
Flexible Clustering in Networks of Smart Cameras

Bernhard Dieber, Bernhard Rinner
Institute of Networked and Embedded Systems

Klagenfurt University, Austria
{Bernhard.Dieber, Bernhard.Rinner}@uni-klu.ac.at

Nikolaus Viertl
Video and Security Technology

Austrian Institute of Technology, Vienna
Nikolaus.Viertl@ait.ac.at

Abstract

Advances in sensors, networking and embedded comput-
ing have driven a paradigm shift in the control of camera
networks. The processing of the image data has migrated
from central servers to the camera network following fully
distributed or clustered approach. In clustering, the data
is analyzed within a group of cameras, and the abstracted
data is then forwarded to other clusters.

In this paper we present a flexible and scalable software
tool that supports clustering in smart camera networks.
This tool supports the dataflow-oriented processing within
a group of cameras. A plug–in-mechanism facilitates flexi-
bility and scalability; data processing can be migrated be-
tween the cluster node and the smart cameras. We demon-
strate the feasibility of our tool in a multi-camera person
tracking case study.

1. Introduction
A huge number of camera networks have been deployed

so far. Most of these networks have become larger, more
ubiquitous and more embedded over the last recent years.
Although the number of deployments has risen dramati-
cally, control and coordination of these networks is still
a challenging problem. Typical control and coordination
tasks include camera selection, camera hand-off and fusion.

Fundamentally, several control strategies are possible in
camera networks. In the centralized approach, a dedicated
node has access to all required data in order to control the
cameras. In this setting, the cameras typically stream their
(raw) data to the central node where control and computa-
tion takes place. In the distributed approach, the control is
not assigned to a single node but to a set of cooperating node
(see for example [3, 5, 8]). Here, the assignment of control
tasks changes dynamically and is often managed in an ad-
hoc and peer-to-peer manner. In the clustered approach, the
(raw) data is processed within a group of cameras (cluster),
and abstracted data is transferred among different clusters
(examples can be found in [1, 2, 6]). This imposes a hi-

erarchical control strategy in the network. Clustering is a
very natural approach for many multi-camera applications
because (i) the network is often hierarchically structured,
(ii) the monitored activities in the network have a strong lo-
cality and (iii) it offers high scalability and flexibility.

This paper focuses on a framework for developing and
evaluating cluster-based multi-camera applications. Our
framework manages the data flow within a cluster of cam-
eras, i.e., it reads data from a variable number of n inputs
(cameras), processes the input streams and generates a vari-
able number of m outputs (compare Figure 1). Great ef-
fort has been put into flexibility and composability of our
framework to support multi-camera application develop-
ment. The plug-in mechanism of our framework enables an
easy adaptation of number and type of inputs (and outputs).
Various software modules are automatically composed into
the overall processing pipeline. A monitoring utility checks
important performance parameters to support the evaluation
of the application.

Since input and output as well as the processing pipeline
can be easily adapted, the framework supports processing of
raw, compressed or abstracted data within the camera clus-
ter. It is therefore well suited for traditional as well as smart
camera networks [7]. We demonstrate this high flexibility
by two case studies: person detection in a traditional multi-
camera network and person detection in a network of em-
bedded smart cameras.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses the research questions of this work. In Sec-
tion 3 we present the requirements and the design of our
software framework. Section 4 describes a case study and
experimental results. We conclude this paper with a brief
discussion of future work.

2. Research Questions
Cameras can be clustered e.g. by their field of view or

physical location. The network topology itself can also be a
clustering criterion.

For each application scenario a different clustering
method is optimal. Therefore it is necessary to evaluate and

1



compare different clusterings. We focus (but do not limit)
our research on scalability in clustered networks.

2.1. Scalability

Clusters can be scalable with respect to different aspects
which are closely related to each other, e.g. the number of
cameras in the cluster, the processing workload in the clus-
ter nodes or the inter– and intra–cluster data flow.

We want to evaluate the trade off among the following–
mututaly influencing–scalability factors.

Number of inputs: The number of cameras connected to
each cluster node (CN) can be varied. A larger number of
cameras in the cluster results in an increased data volume
and hence increased processing load in the CN. Therefore
software in the CN must be scalable regarding the number
of inputs.

Data flow: The input data for each cluster node can can
be chosen differently in terms of data format or data type.
Examples are raw image data or higher abstracted informa-
tion (like scene descriptions).

Processing pipeline: Depending on input type and num-
ber of input sources, a CN can perform different types of
fusion with a variable number of processing steps (see also
[2]). Consequently, this also influences the type of output
in each cluster node. This output is higher abstracted than
the single inputs (e.g. for raw image data as input a cluster
node may deliver a scene description with all object found
in all views).

Number of outputs: A CN can have more than one
output (see for example [3]). Possible output channels are
the transfer of results to a superordinate node, persistent
storage, event dispatching or visualization for human
supervisors.

2.2. Practical Experiments and Case Studies

We want to practically evaluate certain clustering meth-
ods in real networks which brings up the need to record per-
formance indicators at every node in the network. This cre-
ates huge amounts of data, thus a mechanism to collect and
analyze performance data must be provided.

For large networks, applying clustering is a non-trivial
task because software must be deployed to all nodes. The
software configuration may be similar but is not the same
for every CN. Depending on the data flowing in and out
of CNs the actual processing in the nodes changes. In or-
der to efficiently evaluate different clusterings a mechanism
for mass-deployment of software to all CNs in the network
must be provided.

2.3. Multi-cluster Modeling

In order to perform practical evaluation in a clustered
camera network, the network must be modeled and con-
structed. We model clusters and cluster hierarchies with
focus on the intra– and inter–cluster data flow, i.e. a CN
processes multiple data streams from smart cameras and po-
tentially transfers results to nodes in higher levels.

3. Framework

To facilitate implementation and evaluation of clustered
camera networks we present a software platform that runs
on every cluster node. In this section we first explain the
requirements that we identified for this software. We then
present our software design which fulfills those require-
ments and explain further details on the framework.

3.1. Requirements

For our software we identified some key requirements
that have to be fulfilled in order to provide a platform that
can be used in large–scale clustered networks.

Scalability: The software has to be able to accept a vari-
able number of inputs and deliver a variable number of out-
puts. This is essential to evaluate clustering by varying the
number of connected cameras. Additionally, the processing
work performed in an instance must be variable and easy to
change. To allow different types of work to be performed in
the cluster node, a mechanism to easily exchange the pro-
cessing part must be provided.

Composability and Flexibility: We want applications
which are built on top of our software to be composed from
exchangeable modules. This increases the level of code
reuse and thus speeds up application development.

To support a variety of application scenarios, the soft-
ware should not restrict the data flow by means of data type
or data content.

Deployment Support and Monitoring: The software is
intended to provide facilities to easily get a cluster node
up and running. This includes selecting and composing the
processing part, collecting the necessary configuration val-
ues and deploying the software to all cluster nodes. Since
cluster nodes on the same hierarchy level may have simi-
lar configurations a mechanism to facilitate the creation of
multiple similar software instances is needed.

To collect performance indicators in a large network, a
cluster node must be able to monitor itself and collect rel-
evant data. In different clustering scenarios different per-
formance data is of relevance. Thus it must be possible to
select those performance parameters to be monitored. In
many cases it is not sufficient to just monitor process spe-
cific parameters like CPU usage or memory consumptions
but it will be necessary to analyze the data flowing through



Figure 1: Data flow within the framework. One or more input plug–ins continuously pass data to a chain of processing
plug–ins. Resulting data is transferred to multiple output plug–ins.

the cluster node. An application typically consists of multi-
ple, sequential steps. To analyze the data produced by each
step (e.g. evaluate against ground truth), a method to trans-
parently extract data between processing steps is necessary.

Further Requirements: We want our software suitable
for many application scenarios, thus it must also be easy
to use for developers and users. Additionally the software
needs to be platform independent and thus be applicable in
many environments. To provide a powerful but resource–
saving platform, we try to minimize the memory and per-
formance overhead caused by the software itself.

3.2. Framework Design

We present a flexible software which fulfills our re-
quirements. Its structure follows the IPO–principle (Input–
Processing–Output), i.e. we assume a sequential dataflow
through our software.

We have completely implemented a prototype of our de-
sign in C#.Net 2.0; an implementation in C++ is currently
under construction. The .NET version runs on any platform
where a .NET or Mono1 runtime is available, i.e. at least
under Windows, most Linux distributions, Solaris, BSD and
MacOS.

3.2.1 Plug–In Structure

To achieve a flexible structure for exchange and combina-
tion of single modules we have implemented a plug–in sys-
tem. Many applications can extend their functionality using
plug–ins. Contrary, in our framework the plug–ins actually
determine the functionality of the application. Our software
defines plug–in interfaces for input, processing and output.

Input plug–ins run in dedicated threads and continuously
pass data to the processing chain. The processing part
can be composed from multiple processing plug–ins which
form a pipeline (further called processing chain). Figure 1
gives an overview on structure and the dataflow within our
software.

1http://www.mono-project.com/

3.2.2 Generic Data Transfer

For information interchange between plug–ins an asyn-
chronous, event-based mechanism that is independent of
data type and content is implemented. Thus, arbitrary data
may be processed and passed within the framework as long
as the receiving plug–in is able to interpret the incoming
data. A computer vision application that works on low level
image data will most likely pass images between plug–ins
while a fusion algorithm for high–level data may pass only
lists of detected objects. We perform a compatibility check
to ensure that all plug–receive only supported data.

This enables a wide spectrum of applications and the ex-
change of single plug–ins without the need to exchange or
recompile other parts. In the context of a camera network
we can receive the input data for a multi-view fusion algo-
rithm either from synchronized video files or from live data
over a network connection (or any other data source). The
processing plug–in containing the fusion algorithm does not
need to be exchanged when the input source changes. Also
for a certain set of input video files we can compare differ-
ent fusion algorithms by simply exchanging the processing
plug–in.

Our software structure and data flow model enables us to
use many different communication methods (like low level
networking, MPI, CORBA, . . . ) in our network.

3.2.3 Monitoring

To achieve a generic mechanism for performance monitor-
ing we provide a monitoring interface which, again, is plug–
in based. Every monitor plug–in may listen to events in the
system in order to extract performance information. This
may be done with or without active support by each plug–in,
i.e. plug–ins may define and dispatch certain events that are
performance related (e.g. the amount of bytes transferred
over a network connection).

Nevertheless, in some cases the method above will fail
to collect the necessary performance data. As explained in
Section 3.1 we want to analyze the data between each pro-



cessing step. In the monitoring plug–in approach a specific
plug–in has to explicitly dispatch a performance–related
event containing its processing result. We do not want to un-
necessarily complicate the development of plug–ins. Thus,
we preferred a much simpler mechanism for this.

We exploit the modular design and the data transfer
mechanism to deal with such cases. We insert plug–ins
which act as transparent proxies into the processing chain.
A proxy plug–in accepts incoming data, performs the nec-
essary operations (dumping or analysis) and passes the un-
modified data to the next plug–in. Figure 2 shows an ex-
ample extraction. If we want to analyze the output of the
object detection separately we just insert the corresponding
extraction plug–in after the object detection plug–in.

Figure 2: The result of the object detection algorithm is
dumped transparently for all other plug–ins.

3.3. Framework Instances

In our framework an application for a certain purpose is
composed by selecting plug–ins for input, processing and
output. Every plug–in needs to be configured separately,
e.g. a RTP output plug–in needs a target IP address to stream
to, a video file input plug–in requires a source file. A set of
fully configured plug–ins that are checked for compatibility
and are ready to run is called a framework instance.

Thus, we define a framework instance as a combination
of plug–ins

1. that has at least one input and one output plug–in

2. which have been checked for compatibility

{[V id]4} 99K 〈[BG]→ [OD]→ [OT ]〉 99K {[V is], [RTP ]}
(a)

[V idIn] 99K [Transcodempeg4] 99K [V idOut]
(b)

Figure 3: (a) A framework instance with four parallel inputs
from video files, a processing chain with background sub-
traction, object detection and object tracking and two paral-
lel outputs to a visualization and to a RTP stream. (b) shows
an instance where a simple video transcoding is performed.

3. which are configured and ready to run

To easily describe a framework instance we use the fol-
lowing syntactical elements:

• [Module] describes a single module (plug–in). Mul-
tiple parallel modules of the same type are indicated
using superscript numbers. Indications on the actual
work performed, like the modules configuration, are
subscripted if necessary.

• → indicates synchronous data transfer between mod-
ules (typically inside a processing chain)

• 99K indicates asynchronous data transfer from or to a
set of parallel plug–ins

• {[M1], . . . [Mn]} describes a set of modules working
in parallel (input or output)

• 〈[M1]→ . . . [Mn]〉 describes a processing chain. Due
to the strict sequentiality of a processing chain the data
transfer typically is synchronous. If a processing chain
only contains one element the surrounding brackets
may be omitted.

Example framework instances are shown in figure 3.
With this description language we can easily give clear de-
scriptions of framework instances.

4. Case Studies
In early experiments we focus on data flows within a sin-

gle cluster. Embedded devices perform local preprocess-
ing of video data (at 25fps), as CN we use a standard PC
platform (2.5GHz, 4GB main memory, Windows). In this
case study we perform multi-camera person tracking. Data
from cameras is collected at the central node which creates
a global probabilistic occupancy map for the common FOV
of all cameras[4]. In all setups we perform the same multi-
camera algorithm at the CN. Thus, the computational over-
head for this algorithm is the same in all setups. Note, that
in this work we do not focus on the performance of the al-
gorithm in the CN but rather on the network perspective.
The impact of different clustering methods and input data
on the performance of multi-camera algorithms will be part
of future work.

4.1. Experiment Setups

The embedded devices in our network that are capable
of various computer vision tasks. The ”Advanced Video
Codec”2-devices built by Austrian Institute of Technology
are connected to surveillance cameras and perform back-
ground subtraction and object tracking on board. Every

2http://www.smart-systems.at/products/products video avc en.html



AVC delivers for every camera one RTP-stream containing
the raw image, one stream containing only foreground re-
gions and an XML–description of the object tracking out-
put.

Based on the capabilities of our AVCs we evaluate the
performance of the cluster node. We have four cameras in
our cluster, two connected to each AVC, and perform multi-
camera person tracking in the cluster node. In a first sce-
nario the cluster node has raw data as input and performs
background subtraction, object detection and multi-view
tracking. In second setup the embedded devices stream
differential images resulting from the onboard background
subtraction to the cluster node. The XML–scene descrip-
tion produced by the AVC is the cluster node input in the
third scenario.

Raw images are streamed at CIF resolution, differential
images have QCIF resolution, both are in YV12–Format.
The XML–description includes metadata like timestamp
and input video resolution as well as a list of objects de-
tected in the actual frame and their trajectories. The descrip-
tion for one frame takes approximately one KB of memory
depending on the number of objects. Raw images use 148
KB of memory, differential images need 37 KB. Thus, an
increased memory demand when using raw data as input
must be expected.

We assume approximately 5MB memory overhead for
our framework application. This amount differs on every
platform, the largest part of this is caused by the graphical
user interface. The core framework library itself only uses a
few hundred KB. During the execution additional memory
is allocated due to the event–based data passing mechanism.
Nevertheless, the required memory for this is minimal.

In our experiments we focus on the maximum number
of input streams that can be processed on the cluster node.
This is important when determining the number of cameras
in a cluster and the number of hierarchy levels in a large
clustered network.

To switch from one scenario to another we need to
change the application in the cluster node. To change the
input data or the processing chain itself we only have to ex-
change plug–ins in our framework. To switch from raw data
to differential image we just remove the background sub-
traction module, to take XML as input we need to change
the input plug–in and remove background subtraction and
object detection. Changing the plug–in configuration can
be done using a comfortable graphical user interface. In
this user interface also configuration settings for each plug–
in can be changed.

To test our framework we have implemented the follow-
ing plug–ins:

• RTP-Transport [RTP ] (Input)

• XML–Input [XML]

• Background subtraction [BG] (uses OpenCV)

• Object detection [OD] (uses OpenCV)

• Multi–view aggregation [MV ]

• Visualization [V is]

Figure 5 shows the processing chains that were per-
formed in the cluster node depending on the input data com-
ing from the AVC. Obviously, the longest processing chain
is needed for raw data. Figure 4 shows the setup of our
experiments.

Figure 4: Setup in our experiments. Each AVC is connected
to two cameras. The AVC output is streamed to the cluster
node and processed in the framework instance.

{[RTPCIF ]2} 99K 〈[BG]→ [OD]→ [MV ]〉 99K [V is]
(a) Raw Data

{[RTPQCIF ]4} 99K 〈[OD]→ [MV ]〉 99K [V is]
(b) Differential Images

{[XML]4} 99K [MV ] 99K [V is]
(c) XML

Figure 5: Depending on the input, the cluster node must
have an adequate processing chain. The higher abstracted
the input, the less work has to be performed by the cluster
node.

4.2. Results

As shown in table 1 our cluster node was able to process
only two streams of raw data in parallel which is caused by
the higher resolution as well as the need to perform back-
ground subtraction.

When processing differential images the load on the
cluster node decreased drastically. Thus, the cluster node



could process a far higher number of data streams than in
our setup.

XML scene descriptions as input for the cluster nodes
allow an even higher number of streams to be processed.

Input data # Inputs Max. CPU Max. memory
Raw 2 100% 360 MB
Differential 4 15% 89 MB
XML 4 10% 36 MB

Table 1: Performance indicators wrt. input data (number of
input streams processed, Max. CPU load and Max. memory
usage).

The bandwidth required to stream a certain kind of data
is an important criterion for camera clusters. Table 2 shows
the bandwidth values for our setup. Again, the lower load
when using higher abstracted data can be seen.

Input data Required bandwidth
Raw 3.7 MB/s
Differential 0.9 MB/s
XML3 0.025 MB/s

Table 2: The bandwidth required by every camera to stream
the specified data.

As already mentioned, in this case study we did not focus
on the algorithms performed in the CN but it can already be
seen that in order to employ computationally more demand-
ing algorithms, higher abstracted input or more powerful
CN hardware must be employed.

5. Future Work
As shown above, our framework is already a powerful

platform for prototyping and evaluating computer vision ap-
plications in clusters of cameras.. Nevertheless we will fur-
ther improve our framework to enable additional usage sce-
narios.

Currently we are completing the C++ implementation.
We can easily port our current implementations from the
.NET context to C++ plug-ins since we implemented rel-
evant parts in native C++ already (which are currently
wrapped in .NET plug-ins). Therefore it is easy to develop
new plug-ins that can be employed in both framework ver-
sions.

We are also working on a remote deployment mechanism
that will enable us to deploy specific plug-ins and their con-
figurations to other network nodes. This will also require to

3Note, that the bandwidth required to stream XML scene descriptions
varies with the number of objects in the steam. One object in one frame
requires approx. 105 bytes.

implement remote control mechanisms for framework in-
stances. The final result will be a network node manager
that will deploy and configure network instances on click.

With the network manager we will evaluate networks
with multiple clusters to determine the overall performance
of a certain clustering mechanism. We will collect differ-
ent performance parameters in all cluster nodes in the net-
work to determine the optimal clustering for certain scenar-
ios. This includes the number of connected cameras, data
abstraction level (inter– and intra–cluster), bandwidth usage
and hardware requirements.

We will also focus on modeling multi-cluster networks
to facilitate their management and construction.

References
[1] H. Aghajan and A. Cavallaro. Multi-Camera Networks - Prin-

ciples and Applications. Elsevier, 2009. 1
[2] H. Detmold, A. van den Hengel, A. Dick, A. Cichowski,

R. Hill, E. Kocadag, K. Falkner, and D. S. Munro. Topol-
ogy Estimation for Thousand-Camera Surveillance Networks.
In Proceedings of the ACM/IEEE Conference on Distributed
Smart Cameras, Vienna, Austria, 2007. 1, 2

[3] S. Fleck, F. Busch, P. Biber, and W. Straßer. 3D Surveillance A
Distributed Network of Smart Cameras for Real-Time Track-
ing and its Visualization in 3D. In CVPRW ’06: Proceed-
ings of the 2006 Conference on Computer Vision and Pattern
Recognition Workshop, page 118, 2006. 1, 2

[4] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua. Multicamera
People Tracking with a Probabilistic Occupancy Map. IEEE
Transactions and Pattern Analysis and Machine Intelligence,
30(2):267–282, 2008. 4

[5] S. Funiak, C. Guestrin, M. Paskin, and R. Sukthankar. Dis-
tributed Localization of Networked Cameras. In IPSN ’06:
Proceedings of the 5th international conference on Informa-
tion processing in sensor networks, pages 34–42, 2006. 1

[6] H. Medeiros, J. Park, , and A. C. Kak. A light-weight event-
driven Protocol for Sensor Clustering in Wireless Camera
Networks. In Proceedings of the ACM/IEEE Conference on
Distributed Smart Cameras, pages 203–210, Vienna, Austria,
2007. 1

[7] B. Rinner and W. Wolf. Introduction to Distributed Smart
Cameras. Proceedings of the IEEE, 96(10):1565–1575, Octo-
ber 2008. 1

[8] A. Williams, D. Ganesan, and A. Hanson. Aging in Place:
Fall Detection and Localization in a Distributed Smart Camera
Network. In MULTIMEDIA ’07: Proceedings of the 15th In-
ternational Conference on Multimedia, pages 892–901, 2007.
1


