. A lot of work has been done
to support transparent communication and to ease distributed application develop-
ment. Component-based middleware technologies from general purpose computing,
such as, Microsoft DCOM [Sessions 1997], Java RMI [Pitt and McNiff 2001] and
OMG CORBA [Pope 1998] are not suitable for very resource limited devices [Mas-
colo et al. 2002]. To adapt the CORBA technology to resource constrained real-time
systems the Real-Time CORBA (RT-CORBA) and Minimum CORBA specifica-
tions [The Object Management Group 2001; Object Management Group 2002] have
been introduced.

Schmidt et al. [Schmidt 2002] invented “TAO” as an implementation of the
RT-CORBA specification. It is an object request broker especially developed for
distributed real-time and embedded systems. Their CIAO framework [Balasubra-
manian et al. 2003] extends TAO to also include a component model for distributed
real-time and embedded systems that enables easy component composition. All
these approaches are quite large and, therefore, not suitable for our multi-DSP
platform. They are further not available on the operating system of our DSPs and
cannot easily be ported to it.

In general all these approaches share the idea of providing transparent commu-
nication among objects or components residing in different address spaces. The
problem is that they also aim at supporting a wide range of programming lan-
guages and mostly general purpose computer architectures. That is the reason why
these middleware systems impose substantial overhead. What they provide rather
well is software reuse and platform independence. But as these advantages can-
not be exploited in the highly specialized SmartCam platform a very light-weight
approach was chosen and is presented in this work.

2.1.2 A Micro-broker-based Middleware for Pervasive Computing. In [Becker
et al. 2003] the authors present their BASE middleware for pervasive computing.
This work aims at a scalable and efficient middleware that serves all possible com-
puting architectures for pervasive computing.

BASE is based on a micro-broker that only implements very basic functionality.
All other features can be added as plug-ins as needed. Especially, transport proto-
cols are added as plug-ins. By this technology it is easy to adapt the middleware
to new protocols and communication devices.

In this work a very similar approach is presented where a medium abstraction
entity takes care of transparent communication. This abstraction object is also
easily extended to handle new communication media. The micro-broker is quite
analogous to micro kernels known from operating system technology.

Although the BASE middleware was implemented in Java it is very memory
efficient due to the micro-broker approach that focuses only on the most important
middleware features. However, transport of remote invocations is realized through
the Java RMI interface. Therefore, it suffers from substantial performance overhead
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras · 5

for remote service invocations. It exploits locality so that unlike RMI it does not
need to pass through the RMI and TCP protocol stacks.

2.1.3 Distributed SW Architecture for ubiquitous sensor systems. Lin et al. [Lin
et al. 2006] present a software framework for ubiquitous smart cameras. It is a joint
effort of the Princeton’s smart camera group and the Vanderbilt University’s Model-
Integrated Computing (MIC) group. Their focus lies on the modeling and design of
real-time embedded camera systems.

Based on their gesture recognition system prototype they investigate a fully dis-
tributed communication pattern to support intelligent and ubiquitous applications
using several cameras. As the heart of the system a multi-layer software framework
provides a service-oriented platform for different algorithms.

Although their goals are similar to ours, their implementation differs significantly.
Their framework is based on the model-integrated computing (MIC) environment
[Karsai et al. 2003], and they use DirectX as middleware system. Standard PCs have
been used as prototyping platform which is obviously not a distributed embedded
system.

2.1.4 Texas Instruments DaVinci Technology. The DaVinci technology by
Texas Instruments (TI) [Mody 2006] is an innovative framework for multi-core em-
bedded DSP solutions. The intended applications are multimedia appliances that
rely strongly on complex signal processing algorithms. Extending previous archi-
tectures TI provides a complete software bundle to ease application development.
On the one hand there are the two operating systems, i.e., Linux for the ARM and
DSP/BIOS for the C64x DSP, along with different support libraries. On the other
hand there is an abstraction to aid developers in using third-party components
easily.

Similar to our approach presented in previous work [Bramberger et al. 2006]
signal processing algorithms are treated as components. The application developer
can plug and unplug them using standardized interfaces. But in contrast to our
approach they currently support only encoder and decoder algorithms. Based on
their XDAIS [Instruments 2002] component standard they extended it to XDAIS-
DM or XDM to also support algorithm descriptions that are needed for proper
composition of multimedia algorithms. Mainly this information is dedicated to
different QoS settings as resolution, frame rate and the like.

In contrast to that the algorithm description interface presented in this paper is
more flexible and is not limited to encoder and decoder tasks. Another difference
to the presented approach is that the XDAIS-DM framework focuses on a single
SoC. Indeed it handles two different cores but it does not address distributed nodes
and communication among different algorithms residing in different address spaces
as does the framework presented in this work.

2.2 Component Models and Technology

2.2.1 Large-scale server component models. One of the most well known com-
ponent models is the CORBA Component Model (CCM) [Group 2005] that is speci-
fied for the CORBA specification in its third version. Other well known commercial
component-based approaches include Sun Enterprise Java Beans (EJB) [DeMichiel

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

6 · Andreas Doblander et al.

2002] and Microsoft .NET [Microsoft 2005]. These are full-featured component sys-
tems that are mostly used in the development of large-scale business applications.

Because of the rich feature set they are also very large software systems that
also impose substantial performance overhead. In embedded systems the focus
is on light-weight solutions and, therefore, these major component systems along
with their corresponding component models are not suitable in a typical embed-
ded setting. To overcome the problems of excessive memory and computing power
requirements Light Weight CCM (LwCCM) [Systems and Thales 2003] was sub-
mitted to the Object Management Group (OMG) for specification.

LwCCM aims at providing only core features. Advanced functionality of the
CCM is not included in LwCCM. Thus, it can be implemented for resource crit-
ical embedded systems. Embedded CORBA-based applications can, therefore, be
realized using LwCCM. Persistence, transactions and security are not addressed in
the LwCCM specification. Nevertheless, compatibility with the full-flagged CCM
specification is retained so that LwCCM components can also be deployed on CCM-
based systems.

2.2.2 SaveCCM—A component model for safety-critical real-time systems.
SaveCCM [Hansson et al. 2004] is a specialized component model aimed at safety-
critical control applications in vehicular systems. It is only of limited flexibility
but, on the other hand, facilitates analysis of real-time and dependability issues
in embedded control systems. As part of an overall effort to improve dependabil-
ity in vehicular system SaveCCM is also accompanied by a dedicated component
framework to also improve development processes.

Note that the term SaveCCM has nothing to do with the CORBA component
model (CCM). It is merely a composition of the project name SAVE, the frame-
work SaveComp and the general term component model and might be stated as
SaveComp Component Model. Based on a pipes and filters paradigm the execution
model of SaveCCM is rather restrictive. Components as the basic unit of encapsu-
lation can be in either state, executing or waiting to be triggered, respectively.

The component model defines three other entities besides a component. First,
there are switches that are used to dynamically change component interconnec-
tions. Second, assemblies are a means for forming aggregate components. As the
third part the runtime framework provides services like component communication,
component execution and control of sensors and actuators.

2.2.3 An Efficient Component Model for the Construction of Adaptive Middle-
ware. In [Clarke et al. 2001] the authors present OpenCOM which is a light-weight
component model based on the standardized COM component model [DeMichiel
1995]. To be efficient it only supports a subset of the overall COM specification.
That is, only a single address space is supported.

This is in contrast with the approach described in this work where the benefit
is that component interaction is supported beyond address space boundaries in a
transparent way. Furthermore, OpenCOM does not implement standard compo-
nent model features such as distribution, persistence, security, and transactions.
But the OpenCOM model is designed for dynamic reconfiguration of components
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras · 7

which is in contrast to most standard component models that do not very well sup-
port the deployment phase of components in a dynamic application environment.

The interesting thing with OpenCOM is that it is designed as a component model
for the design of middleware platforms itself. That is, it is not used to provide a
structure for component interaction on top of a framework to form applications but
to develop the framework.

2.2.4 AFT-CCM—Adaptive Fault-Tolerance on the CORBA Component Model.
AFT-CCM [Fraga et al. 2003] is a component model based on CCM. It is aimed at
applications with fault-tolerance requirements. Like most CORBA-based technolo-
gies it is also designed for large-scale distributed computing systems mostly applied
in web applications. The application programmer can specify QoS requirements for
services and the desired levels of dependability can also be defined.

To achieve a special dependability level different forms of component, i.e., service,
replication are employed. Several dedicated system components are responsible for
the transparent replication of application components. Furthermore, key system
components are also replicated on different hosts in the system to guarantee cor-
rect replication also in case of failures in the runtime environment supporting the
component model. Of course, it is also possible to integrate components into the
system that are not critical and, therefore, do not need to be replicated. Persis-
tence of component state information is achieved by constantly saving it to local
non-volatile storage. Hence, on failure of a component its state is restored to a
replica to continue normal operation after minimum downtime.

Given the significant overhead of the overall management framework and the full
redundancy of replication it is understandable that each host in such a system has
to provide substantial hardware resources. Therefore, AFT-CCM is not suitable
for cost-sensitive embedded applications.

3. EMBEDDED SMART CAMERA PLATFORM

Our SmartCam [Bramberger et al. 2006] provides the hardware and basic software
platform for the implementation of our novel software framework. This section
summarizes the embedded platform; more details can be found in [Bramberger
2005; Doblander et al. 2006a].

3.1 SmartCam Hardware Platform

Fig. 1 depicts the hardware architecture of our SmartCam which is comprised of a
sensing unit, a processing unit and a communication unit. A CMOS image sensor
is the heart of the sensing unit. It delivers color images up to VGA resolution at 25
frames per second to the processing unit via a FIFO memory. The processing unit
is composed of a variable number of digital signal processors (DSPs) which are con-
nected via a local PCI bus. The image processing algorithms are executed on these
DSPs. An ARM-based network processor (XScale) controls the communication
unit which has two main tasks. First, it coordinates the internal communication
among the DSPs as well as the DSPs and the network processor. Second, it provides
IP-based communication channels to the outside world.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

8 · Andreas Doblander et al.

WLAN

GPRSSerial

Ethernet

Sensor

CMOS
Ir

is

Sensor Control

Memory

DSP

DSP

Video Encoding

Memory

Processing UnitSensing Unit

PCI

Communication Unit

Video Analysis

Network
Processor

Linux

Fig. 1. The SmartCam hardware architecture. It comprises a sensing unit, a processing unit, and
a communication unit. Up to ten DSPs provide the necessary computing power for video analysis
algorithms.

3.2 Basic Software Architecture

The software architecture of our smart camera is designed for flexibility and recon-
figurability. It consists of several layers which can be grouped into (i) the DSP-
Framework (DSP-FW), running on the DSPs, and (ii) the SmartCam-Framework
(SC-FW), running on the network processor. This architecture is based on the ab-
straction that the application logic is running on the network processor and loads
and unloads the actual analysis algorithms onto the DSPs as needed. An overview
of the software architecture of our smart camera is depicted in Figure 2.

SmartCam Framework. The SC-FW that is illustrated in the left part of Fig-
ure 2 serves two main purposes. First, it provides an abstraction of the DSPs
to ensure platform independence of the application layer. Second, the applica-
tion layer uses the provided communication methods, i.e., internal messaging to
the DSPs and external IP-based communication, to exchange information or offer
data relay services for the DSP-FW. Modules of this part of the software architec-
ture support application development in that they provide high-level interfaces to
DSP algorithms and functions of the DSP-FW. Especially, the mobile agent system
(MAS) makes extensive use of these services to access the DSPs. To further ease
application development the network processor is operated by Linux. Thus, the
SmartCam-Framework is running on top of a standard Linux kernel.

DSP Framework. This part of the software architecture, as indicated in the right
part of Figure 2, runs on every DSP in the system. The main purposes of the
DSP-Framework are (i) the abstraction of the hardware and communication chan-
nels, (ii) the support for dynamic loading and unloading of application tasks, and
(iii) the management of on-chip and off-chip resources of the DSP. Of course, the
sensor interface module is only needed on the DSP to which the image sensor is
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras · 9

User Mode (Application Layer)

Kernel Mode

SmartCam Framework Middleware Layer

Directory

Service
(DS)

Application

(e.g., RTP Video-
Streaming Server)

Resource
Monitor

(RM)

Linux Kernel

DSP-Framework

DSP/BIOS
real-time operating system

PCI
Messaging

DSP Algorithms

DSP-
Resource
Manager

(RM)

SmartCam-Framework DSP-Framework

DSP Kernel Module

PCI Messaging and Synchronization

Network-Processor DSP

PCI Bus

Processor
Boundary

Algorithm 1

(e.g., MPEG-4
Encoding)

Publisher-
Subscriber

Manager (PSM)

CMOS
Sensor

Interface

Medium

Abstraction
(MAO)

Software-Framework

Dynamic
Loader

Publisher-
Subscriber
Manager
(PSM)

Medium
Abstraction

(MAO)

Directory
Service

(DS)

Monitoring/
Diagnosis
and Fault

Handling Unit

Algorithm 2

(e.g., Stationary
Vehicle

Detection)

Algorithm n

(e.g., Vehicle
Tracking)

Algorithm
Migration /
Dynamic
Loading

(e.g., MAS)

Monitoring/
Diagnosis and
Fault Handling

Unit

Other
Standard

Linux
Applications

Fig. 2. The overall software architecture of our smart camera. In the left part of the figure
the so-called SmartCam-Framework is illustrated while the right part shows the so-called DSP-
Framework.

connected. The key functionality in the DSP-Framework is the publisher-subscriber
middleware that is described in Section 4.1. These service management facilities
are needed to allow algorithms on different DSPs to establish connections to each
other dynamically. The DSP-Framework is built upon the DSP/BIOS operating
system from Texas Instruments.

Dynamic Loading. All video analysis algorithms and also some framework com-
ponents can be loaded and unloaded at runtime by the Dynamic Loader module.
Actually, only modules of the DSP-FW in dark shade in Figure 2 have to be avail-
able at startup. All other components can be dynamically loaded at runtime.
Therefore, the framework and the application can easily be extended or adapted to
dynamic changes in the system’s environment if desired.

The dynamic loading facilities are also the basis for more sophisticated services
like load distribution [Bramberger 2005], dynamic power management [Maier 2006],
and graceful degradation to cope with faults.

4. MIDDLEWARE ARCHITECTURE

Distributed image and video processing are the main applications typically found
on smart cameras and visual sensor networks. Our major goal was to develop a
middleware that supports the requirements of visual sensor network applications
as much as possible:

Flexibility in application composition. The overall application should by easily
composed by individual tasks which follow a transparent communication pattern.
The functionality of the individual tasks as well as their provided quality of service
(QoS) should be modified dynamically during runtime.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

10 · Andreas Doblander et al.

software architecture advantages disadvantages
for single processors only

”no architecture” efficiency no support for component modeling
only static connections / limited scalability

efficiency (ie. streaming) limited to specific platform
multimedia frameworks (static) component building no networking

limited resource monitoring
state machine/ no component modeling
data-flow oriented versatile control scheme only synchronous operation
frameworks for fine and coarse grain algorithms only static configurations
publisher-subscriber dynamic component composition system-level software required
architecture transparent communication only for coarse grain components

implicit scalability
dynamic component composition heavy resource requirements

general-purpose versatile limited real-time capabilities
middleware implicit scalability limited data-streaming

programming overhead

Table I. Qualitative comparison of different software architectures.

Scalability. The software framework should be scalable concerning the number
and type of individual tasks, the available hardware resources as well as the data
volume transferred within the network.

Limited resource consumption. The software framework should carefully utilize
the limited resources on the embedded platform, i.e., memory and CPU capacity.

Low performance overhead. The performance overhead of the software frame-
work should be kept low since the desired applications demand high processing,
memory and communication capacities.

Support for real-time operation. The runtime behavior of the software framework
should be predictable in order to support real-time operation.

We compared the various potential software architectures to select the best fitting
architecture for target applications (Table I). Applications using ”no-architecture”
(only OS-calls) are probably very efficient concerning resource consumption, but are
very limited concerning networking, scalability and flexibility. Multimedia frame-
works such as the MFP from Texas Instruments provide high resource efficiency
and development support for streaming applications. However, these frameworks
are limited to a specific platform and offer only restricted networking. State ma-
chine and data-flow oriented frameworks provide versatile control schemes and can
be applied at various levels of abstraction. Their limitations are synchronous com-
munication, static configuration and limited networking. Publisher-subscriber ar-
chitectures and general-purpose middleware systems provide various networking
services, support dynamic component composition and are scalable with regard
to the software components and hardware nodes. They are typically applied for
coarse-grained components and require a substantial system-level software on top
of the operating system.

Thus, a resource-aware publisher-subscriber architecture would best fit our re-
quirements.

4.1 The Publisher-Subscriber Middleware

The publisher-subscriber architecture is an integral part of the DSP-FW and the
SC-FW. It aims at providing seamless and flexible connections between the algo-
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras · 11

rithms running on the DSPs. Furthermore, it has to provide the basic means for
supporting application reconfigurations aimed at reducing power consumption or
realizing graceful degradation in case of failures.

From the framework’s point of view every video analysis algorithm is a separate
entity that is executed in its own thread. Interconnections of the algorithms are
defined by the application. In previous work we used statically defined relations
among different data services, i.e., algorithms, to simplify inter-task communication.
This resulted in a very efficient message exchange over the PCI bus. However, the
static bindings of data producers and consumers substantially restricted flexibility
in dynamically combining algorithms. Furthermore, algorithms had to directly
invoke PCI communication primitives which reduced portability.

To overcome these limitations a publisher-subscriber middleware layer (PS-MW)
has been introduced. It provides the algorithms on the DSPs with basic message-
oriented communication facilities that are transparent concerning the underlying
transport medium. Additionally, a directory service was added to enable dynamic
service discovery. It is important to mention that the major goal of our efforts was
to provide these services with minimum overhead to save resources on the DSPs.

Each application’s algorithm is running in its own task. Communication between
algorithms is established via mailboxes which are available in the DSP operating
system. Among the different choices for inter-task communication mailboxes pro-
vide several advantages such as (i) transparent and efficient communication and
(ii) buffered and unbuffered communication which allows to realize synchronous as
well as asynchronous communication with the same OS mechanism.

In video applications a large amount of data has to be processed. To use the
limited memory of the DSPs efficiently image data is not copied when sent between
algorithms on the same DSP. Only references to actual data are exchanged. Small
messages like system commands or monitored performance information are directly
posted to mailboxes.

Figure 3 depicts the situation for two algorithms residing on the same DSP. The
first algorithm provides a data service X that the second uses for further process-
ing. The core of our publisher-subscriber architecture is realized as an efficient
object-oriented implementation. A detailed description of the architecture objects
is presented in previous papers [Doblander et al. 2006b; 2006a].

4.2 Dynamic Component Composition

4.2.1 Dynamic Loading and Reconfiguration. A central aspect of our smart cam-
eras is the dynamic loading and unloading of video analysis algorithms at runtime.
The dynamic loader module from Texas Instruments is able to dynamically link
and load DSP binaries and has been integrated into the DSP-FW.

Furthermore, each algorithm has to support different QoS levels that can be
changed at runtime. A required change in the QoS configuration is signaled by the
DSP-FW using a special command message type. Commands are not time-critical
and are, therefore, not treated as important as normal data services with tight
timing requirements.

In general there are two different types of trigger sources for reconfiguration
actions. One source of triggers for these reconfigurations are alarms generated
by the analysis algorithms. Another possibility for triggering a reconfiguration

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

12 · Andreas Doblander et al.

Algorithm 1
(provides service X)

Publisher
Object
(PO)

Service X

Subscriber
Object
(SO)

Service X

Properties
Object
(PrO)

Service X

Properties
Object
(PrO)

Service X

Algorithm 2
(requires service X)

Mailbox

Directory
Service

(DS)

Publisher-
Subscriber
Manager
(PSM)

Registration Registration

Look-up /
Add Item

Data

Data

Creates Creates

Data

Task A Task B

Data Source Data Sink

Fig. 3. Fundamental relations between objects of the publisher-subscriber architecture. Only local
connections within a single DSP are sketched.

are events raised by internal system-level services like the load distribution service
[Bramberger et al. 2005], the power management facility [Maier et al. 2005], or a
failure management service.

4.2.2 DSP Algorithm Component Model. To support the dynamic reconfigura-
tion of algorithms, i.e, their composition and change of attributes, in our surveil-
lance applications it is necessary for each algorithm to comply with a special com-
ponent model—the DSP Algorithm Component Model (DACM)—as indicated in
Figure 4. The DACM is based on the XDAIS algorithm component model from
Texas Instruments [Instruments 2002]. It extends the XDAIS model to support
dynamic loading and the publisher-subscriber communication scheme, as well as by
adding crucial entries in the algorithm’s resource descriptions to address all critical
system resources. In the XDAIS model the focus is on design time integration and,
therefore, resource ratings are only provided in the component documentation.

In the DACM all components have to provide all their resource information at
runtime to allow for dynamic component composition. The framework further
defines the necessary interfaces and algorithm descriptions that are required to load
an algorithm at runtime. Only algorithms following the DACM can be dynamically
composed at runtime. Algorithm characteristics that have to be exhibited by each
algorithm component are collected in Table II.

In the framework the resource manager module keeps track of already allocated
resources and available resources. Based on this information and the algorithm
characteristics the framework can decide whether a component can be (dynami-
cally) integrated into the system. Note that the enhanced direct memory access
controller (EDMA) of the DSPs is a critical resource as image analysis is very
memory intensive and data is mostly copied by EDMA to keep CPU load as low as
possible.

4.2.3 Resource Monitoring. The PS-MW has to ensure proper component com-
position when new algorithms are loaded at runtime. As a basis the framework
uses the component resource descriptions provided by each algorithm following the
DACM to determine the component’s resource requirements. Now to decide upon
the feasibility of a composition, the available resources in the system have to be
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras · 13

Resource
management

interface

Alive-
messaging
interface

Algorithm
control

interface

DSP binary

Resource
requirements /

performance ratings

. .
 .

.
Data

outputs

. . . .
Data

inputs

DSP Algorithm
component

Entry
for dynamic

loading
Reconfigurable

algorithm attributes

Fig. 4. Principle structure of a DACM component.

Required Services from other components
QoS levels
Resource requirements

EDMA channels and their priorities
EDMA tables
EDMA interrupts

Performance Ratings
CPU utilization for each QoS level
Transfer frequency of each EDMA channel
Transfer length of each EDMA channel

Table II. Example algorithm information as provided by the DACM.

calculated and compared to the resource requirements. The resource monitoring
module in the framework constantly computes the resource loading.

Countable resource metrics like the number of used EDMA channels, EDMA
tables, and EDMA transfer complete interrupts are quite easy to determine for
each algorithm. In the software framework this is achieved by a EDMA manager
that is the only authority to request EDMA related resources. Therefore, it is
also easy to check whether a component’s resource requirements can be met by a
simple comparison of available and demanded resources. Only if sufficient resources
are available the component is loaded and started. The actual composition is
then simply realized by the PS-MW. All required data services are looked up and
connected adequately as described in Section 4.1.

On the other hand, it is quite hard to provide exact characteristics of more
complicated resource metrics like CPU utilization, PCI bus utilization, and EDMA
controller utilization—they are also subject to constant fluctuations which makes
accurate a priori characterization impossible. However, these metrics are typically

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

14 · Andreas Doblander et al.

critical in terms of real-time operation of the system. As they are dynamically
changing it is necessary for the framework to observe them constantly. If limits
are going to be violated the framework initiates a graceful degradation in QoS of
less important algorithms. That is, the QoS levels of low priority algorithms are
reduced. Prioritization of algorithms is used to control the QoS adaptation. An
importance value defines the priority for each algorithm. This value specified by the
application developer. The implicit assumption for this procedure is that a lower
QoS level results in reduced resource utilization.

Information about PCI bus utilization is not part of an algorithm description.
As algorithms are composed at runtime it cannot be determined a priori by the
algorithm designer whether local mailbox communication or remote PCI commu-
nication will be used at algorithm deployment. However, for system stability it is
important not to overload the PCI bus. Therefore, PCI utilization is monitored by
the resource manager on the network processor. To do so it collects measurements
of the traffic through the medium abstraction objects (MAOs) of all DSPs and the
network processor. This is possible because the MAO is the unit on each processor
where all traffic to other processors is routed through. Therefore, overall PCI bus
load in a single SmartCam i, i.e., LoadPCI,i, can be computed as

LoadPCI,i = LoadPCI,XScale +
N∑

n=1

LoadPCI,DSPn , (1)

where N is the number of DSPs and LoadPCI,XScale and LoadPCI,DSPn denote
the load in bytes per second measured at the MAO of the XScale and DSP n,
respectively.

Utilization of the EDMA resources on the DSPs is a critical metric for overall
system performance because image data is mostly transferred by EDMA. If the
EDMA subsystem is overloaded the timely operation of all algorithms is at risk.
To improve the reliability of the system especially with respect to timeliness it is
necessary to avoid resource overloading. EDMA controller load generated from an
algorithm is estimated from the algorithm’s characteristics provided by the DACM.
It can be noted as LoadEDMA =

∑
LoadEDMA,l, where l = 1, . . . , L are the L

hardware priority queues of the EDMA controller and

LoadEDMA,l =
K∑

c=1

length(c, l) freq(c, l) (2)

denotes the transfer bandwidth of priority queue l taking into account all of the
K channels c. The function length(c, l) yields the number of bytes transferred on
channel c iff channel c is assigned priority l. It returns zero for all other values of
l. Similarly, freq(c, l) yields the number of transfers issued per second on channel c
iff c is assigned priority l.

The third critical system resource is memory. As the PS-MW provides a dynamic
environment it is key to estimate dynamic memory usage of algorithms and to mon-
itor dynamic memory availability. Maximum buffer sizes are known at design time.
Therefore, algorithm resource descriptions can be made quite accurate. Monitoring
of free dynamic memory resources is done by querying operating system memory
management calls.
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras · 15

Resource monitoring method monitoring period

CPU utilization (at each QoS-level) DACM description at initialization

EDMA (channels, tables, interrupts DACM description at initialization

memory limits (static, dynamic) DACM description at initialization

PCI load tracking transfer rates (MAO) at each invocation

EDMA load tracking EDMA controller at each invocation

dynamic memory usage tracking OS-calls at each invocation

execution times measurements by hooks at message rate

communication times measurements by hooks at message rate

Table III. Overview of the monitored resources in the PS middleware.

Table III summarizes the monitored resources in our PS-MW. Note that the first
three resource parameters are specified in the DACM description and are checked at
the initialization time of the (new) components. The remaining resource parame-
ters are monitored continuously. Execution and communication times are measured
at message transfer rates. Thus, for most algorithms the measurement rate corre-
sponds to the frame rate of the sensor data. The determination of the component
performance from these parameters is described in Section 4.2.5.

4.2.4 Component Composition. Given the resource requirements information in
the algorithm description of the DACM and the continuous monitoring of actual
resource occupancy as described in Section 4.2.3 the basic step of the composition
process is a comparison of required and available resources.

The algorithm is loaded by the dynamic loader facility when the algorithm’s
resource requirements are met. On load of the algorithm it registers with the PSM,
i.e., it queries for services it requires and publishes services it provides. In this
respect our approach is somewhat different to other component-based middleware
because the algorithm is loaded even if required services are currently not available
in the system. However, then the algorithm is put to sleep because it cannot do
its work. But if at a later time another component is inserted that provides the
missing service then the sleeping algorithm is brought back to work by the PSM.
With this simple mechanism we can load algorithms without bothering about the
sequence of algorithms defined by data-flow dependencies.

Another relaxation in our component composition approach compared to stan-
dard middleware technology is that there is some degree of freedom concerning
service querying. In general it is necessary that service interfaces, i.e., output of
one component and input of another component, completely match in order to be
connected. This is in principle also true for this approach but with the introduction
of different QoS levels it is also possible for a component to accept services that do
not match up to a certain extent. Of course, it is required that key attributes have
to match. But it is up to the algorithm to decide which ones it is able to accept
even if diverting.

In that respect it is possible that there are several services available in the system
that potentially match a new components requirements. Then this component has
to choose one of these. Generally, the one with the highest QoS level would be
the best choice. But especially in abnormal situations like failure conditions and
the like the situation might be different. Then it could be the case that using

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

16 · Andreas Doblander et al.

Algorithm
Ai

Subscriber Publisher
Data IN

TAi,in = getCounter() TAi,out = getCounter()

Data OUT

Fig. 5. Basic mechanism to monitor the algorithm execution times.

a lower quality service can allow the algorithm to at least provide rudimentary
functionality. This is a basic feature that is exploited when graceful degradation is
used to cope with faults that lead to resource failures.

4.2.5 Component Performance Monitoring. It is important for several reasons
to continually monitor all components in the system for their performance. First, it
allows the framework to reason about likely deadline misses that compromise real-
time operation. Second, performance measurements can be used to reason about
the fitness of components which is important for fault-tolerance mechanisms.

4.2.5.1 Dynamic Memory Usage. Especially, memory consumption of a compo-
nent observed over time can exhibit buffer management problems in algorithms or
other memory leaks. Of course, only dynamic memory allocation in heap memory
is observed. Operating system primitives are used to determine current memory
usage for each task in the system. This is sufficient since every algorithm runs in
its own execution task.

4.2.5.2 Execution Time. Execution times are constantly measured by hooks in
the PS-MW at the inputs and the outputs of all algorithms (cf. Figure 5). That is,
a system counter is captured each time a hook function is called in a subscriber or a
publisher, respectively. By this mechanism current computation time in CPU cycles
is determined as the difference TAi,exec = |TAi,out −TAi,in|, where TAi,in represents
the counter value at the time when all inputs of algorithm Ai were ready. TAi,out

stands for the counter value when all outputs of algorithm Ai were ready. Image
analysis algorithms are typically implemented such that they take some input data,
process it and produce some output data on a frame-by-frame basis. Therefore,
measuring the CPU cycles from the moment an algorithm receives data to the
moment it posts the output is a good estimate for its execution time.

As a side product the input frame rate of an algorithm can be checked by observ-
ing two subsequent input counter values TAi,in[n] and TAi,in[n + 1]. An estimate
Efframe

[n+1] for the current input frame rate of algorithm Ai at sample time n+1
is then given by

Efframe
[n + 1] =

fCPU

|TAi,in[n] − TAi,in[n + 1]| (3)

where fCPU denotes the clock frequency of the CPU. By continually observing these
frame rate estimates problems can be detected early so that interventions are likely
to prevent failures.
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras · 17

Algorithm
Ai

Publisher

TAi,out = getCounter() TAi+1,in = getCounter()

Subscriber
Algorithm

Ai+1

Fig. 6. Basic mechanism to monitor the communication delay from algorithm Ai to algorithm
Ai+1.

4.2.5.3 Communication Delay. Another performance rating that can be ob-
served by the framework is communication delay. That is, the delay from a publisher
to its associated subscribers is evaluated. As the execution time the communication
delay is also an estimate based on capturing a counter at well defined interaction
points in the publisher-subscriber subsystem.

In Figure 6 the principle is illustrated for two algorithms Ai and Ai+1, respec-
tively. Note that the same measurement points are involved as used for the execu-
tion time estimation. But in this case the probe points of different algorithms are
used.

The estimate EAi→Ai+1 [n] for the communication delay at sample time n can be
written as

EAi→Ai+1 [n] =
|TAi,out[n] − TAi+1,in[n]|

fCPU
(4)

with fCPU being the CPU clock frequency.
Observing communication delays over a certain period can reveal timing prob-

lems. Possible causes could be high loads on the CPU or the PCI bus. Single
absolute values of communication delay can be used to uncover real-time problems.
For example, the sum of all execution times and communication delays in a process-
ing chain determine the maximum possible frame rate at the system perspective.
The overhead introduced by hooks is neglectable since the hooks require only simple
table look ups and are typically called at rates tens or hundreds of milliseconds.

5. MIDDLEWARE-BASED FAULT TOLERANCE

Monitoring the various performance parameters over time provides valuable infor-
mation about the overall status of the application. By applying adequate reactions
when certain resource limits are reached we can increase the availability of the ap-
plication. We incorporate this approach into our PS-MW to take a step towards
autonomous operation of smart cameras. Integrating simple fault tolerance mecha-
nisms into our middleware helps to reduce the application development time as well
as to reduce the overall code size since the fault-tolerance code has to be included
only once in the whole system. The main management parts of this fault tolerance
architecture (FTA) are hosted on the network processor within the SC-FW, whereas
mainly low-level monitoring is included in the DSP-FW of each DSP and simple
fault handling mechanisms are available.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

18 · Andreas Doblander et al.

fault classes detection mechanisms fault handling procedures

algorithm faults plausibility checks algorithm reload
resource monitoring graceful degradation

communication faults alive messages node reboot

hardware faults watchdog DSP reboot
alive messages node reboot

Table IV. Considered fault classes, detection methods and fault handling procedures.

5.1 Fault Handling in a Network of Smart Cameras

The principle idea of our FTA is to introduce some degree of fault-tolerance by
embedding simple mechanisms in our middleware. We avoid additional hardware
components or sophisticated software replication techniques to keep our middleware
light-weight. However, it is possible to exploit domain-specific knowledge in our
distributed smart cameras to provide some fault-tolerance. Simple methods are
used to detect and localize faults and then graceful degradation is employed to
mitigate fault effects to prevent system failures.

In order to achieve fault tolerance, we exploit two basic mechanisms of our soft-
ware framework: dynamic reconfiguration and QoS adaptation. By migrating soft-
ware components from a faulty to a healthy processor during runtime, several
services may become operational again—potentially on a different camera. QoS
adaptation may free resources on individual nodes, since lower QoS-levels typically
demand for lower memory and computing resources. Thus, in situations with re-
duced available resources (either due to a hardware failure or a corrupt software
module) we may still provide some services.

5.1.1 Considered fault classes. In our work we currently consider only a subset
of all possible faults within a single SmartCam or in a network of collaborating
SmartCams.

Algorithm faults. The main focus of the FTA is to provide some higher level fault
detection for algorithms based on application-specific knowledge. That is, analysis
results of different algorithms are often related to each other. For example, in case
of a traffic jam two stationary vehicle detection algorithms on two adjacent cameras
have to come to the same decision—at least after some limited time interval. If an
algorithm detects the traffic jam and the other fails to do so it can be deduced that
one of them exhibits incorrect behavior. There are other cases where inconsistent
observations of two or more algorithms suggest a failure of one of them. Exceeding
the specified resource limits might be another reason for an algorithm fault.

Communication faults. It is essential for a network of cooperating smart cameras
to have mutual communication paths readily available to exchange information
about the observed scene. The middleware framework employs a simple messaging
protocol between neighboring nodes to check mutual reachability. These so called
alive- or heartbeat-messages are exchanged regularly. Missing messages over a preset
time span results in the corresponding node to be considered as down.

Hardware faults. As the main focus of the FTA is handling software problems
it makes sense to treat several hardware problems as well. This fault class is con-
sidered mainly because it is relatively easy to handle them in the given framework
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras · 19

for dynamic reconfiguration and coping with algorithm problems. In our FTA we
distinguish between a faulty processor (DSP breakdown) and complete breakdown
of a SmartCam.

5.1.2 Fault handling procedures. To cope with the above-mentioned fault-classes
different counter measures are used by the FTA (cp. Table IV).

Algorithm reload. If an algorithm shows unexpected behavior it has to be
restarted. That is, the algorithm is reloaded on the DSP. This procedure takes
only a couple of milliseconds.

As the reboot of a DSP takes significantly longer than the reload of an algorithm,
it is advisable to first try if reloading the algorithm in question solves the problem.
But if restarting or even repeated restarting does not lead to a successful recovery,
rebooting the DSP can be of assistance. Incorrect behavior of all algorithms running
on one DSP indicates a malfunction caused by the DSP and a reboot is necessary.

Graceful degradation. A key mechanism for increasing service availability is to
degrade some functionality in spite of risking overall system failure. There are
two basic means for degrading a service. First, its QoS level can be reduced. A
simple but realistic assumption we make here is that higher QoS results in increased
resource usage. Second, an algorithm can be shut down completely. Graceful
degradation is controlled by an importance parameter which is assigned to each
algorithm. The FTA reduces the QoS level of algorithms with lower importance
parameter first.

DSP reboot. The reboot of a DSP is necessary if a DSP crashed or is under the
strong suspicion to have at least partially crashed (e.g., temporary malfunction of
the RAM).

Node reboot. In case that a node recognizes that it is isolated from the rest of
the network it can decide to undergo a reboot procedure to eliminate possible tran-
sient network (stack) problems. Rebooting in this case is unproblematic because
if network communication failed it does not contribute to system goals any more.
But chances are that a transient problem is eliminated after reboot.

Operator notification. An operator, i.e., some global monitoring authority, has to
be informed if any unexpected behavior is noticed. If a node repeatedly shows ab-
normal behavior despite automatic recovery actions human inspection and mainte-
nance actions are inevitable. Therefore, all detected fault events subsequent counter
measures are logged so that an operator can retrieve the information on demand.

Furthermore, a node must always be informed about the operational reliability
of its neighbors. That is, if a node diagnoses itself as (partially) faulty its direct
neighbors have to be informed about these fault condition. This is to simplify
credibility checks in neighboring nodes. Because if a node testifies itself as faulty
the others can skip the voting process and exclude the faulty camera’s results from
further consideration.

5.2 Middleware-Based Fault-Tolerance Architecture for Smart Cameras

The SmartCam software framework incorporates the fault tolerance architecture
(FTA) that provides fault-tolerance as middleware services. The FTA comprises

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

20 · Andreas Doblander et al.

DSP-MDU

Resource
Manager

Alg1 | QoS | Importance | data fields

Node State Manager

LoggerList of Algorithms

Migration/Dynamic
Loading Facilities

Voter

Resource
Checker
Module

Network Processor DSP
Processor
boundary

MDU on Node i

Alg2 | QoS | Importance | data fields

Algoritm 1

Algoritm 2

MDU of
Node i-1

MDU of
Node i-1

Publisher-
Subscriber
Manager

Algorithms and their attributes

to Operator

Fig. 7. Overview of the fault tolerance architecture as it is included in the SmartCam software
framework.

several units on the network processor and the DSPs. Figure 7 illustrates the
principle relationships of the different components.

Every algorithm on the DSP that is subject to the FTA monitoring is registered
with the PSM so its input and output connections are known. Furthermore, the
algorithm descriptions as described in Section 4.2.2 provide the basis for decisions
on the algorithm’s resource usage. Most relevant are the algorithm’s name for iden-
tification, its current QoS level and what other QoS levels are offered, the resources
requirements for the current QoS level, the current importance measure assigned by
the application developer, and information about the algorithm’s typical execution
time. The individual components of our FTA can be described as follows whereas
the main part of the FTA resides in the so-called monitoring and diagnosis unit
(MDU) on the network processor.

Resource Checker Module. The resource checker module (RCM) is the only mod-
ule in addition to already described framework components of the DSP-FW. The
RCM monitors all relevant data concerning projected and actual resource usage of
each active algorithm. Resources demanded by the algorithms are compared to the
resources available in the system. Necessary resource information is queried from
the RM residing on the DSP. The RCM determines whether sufficient resources are
available and also communicates its data to the node state manager (NSM) on the
network processor.

Node State Manager. The node state manager (NSM) is the central entity of the
FTA. It determines a node’s state by evaluating data from the RCM, the voter and
the analysis results of the currently active algorithms.
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras · 21

We consider the following states of the node: (i) the normal state where all
algorithms work correctly; (ii) the low resource state where insufficient resources
are available; (iii) the DSP crash state where at least one DSP has crashed on
the SmartCam; (iv) the algorithm crash state where a malfunctioning algorithm
has been detected; and (v) the communication error state where communication
to other SmartCams can currently not be established. The transitions among the
node’s states are controlled by a simple finite state machine.

Most conditions for entering a specific state can be evaluated by our fault detec-
tion mechanisms or by checking the current resource usage. Detecting an algorithm
fault is based on application-specific plausibility checks. These checks often require
information from neighboring cameras.1 The voter unit compares the node’s analy-
sis results with the results of the two closest neighboring nodes. Deviations are then
feed to the NSM that changes the node’s state if applicable. A reasonable frequency
for voting analysis results from algorithms is once in a few seconds depending on
the application requirements.

Logger. The node’s state is recorded by the logger framework unit. This data
can be used to detect abnormal behavior in the long term behavior of a node
such as periodical failures of the hardware or software due to, e.g., environmental
conditions. Depending on the node’s state appropriate actions are induced by the
NSM and recorded by the logger. Furthermore, logged data can be retrieved by
remote clients, i.e., operator workstations.

Reloading. In case of the necessity of a reload or unload, the NSM instructs the
migration and dynamic loading facility (MDL) to reload or unload the suspicious
algorithm. The MDL induces the reload or in case of an unload performs the
unload and updates the list of current algorithms residing on the DSP. This list
holds information including which algorithm runs on which DSP on this node as
well as on the two closest neighboring nodes. In that way, the status quo can be
restored after rebooting from a DSP crash.

6. EXPERIMENTAL RESULTS

6.1 Performance Analysis of the Publisher-Subscriber Middleware

The publisher-subscriber middleware has been implemented on our SmartCam pro-
totype which consists of an Intel IXP425 XScale network processor running at 533
MHz and two Texas Instruments TMS320C6415 DSPs running at 600 MHz. The
most important performance parameters are presented below; more implementation
details can be found in [Doblander et al. 2006b; 2006a].

6.1.1 Memory Requirements. An important requirement for the task communi-
cation framework on the DSPs of the SmartCam is to use only little memory to save
it for the analysis algorithms. Although our middleware has been implemented in
C++ the memory footprint is only 15.78 KB. The runtime memory consumption is

1Consider a simple traffic monitoring scenario where information from neighboring cameras may
be exploited to identify an algorithm fault: Three consecutive SmartCams on a highway section
report the traffic statistics where the first and the third camera report a traffic jam and the second
camera reports high traffic throughput.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

22 · Andreas Doblander et al.

Component Memory [Bytes] Initialization time [µs]

Publisher-Subscriber Manager (PSM) 472 4.68
Directory Service (DS) 256 9.90
Publisher Object (PO) 192 10.17

Subscriber Object (SO) 96 11.01
Properties Object (PrO) 34-72 NA

Table V. Memory requirements and initialization times of management objects in the PS-MW.

Transfer Mode Value [µs]

Mailbox only 1.04
With PS-MW 1.21

Table VI. Message transfer times for plain mailbox communication and for a transfer using our
publisher-subscriber middleware.

also low, i.e., in the order of several hundred bytes per management object in the
framework.

The total memory consumption overhead depends on the number of published
services and subscriptions in the system. In a typical setting there are two algo-
rithms per DSP and each algorithm provides one service and subscribes to one
service. Together with the management objects this yields a typical total memory
overhead of the middleware of 3.71 KB per DSP (cp. Table V).

6.1.2 Initialization and Communication Overhead. As the PS-MW adds some
management overhead we measured the times spent in the initialization phase of
the PS-MW at system start-up. This one-time initialization introduced an overhead
of only up to about 10 microseconds (cp. Table V).

To assess the overhead in message transfer time when employing our light-weight
PS-MW we have performed some simple experiments. Several different scenarios
have been examined. First, the time spent for a plain mailbox communication
between two tasks was measured. After that the same tasks have been adapted
to use the PS-MW. That is, they communicated via a PO at the sender and a SO
(including a mailbox) at the receiving task. In this experiment the time spent from
sending the message at the publisher until it had been received at the subscriber
was measured.

Note that in this scenario one publisher with exactly one connected subscriber
was examined, i.e., a unicast communication scheme. The results are summarized
in Table VI. The overhead in this simple configuration amounts to 16% compared
to simple mailbox transfers. This overhead is introduced by the additional setup
mechanism of the PS framework. It is independent on the size of the transferred
data. However, this overhead is neglectable when large amounts of date such as an
image frame are transferred and processed.

We also examined the multicast communication scheme, i.e., one publisher with
several subscribers connected to it. The significant time measure in this case is
the overall time needed to transfer the published message to all subscribed tasks.
Again, only tasks on the same DSP were considered. Transfer time increases almost
linearly with the number of subscribers.
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras · 23

Number Transfer overhead [µs]
of SOs 2 DSPs 3 DSPs 4 DSPs

1 3.49 - - - -
2 4.69 5.24 - -

3 5.91 6.44 7.49

Table VII. Message transfer overhead time for publisher and subscribers residing on different
DSPs. Overhead is given compared to direct PCI transfers without the PS-MW.

In another experiment the transfer times between tasks on different DSPs have
been analyzed. The results are summarized in Table VII. The overhead in this case
stems from the indirection in the involved proxy mechanism to bridge the PCI bus.
It can be seen from the table that multiple subscribers on the same remote DSP
yield in a reduced overhead than if they all reside on different DSPs. This is due
to less management overhead in the target. Also note that data is transferred only
once to each DSP even if there are multiple subscribers for that data on the DSP.

6.2 Evaluation of the Fault Tolerance Architecture

The performance of the FTA was evaluated by experiments with dedicated test
algorithms instead of real video analysis algorithms. A test algorithm (TA) is a
piece of code suited for the framework that mimics the behavior of a surveillance
algorithm. Its output is simulated by a parameterizable data generator. The TA is
well-suited for fault injection experiments where faulty behavior of video analysis
algorithms can be simulated. No real faults have to be provoked and adequate test
patterns can be applied. Thus, different fault scenarios can be examined easily.

Every TA is launched as a single task. It implements the standard interfaces
needed to be deployed within the software framework. This includes also an appro-
priate algorithm description as it is required by the framework. The outputs of the
TAs are, therefore, as meaningful as those of the actual algorithms with respect for
their use with the FTA.

To evaluate the fault-tolerance architecture two key metrics are used as the eval-
uation criteria:

—the time elapsed to detect a fault and
—the time required for the execution of counter measures.

In order to demonstrate the FTA’s ability to detect faults and to illustrate its
reactions two example fault scenarios are presented in the following:

(1) Scenario 1: Inconsistent observations of algorithms on different nodes, and
(2) Scenario 2: A crashed DSP.

The surveillance setting assumed for the two scenarios comprises three smart
camera nodes Ni−1, Ni, Ni+1 along a highway where the cameras are equipped as
the prototype described in Section 3.1. It is the assumed application design that
three algorithms run on each camera to observe the scene. The algorithms and
their attributes of this example application are listed in Table VIII.

The following considerations are based on performance numbers presented in
earlier work [Bramberger et al. 2004]. Over the PCI bus a transfer rate of 15 MB/s

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

24 · Andreas Doblander et al.

Algorithm QoS Importance Minimum
Levels QoS Level

MPEG-4 Encoder (MPEG) Q1, Q2, Q3 5 Q2

Stationary Vehicle Detection (SVD) Q1, Q2 2 Q2

Traffic Statistics (STAT) Q1, Q2 1 —

Table VIII. Algorithms and their attributes for the example traffic surveillance application.

for communication between a DSP and the XScale is assumed as the lower bound
for small messages. The size of the transferred messages is always 128 bits consisting
of a 32-bit message ID and 96 bits of data. These include the algorithm’s reference
number and analysis results, e.g., the considered time interval and the number
of vehicles counted during this interval. Therefore, every message sent over the
PCI bus via the PS-MW was measured to result in an average transfer time of
tmsg,PCI = 0.031ms.

6.3 Scenario 1: Inconsistent Observations

Given are three camera nodes Ni−1, Ni, Ni+1 along a highway. Node Ni is observing
an area characterized by stop-and-go traffic and it is in normal mode. It hosts an
MPEG-4 encoder (MPEG) on one DSP and a stationary vehicle detection (SVD)
on the second DSP. The SVD on node Ni is faulty and, therefore, does not detect
any stationary vehicles during time interval t. The two neighboring nodes Ni−1

and Ni+1, however, register a number of vi−1 and vi+1 stationary vehicles during
time interval t, respectively.

6.3.1 System Response to Scenario 1. As node Ni’s neighbor’s observations are
not consistent with those of node Ni, a plausibility check will eventually detect this
inconsistency, i.e., the voter’s output does not match the SVD’s output and the
NSM indicates a malfunction of the SVD. The NSM instructs the migration and
dynamic loading facility (MDL) to reload the SVD. It sets the node to inconsis-
tent observation mode and sends this information to the logger. The SVD is then
reloaded and initialized. As most problems with algorithm’s detection results are
due to transient buffer problems it is likely that the re-initialization solves the prob-
lem and the algorithm works properly again. If the problem persists the algorithm
has to be removed and the operator has to be notified.

6.3.1.1 Time to Fault Detection. The SVD sends its output every two seconds
to the ACM and the voter, respectively. The voter’s output is sent to the NSM,
thus, two messages have to be sent and the first message is sent τ seconds after the
occurrence of the fault. The voter’s output reaches the NSM within a time interval
of

tdetection = τ + 2 · tmsg,PCI = τ + 0.062ms (5)

where τ ≤ 2s is the interval of alive messages specified in the framework.

6.3.1.2 Time Required for Counter Measures. To handle the problem the FTA
sends one or more messages to the MDL to reload the SVD. The time treload,SV D

required for reloading the SVD was measured to be 46 ms. Additional time
treg,SV D = 1 ms for registering and starting the algorithm has also to be consid-
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras · 25

Algorithm QoS QoS CPU RAM
Level Description [MIPS] internal external

MPEG-4 Q1 PAL 20 fps 2840 400 kB 0

MPEG-4 Q2 PAL 10 fps 1920 400 kB 0

SVD Q1 CIF 12 fps 3600 500 kB 17 MB

SVD Q2 QCIF 12 fps 900 330 kB 4 MB

Table IX. Resource requirements for surveillance tasks according to [Bramberger et al. 2004].

ered. Initialization of the SVD takes approximately 10 frames which corresponds
to tinit,SV D = 500 ms in case of QoS level Q2 with 10 fps. The total time spent on
counter measures adds up to

tcounter = tmsg,PCI + treload,SV D + treg,SV D + tinit,SV D (6)
tcounter = 0.031ms + 46ms + 17ms + 500ms (7)
tcounter = 563.031ms (8)

It can be seen from the above result that the overhead of the FTA is negligible
compared to the algorithm-specific re-initialization times. Of course, algorithms
with less initialization time result in less out time of the service in case of necessary
reconfiguration.

6.4 Scenario 2: DSP Crash

In this scenario the MPEG encoder operates at QoS level Q1 and an importance
of 5 on DSP 1. Additionally, the SVD runs with QoS level Q1 and an importance
value of 2 on DSP 2. Then the DSP 2 crashes and cannot be rebooted so that the
system has to proceed with only one remaining DSP.

6.4.1 System Response to Scenario 2. As the network processor maintains a
list of currently active algorithms along with their importance values and DSP
assignments the node state manager (NSM) can determine that the SVD algorithm
is missing on the node.

This is because DSP 2 has not reacted to polling from the MDU for one second. A
message is sent to the NSM informing that DSP 2 crashed. As resources demanded
by the MPEG encoder and the SVD on the highest QoS level exceed the remaining
DSP’s computational power of 4800 MIPS (cf. Table IX) the NSM has to reconfigure
the system. Note that image scaling and the shutter control for the image sensor
takes approximately 1900 MIPS which is also considered by the NSM.

Since the SVD has the lower importance the NSM calculates whether it is possible
to have the MPEG encoder run on QoS level Q1 and the SVD on QoS level Q2.
Hence this is not feasible due to the above-mentioned overhead of 1900 MIPS the
NSM subsequently determines that it is possible to run the MPEG encoder on Q2

in combination with the SVD on Q2. In that way the node chooses to gracefully
degrade the QoS as opposed to a degradation of the service availability. The NSM
instructs the MDL to load the SVD onto DSP 1, the MPEG encoder’s QoS level is
adjusted, and relevant information is sent to the logger. When loading of the SVD
onto DSP 1 is finished the procedure is complete.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

26 · Andreas Doblander et al.

6.4.1.1 Time to Fault Recognition. The time elapsed until the fault is recognized
is primarily determined by the polling interval tpolling . By adding the transfer time
of the notification message tmsg,PCI from the polling interface results in a detection
time tdetection of

tdetection = tpolling + tmsg,PCI (9)
tdetection = 1000ms + 0.031ms (10)
tdetection = 1000.031ms. (11)

6.4.1.2 Time Required for Counter Measures. Again the measures for
treload,SV D, treg,SV D, and tinit,SV D of the SVD introduced in Section 6.3.1 can
be used to compute the time for handling the problem. Additionally, the times
for readjusting the MPEG-4 encoder’s QoS level and the time tadapt,MPEG for the
encoder adapting to the new QoS level have to be considered. The MPEG needs
only one frame for adaptation which corresponds to tadapt,MPEG = 100ms, respec-
tively. Furthermore, two message sending times are involved in the handling of this
scenario. First, the MDL has to be notified to reload the SVD. Second, the MPEG
encoder has to be commanded to switch to QoS level Q2. Therefore, the time for
necessary reconfigurations to handle the detected problem computes to

tcounter = 2 · tmsg,PCI + treload,SV D + treg,SV D + tinit,SV D + tadapt,MPEG(12)
tcounter = 0.062ms + 46ms + 17ms + 500ms + 100ms (13)
tcounter = 663.062ms. (14)

6.5 Summary

Both of the above scenarios show that the detection and reconfiguration overhead
is dominated by algorithm-specific initialization times. Current algorithm imple-
mentations often rely on building some kind of models of the scene. The quality of
the analysis depends strictly on the quality of the models. Therefore, many frames
are used to build-up the models before actual analysis is performed. The encoder
algorithms are better in this respect as they do not rely on sophisticated scene
models.

The presented brief results are based on quite restrictive figures for communica-
tion times. That is, typically communication is much faster over the PCI bus. But
to have some upper limit of the detection times the minimum measured PCI speed
was considered.

7. CONCLUSION

In this paper we have presented a novel middleware for embedded smart camera
networks. This middleware is based on a very resource-aware publisher-subscriber
architecture that supports synchronous and asynchronous communication between
tasks in the given dynamic application environment. Our middleware supports
dynamic component composition and enables dynamic task reconfiguration dur-
ing runtime—both of which are quite unusual in such resource-limited distributed
embedded systems.

Although the middleware has been implemented on a SmartCam network and
evaluated in a traffic monitoring application, this research might be useful for a
ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras · 27

broader research community. The major lessons we have learnt throughout this
research can be summarized as follows:

—There is currently a strong trend towards visual sensor networks which process
visual data directly at the sensor nodes and stream abstracted data throughout
the network. The recent developments in smart camera networks [Aghajan and
Kleihorst 2007; Rinner and Wolf 2008b; Rinner et al. 2008] demonstrate this
trend very well. As briefly discussed in the introduction visual sensor networks
have different requirements on hardware and software compared to traditional
sensor networks. Our middleware addresses these requirements and is, therefore,
applicable to various visual sensor networks as well.

—Monitoring relevant and critical resources is crucial in distributed embedded sys-
tems. This is especially important in dynamic software environments including
methods for dynamic loading and reconfiguration. Most middleware systems,
however, monitor only ”standard” resources such as CPU utilization and global
memory consumption. Thus, much care must be taken for identifying and mon-
itoring critical resources such as DMA, communication loads and the memory
consumption for individual segments.

—Our middleware provides mechanisms for dynamic reconfiguration, QoS adap-
tation and resource monitoring. By exploiting these mechanisms we have inte-
grated simple but effective fault tolerance methods in our middleware. Due to
its intented simplicity only very limited guaranties concerning the fault tolerance
behavior can be achieved. However, our experiments show that in ”real” applica-
tions the availability can be significantly improved. Note that our fault tolerance
architecture is transparent to the application developer and causes virtually no
additional overhead.

There are several directions for future work. A natural direction is to further
explore the fault tolerance mechanisms of the middleware framework with the goal
of increasing the overall system’s availability. Another line of research would be
to include additional host and networking services in the middleware framework
(compare [Rinner et al. 2007]). These services strongly support the development
of distributed applications. A more general research approach would deal with the
design process of distributed applications based on middleware frameworks. Im-
portant topics for this direction are composability, scalability and portability of the
distributed application. Finally, the middleware framework will be demonstrated
in different application scenarios.

ACKNOWLEDGMENTS

This work has taken place at the Institute for Technical Informatics, Graz University
of Technology. The authors would like to acknowledge the support from Texas
Instruments.

REFERENCES

Aghajan, H. and Kleihorst, R., Eds. 2007. Proceedings of the ACM/IEEE International Con-
ference on Distributed Smart Cameras (ICDSC-07). Vienna, Austria.

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. 2002. Wireless sensor
networks: a survey. Computer Networks 38, 4 (March), 393–422.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

28 · Andreas Doblander et al.

Balasubramanian, K., Wang, N., Gill, C., and Schmidt, D. C. 2003. Towards composable

distributed real-time and embedded software. In Proceedings of the 8th IEEE International
Workshop on Object-Oriented Real-Time Dependable Systems. Guadalajara, Mexico, 226–233.

Becker, C., Schiele, G., Gubbles, H., and Rothermel, K. 2003. BASE—a micro-broker-
based middleware for pervaisve computing. In Proceedings of the First IEEE International
Conference on Pervasive Computing and Communications. IEEE, 443–451.

Bramberger, M. 2005. Distributed Dynamic Task Allocation in Clusters of Embedded Smart
Cameras. Ph.D. thesis, Institute for Technical Informatics, Graz University of Technology,
Graz, Austria.

Bramberger, M., Brunner, J., Rinner, B., and Schwabach, H. 2004. Real-Time Video Anal-
ysis on an Embedded Smart Camera for Traffic Suveillance. In Proceedings of the 10th IEEE
Real-Time and Embedded Technology and Applications Symposium. 174–181.

Bramberger, M., Doblander, A., Maier, A., Rinner, B., and Schwabach, H. 2006. Dis-
tributed smart cameras for surveillance applications. Computer 39, 2 (Feb.), 68–75.

Bramberger, M., Rinner, B., and Schwabach, H. 2004. An Embedded Smart Camera on a
Scalable Heterogeneous Multi-DSP System. In Proceedings of the European DSP Education
and Research Symposium.

Bramberger, M., Rinner, B., and Schwabach, H. 2005. A Method for Dynamic Allocation of
Tasks in Clusters of Embedded Smart Cameras. In Proceedings of the International Conference
on Systems, Man and Cybernetics. Hawaii, U.S.A., 2595–2600.

Clarke, M., Blair, G. S., Coulson, G., and Parlavantzas, N. 2001. An Efficient Component
Model for the Construction of Adaptive Middleware. In Proceedings of the 2001 IFIP/ACM
International Conference on Distributed Systems Platforms, R. Guerraoui, Ed. Number 2218
in Lecture Notes in Computer Science. Springer, 160–178.

DeMichiel, L. G. 1995. The component object model specification. Tech. rep., Microsoft Cor-
poration. Nov.

DeMichiel, L. G. 2002. Enterprise JavaBeans Specification Version 2.1. Tech. rep., SUN Mi-
crosystems. Nov.

Doblander, A., Rinner, B., Trenkwalder, N., and Zoufal, A. 2006a. A light-weight
Publisher-Subscriber Middleware for Dynamic Reconfiguration in Networks of Embedded Smart
Cameras. In Proceedings of the 5th WSEAS International Conference on Software Engineer-
ing, Parallel and Distributed Systems. World Scientific and Engineering Academy and Society,
Madrid, Spain.

Doblander, A., Rinner, B., Trenkwalder, N., and Zoufal, A. 2006b. A Middleware Frame-
work for Dynamic Reconfiguration and Component Composition in Embedded Smart Cameras.
WSEAS Transactions on Computers 5, 3 (Mar.), 574–581.

Fraga, J., Siqueira, F., and Favarim, F. 2003. An adaptive fault-tolerant component model.
In Proceedings of the Ninth IEEE International Workshop on Object-Oriented Real-Time De-
pendable Systems. Capri Island, Italy, 179–186.

Group, O. M. 2005. http://www.omg.org/technology/documents/formal/components.htm.

Hansson, H., Åkerholm, M., Crnkovic, I., and Törngren, M. 2004. SaveCCM—a compo-
nent model for safety-critical real-time systems. In Proceedings of the 30th EUROMICRO
Conference. 627–635.

Instruments, T. 2002. TMS320 Algorithm Standard—Rules and Guidelines. Texas Instruments.
Literature Number: SPRU352E.

Karsai, G., Sztipanovits, J., Ledeczi, A., and Bapty, T. 2003. Model-integrated development
of embedded software. Proceedings of the IEEE 91, 1 (Jan.), 145–164.

Lin, C. H., Wolf, W., Dixon, A., Koutsoukos, X., and Sztipanovits, J. 2006. Design and
Implementation of Ubiquitous Smart Cameras. In Proceedings of the IEEE International Con-
ference on Sensor Networks, Ubiquitous, and Trustworthy Computing. Vol. 1. IEEE, 32–39.

Maier, A. 2006. Dynamic Power-Aware Camera Configuration in Distributed Embedded Surveil-
lance Clusters. Ph.D. thesis, Institute for Technical Informatics, Graz University of Technology,
Graz, Austria.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

A Novel Software Framework for Embedded Multiprocessor Smart Cameras · 29

Maier, A., Rinner, B., and Schwabach, H. 2005. A Hierarchical Approach for Energy-Aware

Distributed Embedded Intelligent Video Surveillance. In Proceedings of the IEEE/IFIP Inter-
national Workshop on Parallel and Distributed Embedded Systems. Fukuoka, Japan, 12–16.

Mascolo, C., Capra, L., and Emmerich, W. 2002. Mobile computing middleware. In Ad-
vanced Lectures on Networking: NETWORKING 2002 Tutorials, E. Gregori, G. Anastasi, and
S. Basagni, Eds. Lecture Notes in Computer Science, vol. 2497. Springer, 20–52.

Microsoft. 2005. .Net Home Page. http://www.microsoft.com/net.

Mody, M. 2006. XDAIS-DM (XDM): A step towards the “plug and play” architecture for mul-
timedia codecs. TI Developer Conference. http://www-s.ti.com/sc/techlit/sprp496.pdf.

Molla, M. M. and Ahamed, S. I. 2006. A Survey of Middleware for Sensor Networks and Chal-
lenges. In Proceedings of the 2006 International Conference on Parallel Processing Workshops
(ICPPW’06). IEEE, Columbus, Ohio, USA, 223–228.

Object Management Group. 2002. Minimum CORBA 1.0. http://www.omg.org.

Pitt, E. and McNiff, K. 2001. Java.rmi: The Remote Method Invocation Guide. Addison
Wesley.

Pope, A. 1998. The CORBA Reference Guide: Understanding the Common Oject Request Broker
Architecture. Addison Wesley.

Rinner, B., Jovanovic, M., and Quaritsch, M. 2007. Embedded Middleware on Distributed
Smart Cameras. In Proceedings of IEEE International Conference on Acoustics, Speech, Signal
Processing (ICASSP 2007). Honolulu, Hawaii, U.S.A., 1381–1384. invited paper.

Rinner, B., Schriebl, W., Winkler, T., Quaritsch, M., and Wolf, W. 2008. The Evolution
from Single to Pervasive Smart Cameras. In Proceedings of the ACM/IEEE International
Conference on Distributed Smart Cameras (ICDSC 2008). Stanford, USA.

Rinner, B. and Wolf, W. 2008a. A Bright Future for Distributed Smart Cameras (guest editor’s
introduction. Proceedings of the IEEE 96, 10.

Rinner, B. and Wolf, W. 2008b. An Introduction to Distributed Smart Cameras. Proceedings
of the IEEE 96, 10.

Schmidt, D. C. 2002. Middleware for real-time and embedded systems. Communications of the
ACM 45, 6 (June), 43–48.

Sessions, R. 1997. COM and DCOM: Microsoft’s Vision for Distributed Objects. John Wiley &
Sons.

Systems, M. C. and Thales. 2003. Light Weight CORBA Component Model. Tech. rep., Object
Management Group.

The Object Management Group. 2001. Real-Time CORBA 2.0. http://www.omg.org.

Wolf, W., Ozer, B., and Lv, T. 2002. Smart cameras as embedded systems. Computer 35, 9
(Sept.), 48–53.

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

